用户名: 密码: 验证码:
减少吸收衰减影响的高分辨率探地雷达技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨率是探地雷达技术最显著的优点之一,凭着这一优势,探地雷达在近地表地球物理探测中得到了广泛的应用。但是,由于雷达波在有耗介质传播中的衰减与频散现象比较严重,这使得探地雷达的高分辨率这一优点受到一定的限制,同时也在很大程度上制约了探地雷达技术的发展。因此,高分辨率探地雷达技术的研究就变得很有意义。与高分辨率地震勘探一样,高分辨率探地雷达技术的研究也属于一项系统工程,它主要包括基础理论研究、方法研究和仪器研制三大方面。本论文主要是针对吸收衰减影响的高分辨率探地雷达技术这一系统工程做了一次尝试性研究。在以上三大方面分别做了一些工作,首先,在仪器上介绍一种便于衰减透射测量天线的设计和制作;其次,通过对平面电磁波理论和直达波法分别对单色频率和雷达子波的衰减进行研究,总结出雷达波一些衰减规律和频散特性。最后,在方法研究上提出了一种能效补偿吸收衰减影响的FC频率补偿技术,并把它与常规反褶积相比较,详细指出这两种方法的一些优缺点,这使得我们对FC频率补偿技术有着更加深入的了解。
Ground Penetrating Radar (GPR) is a Geophysical method which can confirm the distribution of the medium inner using of the high frequency electromagnetic wave. By now, GPR has developed for one century from the beginning of the twenty century. GPR has a broad application in the practice or field surveying for its high resolution excellence. With the deep development of the GPR technology and the range of the application, more high resolution should be required. For the more severity attenuation and dispersion of the GPR wave when it propagates in the loss or heterogeneous medium, the high resolution excellence of the GPR decrease so much, at the same time, which deeply restrict the development of the GPR technique. As well as the high resolution seismic exploration, high resolution GPR technique is a system project, which include the base theory study (in particular the electromagnetic wave (EW) attenuation mechanisms, the dispersion characteristic), methods research (such as the data collection, processing and the interpretation) and the instrument develop (especially the GPR antennas study ). This thesis tries to have a study on the high resolution GPR system project which aims at reducing the influence of the absorption and the attenuation. The thesis mostly includes three parts: the first, we develop one experiment penetrating survey antenna which can be use to study on the GPR wave attenuation; and the second, using the panel electromagnetic wave theory and the direct wave method, we have a study on the monochromatic frequency and the GPR wavelet attenuation separately. And the last one, we present a way which can be used to enhance the GPR data resolution. The content of the three parts followed:
     1. At present, the GPR antenna mostly designed for the surveying on the ground. However, when we study on the GPR wave attenuation, the antenna had better to be putted into the medium, such as the water and sand. Moreover, the commercial antenna is usually expensive and large, so that it can not freely have the attenuation survey in the lab, and can’t popularize all kinds of GPR researches. Because of the reasons above, it is so necessary to design an antenna that is convenient for the attenuation’s penetrating survey. We firstly consider the half wave symmetric dipole antenna because it is small, simple design and easy analysis and so on. To the half wave symmetric dipole antenna design and making, we detailed introduce every parameter’s choice and its computation of the antenna in the applied point of view. These parameters involve the material, figure, length, radius, width of the connect and the protect layer of the antenna and etc. Through the analysis of the result of electromagnetic simulation and the practice surveying effect, the antenna made by the way of the thesis’s introduction is confirmed that it has the excellence of the wide band and high radian efficiency, and it can be used to study on the attenuation of the GPR wavelet.
     2. Study on the monochromatic frequency attenuation and dispersion. As we all know, the complex propagation constant can deduce the formulation of the absorption coefficient and phase coefficient. The research of this part is to conclude the relation of the GPR wave attenuation or dispersion to the frequency, conductivity and the dielectric permittivity. By the way of combination of the logarithm reference frame and the isoline map, we make the description of the relation be more intuitional and detailed. Another, we have some analysis of the loss tangent, and point out the loss tangent change to the frequency. At the same time, which will be a guidance to the practice surveying.
     3. Through the direct wave method, we have a study on the GPR wavelet attenuation in the numerical simulation and the practice penetrating surveying. Studying on the GPR wavelet, we can find that the changes of the GPR wavelet’s amplitude with transformation of the distance, conductivity, dielectric permittivity and the antenna’s main frequency. Besides, we also obtain the relation between the radar wavelet center frequency or the frequency band width and the four parameters above. In all, about the study of the radar wavelet attenuation, the thesis mainly study in the way of 2D numerical simulation, and the practice penetrating survey data is only prove the result of the numerical simulation. Though we have not too much research on the wavelet attenuation in practice antenna penetrating survey, the two methods have their excellence and shortcoming each other, and they are supplement each other:
     The study on the GPR wavelet attenuation in practice penetrating survey which have the excellence of closing the practice, simple operation, easy to analysis and understand. But it has the shortcoming, too. For example, it will take off some time and charge to design and make the antenna; on the other hand, how we can get the better GPR data when we have a penetrating survey on the material. It is not difficult to put the antenna into the medium such as water and sands. But if we put it into the hardy rock, that will be some difficult. All of these problems should be solved in future.
     To the GPR numerical simulation method, it has the excellence of little expensive, convenient operate and freely change parameters, etc. However, the GPR simulation technique is not so perfect up to now, especially the GPR 3D numerical simulation technique still need to be developed further under the complicated conditions. Under the limitation of the simulate technique, the GPR wave wavelet attenuation study using the simulate technique exist some shortage. For example, a lot of medium’s electric parameters can not be measured accurately in the complicated conditions underground. Thus, as we are making the numerical simulation, so many parameters can’t be input correctly, so that the result or effect of the simulation is not accord with the practice instance. Another, for the restriction of the computer technique (comprise the software and hardware), it usually takes a long time to have a GPR simulation. Compare 3D numerical simulation, the 2D numerical simulation is better consummate and little time be used. Moreover, the result of the 2D simulation is more believable, so that we adopt the method of 2D simulation. But, the 2D simulation technique only can simulate some simple model. The 3D simulation is close to the real instance, it can be used to simulate some 3D target. But the 3D simulation technique comparatively takes time, even to some simple simulation. Furthermore, because of the simulation technique limitation, the finally result of the simulation is not so satisfying.
     4. In order to compensate the GPR wave loss because of the absorption and attenuation when propagating in the conductive medium, this thesis will present a new frequency compensation method, i.e. FC frequency compensation technique. FC frequency compensation technology is benefit form the high frequency compensation using the micro- seismogram logs in seismic exploration. It is base on the stratum system response model. Through fetching the inverse filter of the stratum system response, the absorption that the radar wave traverses the stratum can be compensated, eventually reach the aim of improving the data resolution. And because the inverse filter is computed from the original GPR data, the compensation physics meaning is definitude and better comprehended.
     The best central part of the FC frequency compensation technique is computing a good inverse filter. And the key of inverse filter computation is how to select a better input and output wavelet. About the wavelet selection, the thesis give a serial measures to ensure the correction of the selection. Besides, if we can’t find the appropriate wavelet in the radar record, the inverse filter may be computed by the way of bore well and GPR numerical simulation assistant methods. In a word, the thesis provides a set of methods over the computation of the inverse filter.
     However, if we can not get a good inverse filter finally, here, the frequency compensation can be implemented using the method of multi-compensation. On the particular analysis in this thesis, we usually can compute one good inverse filter as the FC frequency compensation technique used correctly. Another, utilizing the method of multi-compensation or comprising different inverse filter, we can commonly enhance the GPR resolution in some degree.
     In order to have a better and more complete comprehension of the FC frequency compensation technique, we compare the FC technique to the deconvolution (mainly the spiking deconvolution and predictive deconvolution) and analyze them. In general, as the radar wavelet’s attenuation and dispersion in the lots of conductive medium are better serious, the effect of the spiking or predictive deconvolution is not satisfied. But the FC technique is a pertinence and stretchy frequency compensation method which can enhance the GPR data resolution effectively. Because the FC frequency compensation technique operate simply and has a marked effect, it can be involve to the GPR common processing as one method of enhance the data resolution, and better serve the GPR daily survey.
引文
1. 安慧,黄德济等. VSP 资料的程度反 Q 滤波. 物探化探计算技术, 1998,20(1):19~24.
    2. 曹孟起,周兴元等. 统计法同态反褶积. 石油地球物理勘探, 2003,38,sup. 1~9.
    3. 程乾生. 信号数字处理. 北京: 北京大学出版社, 2003.
    4. 程乾生. 信号数字处理的数学原理 (第二版). 北京: 石油工业出版社,1993.
    5. 邓世坤. 探地雷达野外工作参数选择的基本原则. 工程地球物理学报. 2005,2 (5):323~329.
    6. 邓新华,袁吉仁. 电磁波在介质层中移动的物理机制. 2006,30 (5):463~466.
    7. 底青云,许琨等. 衰减雷达波有限元偏移. 地球物理学报,2000,43 (2):257~263.
    8. 杜树春. 探地雷达及其在环境地质中的应用. 物探与化探,1996,20 (5):384~392.
    9. 范小东. 地震资料时空变谱白化处理. 石油地球物理勘探, 1995,30 (4):550~555.
    10. 付燕, 赵荣椿. 消除叠后地震记录相干噪声的时-空变倾角 KL 变换. 物探与化探,2002,26(2):143~147.
    11. 傅良魁,李金铭等. 电法勘探教程. 北京: 地质出版社, 1980;
    12. 傅良魁. 电法勘探教程. 北京: 地质出版社, 1983;
    13. 郭育梅,尹应增等.宽频带片状对称振子天线. 微波学报, 2005, 21(4):88~90.
    14. 何兵寿,李艳芳. 理想频散关系在地质雷达剖面正演合成中的应用. 物探与化探技术,2002,22(2):113~116.
    15. 何兵寿,张会星等. 地质雷达正演中的频散压制和吸收边界改进方法. 地质与勘探,2000,36(3):59~63.
    16. 何樵登, 地震勘探原理和方法(第一版). 北京:地质出版社, 1986.
    17. 胡 光 锐 , 唐 超 . 最 佳 剖 面 准 则 反 褶 积 方 法 的 研 究 . 上 海 交 通 大 学 学报,1995,29(3):12~15.
    18. 黄小晶,陈鸿彬. 一种适应于有限长度混合相位未知脉冲的最小平方反褶积新方法. 石油地球物理勘探, 1990 ,1 ,39~44.
    19. 黄小晶,陈鸿彬.混合相位未知脉冲反褶积的一种改进方法. 石油地球物理勘探, 1989 ,5,497~503.
    20. 黄绪德. 反褶积与地震道反演. 北京: 石油工业出版社, 1992.
    21. 姜伟才 , 段云卿等 . 两步法反褶积在复杂地表地区的应用 . 物探与化探 , 2004,28(4):352~355.
    22. 居兴化,于光明等. 反 Q 滤波在煤田地震资料处理中的应用. 中国煤田地质,1996,8(4):63~67.
    23. 李大心. 探地雷达方法与应用. 北京: 地质出版社, 1994.
    24. 李国发等, 零相位改进型最小熵反褶积方法. 石油地球物理勘探, 1996, 31(3): 359~366.
    25. 李金铭. 地电场与电法勘探. 北京: 地质出版社, 2005.
    26. 李庆忠. 走向精确勘探道路——高分辨地震勘探系统工程剖析. 北京: 石油工业出版社,1993.
    27. 林昌禄,聂在平等. 天线工程手册. 北京: 电子工业出版社. 2002.
    28. 凌云,高军等. 地表一致性变预测步长反褶积与沙丘鸣震的压制. 石油地球物理勘探,1998,33(1):23~31.
    29. 凌云,俞寿朋等. 零相位同态反褶积. 石油地球物理勘探,1995,30(3):299~309.
    30. 刘 刚,秦建军等. 单极粗振子天线的超宽带性能分析. 空军工程大学学报(自然科学版),2003,3(4):36~39.
    31. 刘 大 为 . 探 地 雷 达 资 料 的 确 定 性 反 褶 积 处 理 研 究 . 工 程 地 球 物 理 学报,2004,1(6):520~524.
    32. 刘福平,王安玲等. 导电介质中电磁波相移常数与振幅衰减常数的方向关系. 大学物理, 2006, 25(2) :9~12.
    33. 刘金俊,王修田等. 子波零相位化、反褶积与地震记录分辨率的关系. 海洋地质动态, 2000, 16(4):5~8.
    34. 刘四新,曾昭发. 地质雷达数值模拟中有损耗介质吸收边界条件的实现. 吉林大学学报(地球科学版),2005,35(3):378~381.
    35. 卢晓鹏,李雁等. 一种用于微带半波振子天线的新型 BALUN. 雷达科技与技术, 2006,4(4):236~239.
    36. 陆孟基. 地震勘探原理 (上). 东营: 石油大学出版社, 1993.
    37. 吕 善 伟 , 杨 学 斌 . 一 种 宽 频 带 振 子 天 线 . 北 京 航 空 航 天 大 学 大 学 学报,2000,26(1):8~11.
    38. 佩特罗夫斯基著, 陆克, 蔡刚民译. 地下无线电波法. 地质出版社, 1981.
    39. 沈 飚 , 于 东 海 等 . 有 耗 介 质 中 脉 冲 响 应 的 研 究 . 石 油 地 球 物 理 勘探,1996,31(4):529~534.
    40. 沈飚. 探地雷达波动方程研究及其正演模拟. 物探化探技术.1994,16(1):29~33.
    41. 苏茂鑫, 田钢等. 频率补偿技术在提高探地雷达分辨率中的应用. 吉林大学学报(地球科学版), 2007, 37(1):164~167.
    42. 苏茂鑫, 田钢等. 齐家北地区近地表层吸收与地震波衰减规律研究. 大庆石油地质与开发. 2006, 25(6):105~107.
    43. 孙 成 禹 . 空 变 地 震 子 波 提 取 方 法 研 究 . 石 油 大 学 学 报 ( 自 然 科 学 版 ), 2000,24(1):77~84.
    44. 孙洪星,康永华等. 探地雷达波衰减特性的研究. 工程地质学报,1999,7(4):344~348.
    45. 孙洪星,李凤明等. 探地雷达高频电磁波传播衰减机理与应用实例. 岩石力学与工程学, 2002, 21(3): 413~417.
    46. 孙洪星,有耗介质高频脉冲电磁波传播衰减理论与应用的实践研究. 煤炭学报,2001,26(6):567~571.
    47. 孙家振,李兰斌. 地震地质综合解释教程. 武汉: 中国地质大学出版社, 2002.
    48. 唐建人,李学勤等. 高分辨率地震勘探理论与实践. 北京: 石油工业出版社. 2001.
    49. 田钢,石战结等. 利用微测井资料补偿地震数据的高频成分.石油地球物理勘探, 2005,40(5):546~549.
    50. 王长清,祝西里等. Maxwell 方程用于电磁脉冲在损耗介质中的传播问题. 电波科学报, 1999, 14 (1): 97~101.
    51. 王成礼 , 宋玉龙等 . 两步法反褶积在压制变周期鸣震中的应用 . 石油物探,2007,46(1):28~31.
    52. 王承曙. 多道预测反褶积. 计算物理, 1994,11(3):290~296.
    53. 王嘉松,曹桂荣等. 分形脉冲反褶积方法. 地球物理学报, 1998,41(1):99~108.
    54. 王建国.复合振子天线辐射特性的数值模拟. 强激光与粒子束,2005,17(4):581~585.
    55. 王 君 , 周 兴 元 等 . 同 态 反 褶 积 的 改 进 及 应 用 . 石 油 地 球 物 理 勘 探 , 2003,38,sup.27~30.
    56. 王均宏. 脉冲电磁波通过偶极天线辐射物理过程及其数值模拟. 物理学报,1999,4(85): 850~861.
    57. 王晓华,王真萍等. 频域约束条件下的最小熵反褶积. 石油地球物理勘探,1997, 32,sup1:113~118.
    58. 王增明 . 准噶尔盆地北缘二维地震资料的空变分析处理方法 . 石油物探,2006,45(3):290~293.
    59. 王者江,曾昭发等. KL 变换消除探地雷达数据中的水平相干噪音. 吉林大学学报(好球科学版),2005,35,sup. :124~127.
    60. 闻映红. 天线与电波传播理论. 北京: 清华大学出版, 2005.
    61. 吴剑华,刘贵忠. 基于小波变换域上的变换的地震信号去噪方法. 信号处理,1997,13(4):298~305.
    62. 肖兵,何继善. 探地雷达信号瞬态谱分析. 物探与化探,1999,23 (6):459~461.
    63. 熊煮. 复杂地区地震数据处理思路(第一版). 北京: 石油工业出版社. 2002.
    64. 闫国玉,郭万海等. 高频地波雷达传播特性及其探测距离分析. 舰船科学技术2005,27(5):74~76.
    65. 杨显清,赵家升等. 电磁场与电磁波. 北京: 国防工业出版社. 2003.
    66. 姚振兴,高星等. 用于深度域地震剖面衰减与频散补偿的反 Q 滤波方法. 地球物理学报, 2003,46(2):229~233.
    67. 易宗富,周华兴等. 一种适用于混合相位未知脉冲的反褶积. 西南石油学院学报, 1994,16(1):17~22.
    68. 俞寿朋. 高分辨率地震勘探. 北京: 石油工业出版社. 1994.
    69. 曾昭发,刘四新等.探地雷达方法原理及应用. 北京: 科学出版社,2006.
    70. 张雪芹,李增瑞,王均宏。加载偶极天线的脉冲散射特性研究. 北京交通大学学报,2006,30(5):51~54
    71. 赵波等, 谱模拟反褶积方法及其应用. 石油地球物理勘探, 1996, 31(1): 101~116.
    72. 赵宪生,王德济. 叠前反 Q 滤波与品质因数 Q 估计. 物探化探计算技术, 1995,17(1):16~22.
    73. 赵阳飞,龚降法等. 粗振子天线的性能研究. 海军工程大学学报,2005,17(2): 84~87.
    74. 赵永辉,吴健生等,不同介质条件下探地雷达的探测深度问题分析. 电波科学学报,2003,18(2):220~224.
    75. 郑君里,应启珩等. 信号与系统(第二版,下册). 北京: 高等教育出版社,2000.
    76. 周洁玲,成世琦等. 反褶积与信噪比的关系研究. 西安石油学院学报 (自然科学版), 2002,17(4):24~27.
    77. 周 蔚 红 , 何 建 明 等 . 一 种 新 型 探 地 天 线 的 优 化 设 计 . 电 波 科 学 学报,2004,19(3):371~373.
    78. 周蔚红,刘倍国等. 探地雷达中蝶形振子天线的改进. 电子与信息学报,2005,27 (7):1171~1173.
    79. 宗涛,孟鸿鹰等. 无约束正反向预测误差最小反褶积. 石油地球物理勘探, 1997,32(5):637~644.
    80. Agilent E5070B/E5071B ENA Series RF Network Analyzers User’s Guide .HP Part No.E5070-90040, March,2003.
    81. Annan, A. P., J. R., Redman, The electromagnetic response of a low loss,2-layer dielectric earth for horizontal electric dipole excitation. Geophysics, 1975, 40, 285~298.
    82. Annan, A.P. Transmission dispersion and GPR. JEEG,1996 0 (2),125~136
    83. Arcone, S. A., Distortion of model subsurface radar pulses in complex dielectrics: Radio Science, 16, 1981,855~864.
    84. Bano, M. Constant dielectric losses of ground penetrating radar waves. Geophysical Journal International , 1996,1 (24): 279~288.
    85. Bano, M. Q-phase compensation of seismic records in the frequency domain. Bulletin of the Seismological Society of America, 1996,86, 1179~1186.
    86. Bruce Gibson and ken Larner. Predictive deconvolution and zero-phase source. Geophysics, 1984,49(4):379~397.
    87. Carcione, J. M., Ground-penetrating radar:Wave theory and numerical simulation in lossy anisotropic media: Geophysics, 1996, 61, 1664~1677.
    88. Carlos Lopo Varela and Tadeusz J. Ulrych, Modeling of attenuation and dispersion. Geophysics,1993, 58 (8): 1167~1173.
    89. Coelho, R., Physics of dielectrics for the engineer. Elsevier Science Publ. Co. 1979.
    90. Cole, K. S., and Cole, R. S., Dispersion and absorption in dielectrics I, alternating current characteristics: J. Chem. Phys., 1941,9, 341~351.
    91. D.J. Jin and J.R. Rogers. Short note: Homomorphic deconvolution. Geophysics, 1983,48(7):1014~1016;
    92. Daniels, D. J., Gunton, D. J., and Scott, H. F., Introduction to subsurface radar: IEEE Proc., 1988,1 (35):278~320.
    93. Davis J L, Annan A P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 1989, 37 (1):531~551.
    94. Debye, P., Polar molecules: Dover Publ. Inc,1945.
    95. Engheta, N., Papas, C. H., and Elachi, C., Radiation patterns of interfacial dipole antennas: Radio Sci., 1982, 17, 1557~566.
    96. F.J. González and G.D. Boreman. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Physics & Technology, 2005,46(5):418~428.
    97. Fowler, J. C., and Still, W. L.. Surface and subsurface profiling using ground-probing radar:47thAnn.Internat.Mtg..Soc.Expl.Geophys, Geophysics, 1977,42 (8):1502~1503.
    98. Futterman, W. I., Dispersive body waves: J. Geophys. Res., 1962, 67,5279~5291.
    99. Guanghe Liang and Xinping Cai.Using high-order cumulants to extrapolate spatially variant seismic wavelets.Geophysics,2002,67(6):1869~1876.
    100. H. Pascal, Further discussion on attenuation and dispersion of electromagnetic wavepropagation in fluid-saturated porous rocks and applications to dielectric constant well logging, Geophysics, 1983,48 (10):1373~1380.
    101. H.F.Harmuth.PropagationofNonsinusoidalElectromagneticWave.AcademicpressINC,1986.
    102. Hale, D., Q-adaptive de-convolution. Stanford Exploration Project Rep., 1982, 30: 133~158.
    103. Hoekstra, P., and Delaney, A., Dielectric properties of soil at UHF and microwave frequencies: J. Geophys. Res., 1974,79, 1699~1708.
    104. Hollender, F., and Tillard, S., Modeling ground-penetrating radar wave propagation and reflection with the Jonscher parameterization. 1998, Geophysics, 63, 1933~1942.
    105. James D. Irving and Rosemary J. Knight. Removal of wavelet dispersion from ground-penetrating radar data. Geophysics, 2003.68(3): 960~970.
    106. John D. Kraus, Ronald J. Marhefka 著, 章文勋 译. 天线(下)北京: 电子工业出版社,2005
    107. Jonscher, A.K. The universal dielectric response. Nature ,1977,267,673~679.
    108. Jose M. Carcione and Michael A. 3-D ground-penetrating radar simulation and plane-wave theory in anisotropic media.Geophysics,2000,65 (5):1527~1541.
    109. Jose M. Carcione. Ground-penetrating radar: Wave theory and numerical simulation in lossy anisotropic media. Geophysics,1996,61(6):1664~1677.
    110. Kauzmann, W., Dielectric relaxation as a chemical rate process. Rev. Mod. Phys., 1942,14, 12~44
    111. Keller, G. V., Rock and mineral properties, in Nabighian, M. N, Eds., Electromagnetic methods in applied geophysics—Theory: Soc. Expl. Geophys, 1987.
    112. Kirkwood, J. G., and Fuoss, R. M., Anomalous dispersion and dielectric loss in polar polymers: J. Chem. Phys., 1941, 9, 329~340
    113. Kjartansson, E., Constant-Q wave propagation and attenuation. J. Geophys. Res., 1979, 84, 4737~4748.
    114. Kolsky, H., The propagation of stress pulses in viscoelastic solid. Philosophical Magazine, 1956, 1: 693~710.
    115. LalFIéche. P. T.. Todoeschuck. J. P., Jensen, O. G., and Judge. A. S.. Analysis of ground-probing radar data: Predictive deconvolution: Can.Geotech.1991,28, 134~139.
    116. Lanbo liu and Steve A.Arcone, Propagation of Radar Pulses from a Horizontal Dipole in Variable Dielectric Ground: A Numerical Approach. Subsurface SensingTechnologies and Application,2005,6(1):5~24.
    117. Mauricio D. Sacchi and Danilo R. Velis. Minimum entropy deconvolution with frequency-domain constrains. Geophysics, 1994, 59(6):938~945.
    118. Milton J. Porsani and Bj?rn UrsinMixed-phase deconvolution of seismic and ground penetrating radar data.SEG Expanded Abstracts, 1996,15(2):1603~1612.
    119. Mǔller, G., Rheological properties and velocity dispersion of a medium with power-law dependence of Q on frequency. J. Geophys. , 1983, 54: 20~29.
    120. Mur, G., Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic field equations:IEEE Trans. Elect. Comp., 1981, EMC-23, 377~382.
    121. Norman S. Neidell,牛毓荃 译. 褶积模型(第一版). 北京: 石油工业出版社, 1986.
    122. Olhoeft, G. R., and Capron, D. E., Laboratory measurements of the radio frequency electrical and magnetic properties of soils from Yuma, Arizona: U.S.G.S. Open-File Report ,1994,93-701.
    123. Olhoeft, G. R., Powers, M. H., and Capron, D. E., Buried object detection with ground penetrating radar: Proc. of Unexploded Ordance Detection and Range Remediation Conf., 1994,207~233.
    124. Olhoeft, G.R., Electrical, magnetic, and geometric properties that determine ground penetrating radar performance. Proceedings of Seventh Int. Conf. on Ground Penetrating Radar, 1998, 5, 27~30.
    125. Olhoeft,G. R., Time dependent magnetization and magnetic loss tangent: M.Sc. thesis, Mass. Inst. Tech.,1972.
    126. Oppenheim, A. V. and Schafer, R. W., Digital Signal Processing, Prentice-Hall Inc. 1975.
    127. P.L. Peacock and Sven Treitel. Predictive deconvolution: theory and practice. Geophysics, 1969,34(2):155~169.
    128. Pandelis K.P. and Oliver G. Jensen. Homomorphic deconvolution: applied to gravitational and magnetic field waveforms. Geophysics, 1983,48 (10):1389~1397.
    129. Payan, I.: and Kunt. N., Suburface radar signal deconvolution:Signal processing, 1982, 4 (5):249~262.
    130. Pedro Xavier Neto. A practical approach to correct attenuation effects in GPR data. Journal of Applied Geophysics 2006,59:140~151.
    131. Plumb, R.G., Noon, D.A., Longstaff, I.D., Stickley, G.F. A waveform-rangeperformance diagram for ground-penetrating radar. Journal of Applied Geophysics, 1998, 40 (2):117~126.
    132. Powers, M. H., and Olhoeft, G. R., Modeling dispersive ground penetrating radar data: Proc. of 5th Internat. Conf. on groundpenetrating radar, 1994, 173~183.
    133. Qingyun Di and Miaoyue wang, Migration of ground-penetrating radar data with a finite-element method that considers attenuation and dispersion. Geophysics 2004,69(2):472~1477.
    134. Qingyun Di, Meigen Zhang.Time-domain inversion of GPR data containing attenuation resulting from conductive losses. Geophysics 2006,71 (5):103~109.
    135. Rosa, A. L. R., and Ulrych, T. J., Processing via spectral modeling. Geophysics, 1991, 56(8): 1244~1251.
    136. S. Ebihara and Motoyuki Sato. Directional borehole radar using a dipole antenna array. Proc. SPIE, 2000,71 (8):40~48。
    137. San Antonio and Texas. Wiener spiking deconvolution and minimum A tutorial. the leading edge,1995,3:189~192.
    138. Shlomo Levy and Perter K. Fullaga. Reconstruction of a sparse spike train from a portion of its spectrum and application of the high-resolution deconvolution. Geophysics, 1981,46(9): 1235~1243.
    139. T.J. ULRYCH. Application of homomorphic deconvolution to seismology. Geophysics,1971,36(4):650~660.
    140. T.J.Ulrych and T. matsuoka. The output of predictive deconvolution. Geophysics,1991,56(3):371~377.
    141. Tim Bergmann and Klaus Holliger Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics, 1998,63 (3):856~867
    142. Tong xu and George A., GPR attenuation and its numerical simulation in 2.5 dimensions: Geophysics, 1997, 62 (1): 403~414.
    143. Turner, G. and Siggins, A.F., Constant Q attenuation of subsurface radar pulses. Geophysics 59(8):1192~1200.
    144. Turner, G., Subsurface radar propagation deconvolution. Geophysics,1994, 59(1): 215~223.
    145. Unsworth, M. J., Travis, B. J., and Chave, A. D., Electromagnetic induction by a finite electric dipole source over a 2-D earth:Geophysics, 1993, 58, 198~214
    146. Varela, C. L., Rosa, A. L. R., and Ulrych, T. J., Modeling of attenuation and dispersion:Geophysics, 1993, 58, 1167~173.
    147. von Hippel, A. R., Dielectrics and waves: John Wiley & Sons,Inc. 1962.
    148. Widess. How thin is a thin bed. Geophysics, 1973,38,1176~1180.
    149. Wiggins, R. A., Minimum entropy deconvolution. Geo-exploration, 1978, 16: 21~35.
    150. Xu,T., and McMechan,G. A., GPR attenuation and its numerical simulation in 2.5 dimensions: Geophysics, 1997,62, 403~414.
    151. Yanghua. A stable and efficient approach inverse Q filtering. Geophysics, 2002, 67(2):657~663.
    152. Yanghua. inverse Q-filter for seismic resolution enhancemant. Geophysics, 2002, 71(3):V51~V60.
    153. Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media: IEEE Trans. Ant. Prop., 1966,14, 302~307.
    154. Yilmaz,O., Seismic data processing . Investigation in Geophysics no.2. Society of Exploration Geophysicists, Tulsa, OK,1987.
    155. Yilmaz,O., 黄德绪 译. 地震数据处理. 北京: 石油工业出版社,1994.
    156. Youg, R.A., Sun, J., Revealing Stratigraphy in ground penetrating radar data using domain filtering. Geophysics, 1999, 64, 435~442.
    157. Yuren Jiao, George A. McMechan and Elena Pettinelli. In situ 2-D and 3-D measurements of radiation patterns of half-wave dipole GPR antennas. Journal Applied Geophysics, 2000,43 (1):69~89.
    158. Zeng X, McMechan,G.A., Cai, J., Comparison of ray and Fourier methods for modeling monostatic ground penetrating radar profiles.Geophysics,1995,60(6): 1727~1734.
    159. Zhanjie Shi, Gang Tian, Shixue Dong et al., Attenuation compensation of low-velocity layers using micro-seismogram logs: case studies. Journal of Geophysics and Engineering, 2004, 1(3): 181~186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700