用户名: 密码: 验证码:
ClC-2氯离子通道在RGC-5细胞凋亡中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜神经节细胞(retinal ganglion cells, RGCs)的凋亡是视神经损伤、青光眼、缺血性视神经病变等眼科疾病的重要病理特征之一,也是导致视野缺损的主要原因。RGC-5细胞系是目前作为视神经保护体外实验模型的一个重要细胞系。谷氨酸是视网膜的主要兴奋性递质,正常情况下不引起毒性。但在眼压升高、视神经供血不足等导致视网膜缺血缺氧时,谷氨酸会大量释放,对视网膜神经节细胞产生毒性作用。谷氨酸的过度表达是导致RGCs凋亡的重要原因。因此,利用谷氨酸诱导的RGC-5凋亡可以作为研究视网膜神经节细胞凋亡及视神经保护的模型。
     氯离子是生物体内含量最丰富的阴离子,通过跨膜转运和离子通道参与机体多种生物功能。电压门控性氯离子通道(voltage-gated chloride channnel, ClC)在哺乳动物细胞中广泛表达,ClC-2氯离子通道作为此家族中的一个亚型,是目前研究较为广泛和明确的一种氯离子通道类型,与细胞增殖、凋亡及细胞周期等多种生理功能的调节有关。关于电压门控性氯通道参与细胞凋亡过程己得到广泛证实。线粒体凋亡通路是细胞凋亡的主要途径之一。眼部组织多种细胞的凋亡都是通过线粒体凋亡通路完成,并在多种眼科疾病中发挥作用。Bcl-2基因家族对细胞凋亡的激活和调控起着关键作用,是RGCs主要的内源性凋亡通路。
     鉴于此,实验以谷氨酸诱导RGC-5细胞凋亡作为研究对象,应用cDNA转染和RNAi基因沉默方法分别改变细胞内ClC-2的表达,观察细胞凋亡、细胞周期变化情况及Bcl-2及Bax蛋白表达、caspase-3、caspase-9酶活性变化,以探讨ClC-2及Bcl-2/Bax调控的线粒体凋亡通路在此过程中的作用。
     实验中首先应用RT-PCR的方法证实了RGC-5细胞中存在ClC-2mRNA的表达;然后应用细胞免疫荧光染色的方法证实了ClC-2蛋白在RGC-5细胞中存在表达,并定位于细胞浆,为下一步实验提供了基础和依据。
     文献报道当谷氨酸刺激浓度为lmM时,并作用于RGC-5细胞24小时的凋亡率大约为20%,是较适宜的研究浓度。因此我们将传代后的细胞贴壁生长24小时后,加入含有lmM谷氨酸的无血清DMEM培养液培养24小时,从而得到RGC-5细胞凋亡的模型。
     进一步实验以谷氨酸诱导的RGC-5细胞凋亡为研究对象,应用ClC-2cDNA技术成功转染细胞,使细胞内ClC-2的mRNA及蛋白质表达均明显升高。应用MTT法、流式细胞仪检测细胞的凋亡及周期变化情况。MTT法结果显示细胞的存活率明显上升,流式细胞仪检测结果表明凋亡率下降,并且细胞周期G1期的细胞比例减少,进入S期细胞增多。以上结果提示ClC-2的过表达对谷氨酸诱导的RGC-5细胞凋亡具有保护作用。
     随后实验应用RNAi技术转染谷氨酸诱导的RGC-5细胞,RT-PCR及Westernblot结果证实ClC-2的mRNA及蛋白质表达均被明显抑制,应用MTT法、流式细胞仪检测细胞的凋亡及周期变化情况。MTT法结果显示细胞的存活率明显下降,流式细胞仪检测结果表明凋亡率增加,并且细胞周期G1期的细胞比例明显增多,进入S期细胞显著减少。结果证实了抑制ClC-2的表达可以促进细胞的凋亡。以上两部分实验从正反两方面提示ClC-2氯离子通道对谷氨酸诱导的RGC-5细胞凋亡具有保护作用。
     为了进一步探讨ClC-2氯离子通道如何抑制谷氨酸诱导的RGC-5细胞凋亡作用,我们进行了分子机制的研究。分别采用cDNA转染技术增加RGC-5细胞内ClC-2的表达及RNAi技术抑制RGC-5细胞内ClC-2的表达,观察Bcl-2、Bax蛋白及caspase-3、caspase-9酶活性在各组细胞中的变化。发现与谷氨酸诱导组相比,谷氨酸诱导+ClC-2cDNA转染组Bax蛋白表达、caspase-3、caspase-9酶活性均显著下降,而Bcl-2蛋白表达显著升高;相反,与谷氨酸诱导组相比,谷氨酸诱导+ClC-2RNAi组,Bax蛋白表达、caspase-3、caspase-9酶活性均显著增高,Bcl-2蛋白表达显著降低;以上实验结果说明了ClC-2氯离子通道的抗凋亡作用是通过内源性线粒体凋亡通路进行,并通过上调Bcl-2蛋白表达及下调Bax蛋白来调控细胞凋亡。
     本研究探讨了在谷氨酸诱导的RGC-5细胞凋亡过程中,ClC-2氯离子通道及线粒体凋亡通路的作用,发现ClC-2氯离子通道对谷氨酸诱导的RGC-5细胞凋亡具有保护作用,而Bcl-2/Bax调控的线粒体凋亡通路可能参与此过程。我们的实验结果提示ClC-2氯离子通道及Bcl-2/Bax调控的线粒体凋亡通路可能成为视神经保护的一个新靶点,为进一步研究视神经保护提供了理论基础和实验依据。
Retinal ganglion cells (RGCs) apoptosis is an important pathological feature ofglaucoma and other eye diseases. The RGC-5cell line is currently used as an invitromodel of glaucoma and optic nerve protection. Glutamate normally functions as themajor excitatory amino acid neurotransmitter in the retina, but at high concentrationsit becomes neurotoxic after the intraocular pressure increased, over-expression ofglutamate will play a large role in RGCs apoptosis. Therefore, a glutamate-inducedRGC-5apoptosis model can be used to investigate RGC apoptosis and opticneuroprotection.
     Chloride ion is the most abundant negion, participating in a variety of biologicalfunctions through transmembrane transport and ion channels. Chloride channels (ClC)have been shown extensively distributing in mammals organs, tissues and cells. Itplays an important role in many physiological and pathological functions, such asapoptosis, cell proliferation and cell cycle. Voltage-gated chloride channels involvedin the apoptosis process has been widely confirmed. Mitochondrial apoptosis pathwayis one of the main way of apoptosis, which have been shown extensively distributingin eye and play a role in many ophthalmology disease. Bcl-2gene family plays a keyrole in activation on cell apoptosis and regulation, which is the main endogenouspathway of apoptosis of RGCs.
     Reverse transcription-polymerase chain reaction (RT-PCR) results revealed ClC-2mRNA expressed in RGC-5cells. Cell immunofluorescence suggested that ClC-2protein expressions in RGC-5cells was localized in the cytoplasm.
     The apoptosis rate of20%is suitable for research at a concentration of1mmol/Lglutamate. The RGC-5cells were allowed to grow for24hours, followed by culturewith serum-free DMEM supplemented with1mmol/L glutamate for24hours. Thepresent experiment analyzed glutamate-induced RGC-5cell apoptosis, showing thatClC-2mRNA and protein expressions significantly increased with ClC-2cDNAtransfection. MTT、flow cytometry cell cycle and FITC/PI analysis detected these viability and apoptosis. After the ClC-2cDNA transfection, MTT assay resultsdemonstrated significantly increased survival rate, flow cytometry and apoptosis ratewas significantly decreased, the cell proportion in cell cycle in G1phase decreased, Sphase increased, which suggests that ClC-2overexpression exhibited a protectiveeffect on apoptosis.
     ClC-2mRNA and protein expressions were inhibited by RNAi technology.MTT、flow cytometry cell cycle and FITC/PI analysis detected cell viability andapoptosis. After the ClC-2expressions were inhibited, MTT assay resultsdemonstrated significantly decreased survival rate, flow cytometry revealed theapoptosis rate was significantly increased, the cell proportion in cell cycle in G1phaseincreased, S phase decreased, which suggests that the inhibition of ClC-2maypromote the apoptosis of glutamate-induced RGC-5cell.
     In order to further explore how ClC-2chloride channels inhibits glutamate-induced apoptosis in RGC-5cells, we conduct study on molecular mechanism.Weused cDNA transfection to increase and RNAi technology to decrease the intracellularexpression of ClC-2in RGC-5cells, then to observe the Bcl-2, Bax protein andenzyme activities of Caspase-3/9. Compared with the glutamate-induced group, theBax protein and Caspase-3/9enzyme activities significantly decreased in the ClC-2cDNA transfection+glutamate-induced group, the Bcl-2protein significantlyincreased. In contrast, compared with the glutamate-induced group, Bax protein andCaspase-3/9enzyme activities significantly increased in the ClC-2RNAi transfection+glutamate-induced group, the Bcl-2protein significantly decreased. Our findingssuggest that ClC-2chloride channels play a protective role in glutamate-induced apoptosis viamitochondria-dependent pathways involving Bcl-2, Bax, and caspases-3and-9.
     In summary, we found that ClC-2has protective effects on glutamate-induced apoptosis ofRGC-5cells by influencing the mitochondrial signaling pathway, involving Bcl-2, Bax, andcaspases-3and-9. Our results suggest that increasing the function of ClC-2channels may result inan improvement of cell survival and a reduction of cell apoptosis. Thus, the neuroprotectiveeffects of ClC-2channels may lead to a novel approach for the treatment of retinopathies, such asglaucoma.
引文
[1]刘家琦,李凤鸣,吴静安,等.实用眼科学[M].北京:人民卫生出版社,1999:28.
    [2] Varma R, Peeples P, Walt JG,et al. Disease Progression and the need for neuro-protection in glaucoma management[J]. Am J Manage Care,2008,14(lSuppl):S15-S19.
    [3] Levin LA. Neuroprotection and regeneration in glaucoma[J]. Ophthalmol ClinNorth Am,2005,18(4):585-596.
    [4] Nickells RW. Ganglion cell death in glaucoma: from mice to men[J].VetOphthalmol,2007, Suppl1:S88-S94.
    [5] Paul Aoun, James W. Simpkins, Neeraj Agarwal. Role of PPAR-γ Ligands InNeuroprotection against Glutamate-Induced Cytotoxicity in Retinal GanglionCells[J].Invest Ohpthalmol Vis SCI, July2003,Vol.44,No.7.
    [6] Fan W, Agarwal N, Kumar MD, et al. Retinal ganglion cell death andNeuroprotection: Involvement of the CaMKIIα gene[J]. Brain Res Mol BrainRes,2005,139(2):306-316.
    [7] Kumar DM, Perez E, Cai ZY, et al. Role of nonfeminizing estrogen analogues inneuroprotection of rat retinal ganglion cells against glutamate-inducedcytotoxicity[J]. Free Radical Biology and Medicine,2005,38(9):1152-1163.
    [8] Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity inretinal ganglion cells[J]. Vision Research,1997,37(24):3483-3493.
    [9] Jentsch TJ, Friedrich T, Schriever A, et al. The CLC chloride channel family [J].Pflugers Arch,1999,437(6):783-795.
    [10] Wei L,Xiao AY, Jin C,et al. Effects of chloride and Potassium channel blockerson apoptotic cell shrinkage and apoptosis in cortical neurons[J]. Pflugers Arch,2004,448(3):325-334.
    [11] Souktani R,Ghaleh B,Tissier R, et al. Inhibitors of swelling-activated chloridechannels increase infarct size and apoptosis in rabbit myocardium[J].FundamClin Pharmacol,2003,17(5):555-561.
    [12] Szabo I, Lepple-Wienhues A, Kaba KN, et al. Tyrosine Kinase-dependentactivation of a chloride channel in CD2952induced apoptosis in Tlymphocytes[J]. Proc Natl Acad Sci USA,1998,95(11):6169-6174.
    [13] Asomugha CO, Linn DM, Linn CL. ACh receptors link two signaling pathwaysto neuroprotection against glutamate-induced excitotoxicity in isolated RGCs [J].Neurochem,2010,112,214-226.
    [14] Almasich M, Wilson AM, Morquette B, et al.The molecular basis of retinalganglion cell death in glaucoma[J],.Prog Retin Eye Res,2012,31(2):152-181.
    [15] Qu J, Wang D, Grosskreutz, CL. Mechanisms of retinal ganglion cell injury anddefense in glaucoma [J]. Exp Eye Res,2010,91(1):48-53.
    [16] Hume JR, Duan D, Collier ML, et al. Anion transport in heart [J]. Physiol Rev,2000,80(1):31-81.
    [17] Jentsch TJ, Günther W, Pusch M, Schwappach B. Properties of voltage-gatedchloride channels of the ClC gene family. J Physiol (Lond),1995,482:19S-25S.
    [18] Jentsch TJ, Stein V, Weinreich F,et al. Molecular structure and Physiologicalfunction of chloride channels [J]. Physiol Rev,2002,82(2):503-568.
    [19] Thomas J Jentsch, Ioana Neagoe and Olaf Scheel. CLC chloride channels andtransporters. Current Opinion in Neurobiology,2005,15:319-325.
    [20] Steinmeyer K, Ortland C,Jentsch TJ. Primary structure and functional expressionof a developmentally regulated skeletal muscle chloride channel. Nature,1991;354(6351):301-4.
    [21] Kumar KR, Ng K,Vandebona H, Davis MR, Sue CM. A novel CLCNl mutation(G1652A) causing a mild phenotype of thomsen disease. Muscle Nerve,2010;41(3):412-5.
    [22] Pusch M. Myotonia caused by mutations in the muscle chloride channel geneCLCNl. Hum Mutat,2002;19(4):423-34.
    [23] Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C.Disease-causing dysfunctions of barttin in Bartter syndrome type IV. J Am SocNephrol,2009;20(1):145-53.
    [24] Shimada K, LI X, Xu et al. Expression and canalicular localization of twoisoforms of the ClC-3chloride channel from rat hepatocytes[J].Am J PhysiolGastrointest Liver Physiol,2000,279(2):G268-276.
    [25] Nagasaki M, Ye L, Duan D, et al. Intracellular cyclic AMP inhibits native andrecombinant volume-regulated chloride channels from mammalian heart[J].JPhysiol,2000,523(Pt3):705-717.
    [26] Wang L,Chen L,Jacob TJ. The role of ClC-3in volume-activated chloridecurrents and volume regulation in bovine epithelial cells demonstrated byantisense inhibition[J]. J Physiol,2000,524(Pt1):63-75.
    [27] Jiang B, Hattori N, Liu B,et al. Expression of swelling-and/or pH-regulatedChloride channels (ClC-2,3,4and5) in human leukemic and normal immunecells [J]. Life Sci,2002,70(12):1383-1394.
    [28] Britton FC,Hatton WJ,Rossow CF,et al.Molecular distribution of volume-regulated chloride channels (ClC-2and ClC-3) in cardiac tissues [J]. Am JPhysiol Heart Circ Physiol,2000,279(5):H2225-2233.
    [29] Duan D,Winterm C, Cowley S, et al. Molecular identifieation of a volume-regulated chloride channel[J]. Nature,1997,390(6658):417-421.
    [30] Lloyd SE, Pearce SH, Fisher SE, et al. A common molecular basis for threeinherited kidney stone diseases.Nature,1996;379(6564):445-9.
    [31] Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD. Characterization of Dent'sdisease mutations of CLC-5reveals a correlation between functional and cellbiological consequences and protein structure. Am J Physiol Renal Physiol,2009;296(2): F390-F397.
    [32]侯晋,段小红,司徒镇强,氯离子通道ClC-5在大鼠牙胚发育过程中的表达.华西口腔医学杂志,2007;25:444-446.
    [33] Duan X, Mao Y, Yang T, Wen X, Wang H, Hou J, Xue Y, Zhang R. ClC-5regulates dentin development through TGF-beta1pathway. Arch Oral Biol,2009;54:1118-24.
    [34] Poet M, Kornak U, Schweizer M, Zdebik AA, Scheel O, Hoelter S et al.Lysosomal storage disease upon disruption of the neuronal chloride transportprotein ClC-6. Proc Natl Acad Sci USA,2006;103(37):13854-9.
    [35] Kasper D, Planells-Cases R, Fuhrmann JC, et al. Loss of the chloride channelClC-7leads to lysosomal storage disease and neurodegeneration. EMBO J,2005;24:1079-91.
    [36] Henriksen K,Gram J, Neutzsky-Wulff AV, et al. Characterization of acid flux inosteoclasts from patients harboring a G215R mutation in ClC-7. BiochemBiophys Res Commun,2009;378(4):804-9.
    [37] Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7chloride channel leads toosteopetrosis in mice and man. Cell,2001;104(2):205-15.
    [38] Lang F, Busch G, Ritter M. Functional significance of cell volume regulatorymechanisms[J]. Physiol Rev,1998(78):247-306.
    [39] Wang L,Chen L, Zhu L,et al. Regulatory volume decrease is actively modulatedduring the cell cycle[J]. Cell Physiol,2002(193):110-119.
    [40] Mao J, Chen L,Wang L, et al. Volume-activated chloride channel contribute tocell-cycle-dependent regulation of Hela cell migration [J]. Biochem Pharmacol,2009,(77):159-168.
    [41] Nilius B, Prenen J, Voets T, et al. Activation of volume-regulated chloridecurrents by reduction of intracellular ionic strength in bovine endothelial cells[J].J Physiol (Lond),1998,506:353-361.
    [42] Kada Y. Volume expansion sensing outward-rectifier Cl-channel:freshstart to themolecular identity and volume sensor [J]. Am J Physiol,1997,273(3Pt1):C755-789.
    [43] Hiemann A, Grunder S, Pusch M, et al. A chloride channel widely expressed inepithelial and non-epithelial cells [J]. Nature,1992,356(6364):57-60.
    [44] Mori S, Morishima S, Takasaki M, et al. Impaired activity of volume-sensitiveanion channel during lactacidosis-induced swelling in Neuronally differentiatedNG108215cells[J]. Brain Res,2002,957(1):1-11.
    [45] Hermoso M, Satterwhite CM, Andrade YN, et al. ClC-3is a fundamentalmolecular component of volume sensitive outwardly rectifying Cl-channels andvolume regulation in HeLa cells and Xenopus laevisoocytes[J]. J Biol Chem,2002,277(42):40066-40067.
    [46] Wang GX, Hatton WJ, Wang GL, et al. Functional effects of novel anti-ClC-3antibodies on native volume-sensitive osmolyte and anion channelsin cardiac andsmooth muscle cells[J]. Am J Physiol Heart Circ Physiol,2003285(4):H1453-4163.
    [47] Furukawa T, Ogura T, Katayama Y, et al. Characteristics of rabbit ClC-2currentexpressed in Xenopus oocytes and its contribution to volume regulation[J]. Am JPhysiol,1998,274(Ptl):C500-512.
    [48] Xiong H, LI C, Garami E, et al. ClC-2activation modulates regulatory volumedecrease[J]. J Membr Biol,1999,167(3):215-221.
    [49] Schwiebert EM, Cid-Soto LP, Stafford D, et al. Analysis of ClC-2channels as analternative pathway for chloride conduction in cystic fibrosis airway cells[J].Proc Natl Acad Sci USA,1998,95(7):3879-3884.
    [50] Jordt SE, and Jentsch TJ. Molecular dissection of gating in the ClC-2chloridechannel[J]. EMBOJ,1997,16(7):1582-1592.
    [51] Grunder S, Thiemann A, Pusch M,et al. Regions involved in the opening ofClC-2chloride channel by voltage and cell volume[J]. Nature,1992,360(6406):759-762
    [52] Srinivas SP, Maertens C, Goon LH, et al. Cell volume response to hyposmoticshock and elevated cAMP in bovine trabecular meshwork cells[J]. Exp Eye Res,2004,78(l):15-26.
    [53] Mitchell CH, Fleisehhauer JC, Stamer WD,et al. Human trabecular meshworkcell volume regulation[J]. Am J Physiol Cell Physiol,2002,283(l):C315-326.
    [54] Soto D, Comes N, Ferrer E, et al. Modulation of aqueous humor outflow by ionicmechanisms involved intrabecular meshwork cell volume regulationt[J]. InvestOphthalmol Vis Sci,2004,45(10):3650-3661.
    [55] Hu H,Li DL,Fan L,et al.Involvement of volume-sensitive Cl-channels in theproliferation of human subcutaneous pre-adipocytes.Clin ExpPharmacol Physiol,2010Jan;37(1):29-34.
    [56] Cheng G, Kim MJ, Jia G,et al. Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells. Cardiovasc Res,2007,73(1):198-207.
    [57] Qian JS,Pang RP,Zhu KS,et al. Static pressure promotes rat aortic smoothmuscle cell proliferation via upregulation of volume-regulated chloride channel.Cell Physiol Biochem,2009;24(5-6):461-70.
    [58]侯晋,段小红,司徒镇强.阻断氯离子通道对小鼠成牙本质细胞MDPC-23生物学特性影响的研究.牙体牙髓牙周病学杂志(Chin J Conserv Dent)2007,17(6):316-319.
    [59] Yu WF, Zhao YL, Wang K, et al. Inhibition of cell proliferation and arrest of cellcycle progression by blocking chloride channels in human laryngeal cancer cellline Hep2Neoplasma,2009;56(3):224-9.
    [60] Rutledge E, Denton J, Strange K. Cell cycle and swelling-induced activation of aCaenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/betaphosphatases[J]. J Cell Biol,2002,158(3):435-444.
    [61] Shen MR, Droogmans G, Eggermont J, et al. Differrntial expression of volume-regulated anion channels during cell cycle progression of human cervical cancercells. J Physiol,2000,529(Pt2):385-394.
    [62] Chen LX, Zhu LY, Jacob TJ, et al. Roles of volume-activated Cl-currents andregulatory volume decrease in the cell cycle and proliferation in nasopharyngealcarcinoma cells.Cell Prolif,2007,40(2):253-267.
    [63] Zheng YJ, Fumkawa T, Tajimi K, et al. Cl-channel blockers inhibi transition ofquiescent(G0) fibroblasts into the cell cycle[J]. J Cell Physiol,2003,194(3):376-383.
    [64] Zheng YJ, Furukawa T, Ogura T, et al. M phase-specific expression andphosphorylation-dependent ubiquitination of the ClC-2channel[J]. J Bio Chem,2002,227(35):32268-32273.
    [65]郑雅娟,辛华,张文松等.氯离子通道阻滞剂对人RPE细胞增生抑制作用的实验研究[J].2006,24(4):344-347.
    [66] Hara-Chikuma M, Yang B, Sonawane ND, et al. ClC-3chloride channelsfacilitate endomal acidification and chloride accumulation. J Biol Chem,2005,280(2):1241-1247.
    [67] Li X, Wang T, Zhao Z, et al. The ClC-3chloride channel promotes acidification oflysosomes in CHO-K1and Huh-7cells. Am J Physiol Cell Physiol,2002,282(6):C1483-C1491.
    [68] Pappas CA, Ullrich N, Sontheimer H, et al. Reduction of glial proliferation by K+channel blockers is mediated by changes in pH. Neuroreport,1994,6(1):193-196.
    [69] Tripathi RC, LI J, Chan WF. Aqueous humor in glaucomaous eyes Contains anincreased level of TGF-beta2[J]. ExP Eye Res,1994,59(6):723-727.
    [70] Claud EC, Lu J, Wang XQ, et al. Platelet-activating factor-induced chloridechannel activation is associated with intracellular acidosis and apoptosis ofintestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol.2008May294(5): G1191-1200.
    [71] Cuddapah VA, Sontheimer H. Molecular interaction and functional regulation ofClC-3by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in humanmalignant glioma. J Biol Chem,2010Feb5.[Epub ahead f print]
    [72] Mao J, Chen L, Xu B, et al.Volume-activated chloride channels contribute tocell-cycle-dependent regulation of HeLa cellmigration.Biochem Pharmacol,2009Jan15;72:59-68. Epub2008Oct15.
    [73] Volk AP, Heise CK, Hougen JL, et al. ClC-3and IClswell are required fornormal neutrophil chemotaxis and shape change. J Biol Chem,2008Dec5;283(49):34315-26.
    [74] Saikumar P, Dong Z,Mikhailov V, Weinberg JM, Venkatachalam MA. Apoptosis:definition, mechanisms, and relevance to disease[J]. Nature,2000,407(6805):777-783.
    [75] Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role inapoptosis[J]. Arch Biochem Biophys,2007,462(2):176-188.
    [76] Bortner CD, Cidlowski JA. The role of apoptotic volume decrease and ionichomeostasis in the activation and repression of apoptosis[J]. Pflugers Arch,2004,448(3):313-318.
    [77] N ez R, Sancho-Martínez SM, Novoa JM, López-Hernández FJ. Apoptoticvolume decrease as a geometric determinant for cell dismantling into apoptoticbodies [J]. Cell Death Differ,2010,17(11):1665-1671.
    [78] Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. Normotonic cellshrinkage because of disordered volume regulation is an early prerequisite toapoptosis[J]. Proc Natl Acad Sci USA,2000,97(17):9487-9492.
    [79] Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum PJ, Manzl C. Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ionfluxes and MAP kinase signaling[J]. Apoptosis,2007,12(10)1755-1768.
    [80] OkadaY, Maeno E, Shimizu T, Dezaki K, Wang J and Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volumedecrease (AVD)[J]. J Physiol,2001,532(1):3-16.
    [81]范爱辉,王立伟,毛建文,聂思槐,陈丽新.阻断氯通道对鼻咽癌细胞凋亡和细胞增殖的影响[J].广东医学,2006,27(12);1804-1806.
    [82] Lionetto MG, Giordano ME, Calisi A, Caricato R, Hoffmann E, Schettino T.Roleof BK channels in the apoptotic volume decrease in native eel intestinal cells [J].Cell Physiol Biochem,2010,25(6):733-744.
    [83] Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, Wang L. Chloride channelsinvolve in hydrogen peroxide-induced apoptosis of PC12cells[J]. Biophys ResCommun,2009,387(4):666-670.
    [84] Jiao JD, Xu CQ, Yue P, et al. Volume-sensitive outwardly rectifying chloridechannels are involved in oxidative stress-induced apoptosis of mesangial cells.Biochem Biophys Res Commun,2006,340(1):277-285.
    [85] Schmidt RT, Jentsch TJ. Transmembrane topology of a ClC chloride channel[J].Proc Notl Acad Sci USA,1997,94:7633-7638.
    [86] Cheng G, Shao Z, Chaudhari B. Involvement of chloride channels in TGF-beta l-induced apoptosis of human bronchial epithelial cells[J]. Physiol Lung Cell MolPhysiol,2007,293(5):L1339-1347.
    [87] Lemonnier L, Lazarenko R,Shuba Y, et al. Alterations in the regulatory volumedecrease (RVD) and swelling-activated Cl-current associated withneuroendocrine defferentiation of prostate cancer epithelial cells. Endocr RelatCancer,2005,12(2):335-349.
    [88] Remillard CV, Lupien MA, Crepeau V, et al. Role of Ca2+-and swelling-activatedCl-channels in alphal-adrenoceptor-mediated tone in pressurized rabbitmesenteric arterioles[J]. Cardiovasc Res,2000,46(3):557-568.
    [89] Romero MF, Fulton CM, Boron WF. The SLC4family of HCO3-transporters[J].Pfiugers Arch,2004,447(5):495-509.
    [90] Stevens CF. Quantal release of neurotransmitter and long-term potentiation. Cell1993;72Suppl;55-63.
    [91] Williams JH, Errington ML, Lynch MA, Bliss TV. Arachidonic acid induces along-term activity-dependent enhancement of synaptic transmission in thehippocampus. Nature,1989;341(6244):739-42.
    [92] Zhuo M,Laitinen JT, Li XC. Hawkins RD. On the respective roles of nitric oxideand carbon monoxide in long-term potentiation in the hippocampus. LearnMem,1999;6(1):63-76.
    [93] Medina JH, Izquierdo I. Retrograde messengers, long-term potentiation andmemory. Brain Res Brain Res Rev,1995;21(2):185-94.
    [94] Hawkins RD. Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possibleretrograde messengers in hippocampal long-term potentiation. J Neurobiol,1994;25(6):652-65.
    [95] Heusler P, Boehmer G. Platelet-activating factor contributes to the induction oflong-term potentiation in the rat somatosensory cortex in vitro. Brain Res,2007;1135(1):85-91.
    [96] Kornecki E, Wieraszko A, Chan J, Ehrlich YH. Platelet activating factor(PAF) inmemory formation: role as a retrograde messenger in long-term potentiation. JLipid Mediat Cell Signal,1996;14(1-3):115-26.
    [97] Diogenes MJ, Costenla AR, Lopes LV, et al. Enhancement of LTP in aged rats isdependent on endogenous BDNF. Neuropsychopharmacology,2011;36(9):1823-36.
    [98] Schmidt-rose T, Jentsch TJ. Transminbrane topology of a ClC chloride channel[J]. Proc Natl Acad Sci USA,1997,94(14):7633-7638.
    [99] Mindell JA, Maduke M, Miller C, et al. Projection structure of a ClC-typechloride channel at6.5A resolution[J]. Nature,2001,409:219-223.
    [100] Dutzler R, Campbelle B, Cadene M, et al. X-ray structure of a ClC chloridechannel at3.0A reveals the molecular basis of an ion selectivity[J]. Nature,2002,415:287-294.
    [101] Estevezr, Schroedder BC, Accardi A, et al. Conservation of chloride channelstructure revealed by an inhibitor binding site in ClC-1[J]. Neuron,2003,38:47-59.
    [102] T. Furukawa T, Ogura YJ, Zheng H, et al. Phosphorylation and functionalregulation of ClC-2chloride channels expressed in Xenopus oocytes by Mcyclin-dep endent protein kinase [J]. J Physiol,2002,540:883-893.
    [103] E. Rutledge, Jdenton, Kstrange. Cell cycle-and swelling induced activation of aCaenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/betaphosphatases [J]. J Cell Biol,2002,158:435-444.
    [104] Alexandre H, Joannal L, Franck B, et al. Association between Hsp90and theClC-2chloride channel upregulates channel function[J]. Am J Physiol CellPhysiol,2006,290:C45-C56.
    [105] Briane. L,PHD,Mdandl,Campbellevy. MD, et al. Lubiprostone a chloridechannel activator[J]. J Clin Gastroenterol,2007,41:345-351.
    [106] Carolyn J, Baglole, David L, et al. α1-adrenoceptors down-regulate ClC-2chloride channels in epithelial cells from the acutely denervated jejunum[J].European Journal of Pharmacology,2007,565:202-206.
    [107] Monica P, Michael D, Christoph B, et al. Serum and glucocorticoid induciblekinases functionally regulate ClC-2channels[J]. Biochemical and BiophysicalResearch Communictions,2004,321:1001-1006.
    [108] Chthompson, Dmfields, Prolivetti, et al. Inhibition of ClC-2Chloride Channelsby a Peptide Component or Components of Scorpion Venom[J]. J MembraneBiol,2005,208:65-76.
    [109] Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci ofcommon idiopathic generalized epilepsies[J]. Hum Mol Genet,2000,9(10):1465-1472.
    [110] Haug K, Warnstedt M, Alekov, et al. Mutations in CLCN2encoding voltage-gated chloride channels are associated with idiopathic generalized epilepsies[J].Nat Genet,2003,33(4):527-532.
    [111] Niemeyer MI, Yusef YR, Cornejo I, et al. Functional evaluation of human CLC-2chloride channel mutations associated with idiopathic generalized epilepsies[J].Physiol Genomics,2004,19(1):74-83.
    [112] Carroll RC, Beattie EC, von ZM, Malenka RC. Role of AMPA receptorendocytosis in synaptic plasticity. Nat Rev Neurosci,2001;2(5):315-24.
    [113] Ehlers MD. Reinsertion or degradation of AMPA receptors determined byactivity-dependent endocytic sorting. Neuron,2000;28(2)511-25.
    [114] Kameyama K, Lee HK, Bear MF, Huganir RL. Involvement of a postsynapticprotein kinase A substrate in the expression of homo synaptic long-termdepression. Neuron,1998;21(5):1163-75.
    [115] Lee HK. Barbarosie M, Kameyama K, Bear MF, et al. Regulation of distinctAMPA receptor phosphorylation sites during bidirectional synaptic plasticity.Nature,2000;405(6789):955-9.
    [116] Stogmanne, Lichtner P, Baumgartner C, et al. Mutation in the CLCN2gene area rare cause of idiopathic generalized epilepsy syndromes[J]. Neurogenetics,2006,7(4):265-268.
    [117] Judith B, Michela S, Muriel A-A, et al. Leukoencephalopathy upon Disruptionof the Chloride Channel ClC-2[J]. The Journal of Neuroscience,2007,27(24):6581-6589.
    [118] Nehrke K, Arreola J, Nguyen HV, et al. Loss of hyperpolarization-activated Cl-current in salivary acinar cells from Clcn2knockout mice[J]. J Biol Chem,2002,277:23604-23611.
    [119] Enz R, Ross BJ, Cutting GR. Expression of the voltage-gated chloride channelClC-2in rod bipolar cells of the rat retina[J]. J Neurosci,1999,19(22):9841-9847.
    [120] Comes N, Gasull X,Gual A, et al. Differential expression of the human chloridechannel genes in the trabecular meshwork under stress conditions[J].Exp EyeRes,2005,80(6):801-813.
    [121] Yu L, Han N, Jiang LG, Zheng YJ, Liu LF: Neuroprotective effects of ClC-3chloride channel in glutamate-induced retinal ganglion cell RGC-5apoptosis.Neural Regen Res,2011,6(6):450-456.C.
    [122] Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity inretinal ganglion cells[J]. Vision Research,1997,37(24):3483-3493.
    [123]王勇,操基玉,郭冬梅,等.油烟中细颗粒物致胎鼠肺泡Ⅱ型上皮细胞氧化应激指标的影响[J].环境与健康杂志,2010,27(10):872-875.
    [124] Yim H. Jin YH, Park BD, et al. Caspase-3-mediated. Cleavage of Cdc6inducesnuclear localization of p49-truncated Cdc6and apoptosis[J]. Mol.Biol.Cell,2003,14:4250-4259.
    [125] Wei L, Xiao AY, Jin C, et al. Effects of chloride and potassium channel blockerson apoptotic cell shrinkage and apoptosis in cortical neurons[J]. Pflugers Arch,2004,448(3):325-334.
    [126] Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ. Gating of the voltage dependentchloride channel ClC-0by the permeant anion[J]. Nature,1995,373(6514):527-531.
    [127] Renter S, Eifes S, Dicato M, et al. Modulation of anti-apoptotic and survivalpathways by curcumin as a strategy to induce apoptosis in cancer cells[J].Biochem Pkarmacol,2008,76;1340-1351.
    [128] Wang HY, Cai B, Cui CB, et al. Vitexicarpin, a flavonoid from Vitex trifolia L.,induces apoptosis in K562cells via mitochondria-controlled apoptoticpathway[J]. Yao Xue Xue Bao,2005,40(1):27-31.
    [129] Schori H, Yoles E, Wheeler LA, et al. Immune-related mechanismsparticipating in resistance and susceptibility to glutamate toxicity. Eur JNeurosci,2002;16(4):557-564.
    [130] Levin LA, Louhab A, Aref AB, et al. Apoptosis of retinal ganglion cells inanerior ischemic optic neuropathy [J]. Arch Ophthalmol,1996,114(4):488-491.
    [131] Krishnamoorthy, R.R, et al. Characterization of a transformed rat retinalganglion cell line[J]. Brain Res Mol Brain Res,2001.86(1-2):p.1-12.
    [132] Nicole J, Van Bergen, Jobn P.M, Wood, et al. Recharacterization of the RGC-5Retinal Ganglion Cell Line[J]. Invest Ohpthalmol Vis SCI,2009,Vol.50,No.9.
    [133] Raghu R, Krishnamoorthy, Abbot F,et al. A Forensic Path to RGC-5Cell LineIdentification: Lessons Learned[J]. Invest Ohpthalmol Vis SCI, August2013,Vol.54, No.8.
    [134] Muayyad R. AI-Ubaidi MR. RGC-5: Are they really661W? The saga continues[J]. Exp Eye Res,2014Feb;119:115.
    [135] Thiemann A, Gründer S, Pusch M, et al. A chloride channel widely expressed inepithelial and non-epithelial cells. Nature,356:57-60,1992.
    [136] Cid LP, Niemeyer MI, Ramírez A, et al. Splice variants of a ClC-2chloridechannel with differing functional characteristics. Am J Physiol Cell Physiol,279: C1198-C1210,2000.
    [137] Furukawa T, Ogura T, Katayama Y et al. Characteristics of rabbit ClC-2currentexpressed in Xenopus oocytes and its contribution to volume regulation. Am JPhysiol Cell Physiol,274:C500-C512,1998.
    [138] Park K, Arreola J, Begenisich T, et al. Comparison of voltage-activated Cl-channels in rat parotid acinar cells with ClC-2in a mammalian expressionsystem. J Membr Biol,163:87-95,1998.
    [139] Pusch M, Jordt SE, Stein V,et al. Chloride dependence of hyperpolarization-activated chloride channel gates[J]. Physiol (Lond),1999,515:341-353.
    [140] Gründer S, Thiemann A, Pusch M, et al. Regions involved in the opening ofClC-2chloride channel by voltage and cell volume. Nature,360:759-762,1992.
    [141] Wang LW, Chen LX, Jacob T.ClC-3expression in the cell cycly of naso phary-geal carcinoma cells. Sheng Li Xue Bao,2004:56:230-6.
    [142] Guan YY, Wang GL, Zhou JG. The ClC-3Cl-channel in cell volume regulation,proliferation and apoptosis in vascular smooth muscle cells. Trends PharmacolSci,2006;27:290-6.
    [143] Olsen ML, Schade S, Lyons SA, et al. Expression of voltage-gated Chloridechannels in human glioma cells[J]. Neurosci,2003:23:5572-82.
    [144]张海燕,李辉,高志安,p16、Rb、cyclinD1蛋白在子宫内膜腺癌中的表达及意义.辽宁医学院学服,2007,28(6):8-10,14,97.
    [145]姜浩,樊光华.人参皂试-Rh2对人肝癌Bel-7404细胞增殖和凋亡的影响[J].中国肿瘤临床与康复,2004,11(4):289.292.
    [146] Knowles MA.What we could do now:molecular pathology of bladder caner[J]. JClin Pathol:Mol Pathol,2001,54:215-221.
    [147] Tam SW, Shay JW, Pagano M. Differential expression and cell cycle regulationof the cyclin-dependent kinase4inhibitor p16INK4[J]. Cancer Res,1994,15:5816-5820.
    [148] Westermann B. Mitochondrial fusion and fission in cell life and death [J]. NatRev Mol Cell Biol,2010,11(12):872-884.
    [149] Chalah A, Khosravi-Far R.The mitochondrial death pathway[J].Adv Exp MedBiol,2008.615:25-45.
    [150] Bochning D,Patterson RL,Sedaghat L,et al.Cytoehrome c binds to ino-sitol(l,4.5)trisphosphate receptors, amplifying caldum-dependent apoptosis[J]. NatCell Biol,2003.5:1051-1061.
    [151] Boehning D, Roswm DB, Patterson RL, et al. A peptide inhibitor of cytochromec/inositol l,4,5-trisphosphate receptor binding blocks intrinsic and ex-trinsic celldeath pathways[J]. Proc Natl Acad Scl,2005,102:1466-1471.
    [152] Kermer P, klocker N, Labes M,et al. Activation of caspase-3in axotomized ratretinal ganglion cells in vivo. FEBS Lett,1999,453(3):361-4.
    [153] Patil K, Sharma SC. Broad speetrum caspase inhibitor rescues retinal ganglioncells after ischemia[J]. Neuro Report,2004,15(6):981-984.
    [154] Asomugha CO,Linn DM, Linn CL. ACh receptors link two signaling pathwaysto neuroprotection against glutamate-induced excitotoxicity in isolated RGCs[J].Neurochem,2010,112,214-226.
    [155] Cory S, Adams J.M. The Bcl2family: regulators of the cellular life-or-deathswitch[J]. Nat Rev Cancer,2002,2:647-656.
    [156] Leibowitz B, Yu J. Mitochondrial signaling in cell death via the Bcl-2family[J].Cancer Biol Ther,2010,9:417-22.
    [157] Huang X, Wu DY, Chen G, et al. Support of retinal ganglion cell survival andaxon regeneration by lithium through a Bcl-2-dependent mechanism[J]. InvestOphthalmol Vis Sci,2003,44(1):347-354.
    [158] Cenni MC, Bonfanti L, Martinou JC, et al. Long-term surival of retinal ganglioncells following optic nerve section in adult bcl-2transgenic mice[J]. Eur JNeurosci,1996,8(8):1735.
    [159] Bonfanti L, Strettoi E, Chierzi S,et al. Protection of retinal ganglion cells fromnatural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2[J]. Neurosci,1996,16(13):4186-4194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700