用户名: 密码: 验证码:
铕或铽掺杂GdBO_3和LuBO_3纳米纤维的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构材料,通常包括纳米管、纳米棒、纳米线、纳米纤维、纳米带以及同轴纳米电缆等,是在两维方向上具有纳米尺度的结构材料。在如此特征下,一维纳米材料量子效应的发挥了重要的作用,其相关的物理性质,如输运和热传导机制,明显不同于块体材料和纳米粒子等。
     静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。近几年来,伴随着电纺无机纳米纤维首次被合成,国内外许多研究机构通过静电纺丝技术制备出多种一维无机纳米纤维。从材料的功能来划分,包括半导体、稀土发光、电池以及催化等无机纳米纤维;从组成成分来说,包括氧化物、金属、多组分无机纳米纤维和其它结构无机陶瓷纤维等。本文主要采用静电纺丝技术和热处理的相结合的方式,制备了一维GdBO_3:Ln~(3+)和LuBO_3:Ln~(3+)(Ln=Eu,Tb)稀土发光纳米纤维、及一维ZnFe_2O_4软磁性纤维和ZnO:Fe的半导体纤维。以稀土离子的光谱特性、能量传递和输运、磁性离子的超交换作用为理论基础,结合纤维的晶体结构、表面形貌、尺寸和比表面积等结构特征,讨论这种特殊形貌对样品的荧光性质、结晶度和磁性等物理和化学性能的影响。相关研究尚未见报道。
     1. GdBO_3:Ln~(3+)(Ln=Eu,Tb)纳米纤维
     首次采用静电纺丝技术合成了GdBO_3:Ln~(3+)(Ln=Eu,Tb)纳米纤维,XRD结果表明800°C烧结后的GdBO_3:Tb~(3+)纳米纤维,符合GdBO_3相的特征峰。纤维形貌弯曲,表面粗糙,直径在150nm以下。GdBO_3:Eu~(3+)纳米纤维的发射光谱,在593nm,612nm,和627nm处出现三条发射峰。样品的D0→7F1和5D0→7F2的荧光强度之比(R/O)为0.57,明显小于以往的研究报道。结合实验结果分析表明纤维样品具有更少的表面缺陷,孔洞和界面相,有序度的提高,导致Eu~(3+)离子局域对称性的改变,进而产生高强度的橙光发射。GdBO_3:Tb~(3+)纳米纤维的荧光光谱,与固相烧结的方法合成了GdBO_3:Tb~(3+)样品基本相同。我们所合成的GdBO_3:Eu~(3+)纳米纤维拥有高强度的橙光发射,明显不同于文献报道块体材料和纳米颗粒,而掺杂Tb~(3+)离子的纳米纤维的发光性质与以往文献报道相似,造成这种差异的原因是Eu~(3+)离子的发射光谱,对周围的配位环境较为敏感。而Tb~(3+)离子的发射光谱则依赖于Tb离子之间的交叉弛豫。
     此外,当初始原料Gd(NO_3)3和H_3BO_3摩尔比为1:1时,产物往往偏离初始原料的化学计量比,得到新的Gd_3BO_6晶相。在Gd_3BO_6:Eu~(3+)纳米纤维发射谱中,5D0→7F2跃迁成为主要的发射峰。就色纯度而言,Gd_3BO_6:Eu~(3+)样品拥有良好的红光染色性。
     2. LuBO_3:Ln~(3+)(Ln=Eu,Tb)纳米纤维
     首先通过溶胶-凝胶法制备不同Tb离子含量掺杂的LuBO_3纳米晶。XRD结果显示Tb离子的掺杂降低了LuBO_3样品的晶化温度,提高了结晶质量,且掺杂前后的样品晶化温度大约相差200℃。固相材料的结晶过程是由原子的扩散作用形成的,Tb~(3+)离子替代晶格中Lu~(3+)离子时,必然导致晶体表面电荷密度的改变,展示强烈的电子云扭曲,使异号的带电粒子迅速地扩散到表面,很容易与表面的Lu~(3+)离子化合。
     首次采用静电纺丝技术合成LuBO_3:Eu~(3+)(3mol%)纳米纤维。 XRD结果表明经过800°C煅烧2h后,衍射峰都归属于球霰石结构六角相的LuBO_3晶体(JCPDS74-1938)。 TEM图显示纳米纤维具有粗糙,多孔状的形貌。纤维的直径为210nm,有许多紧密相连的纳米颗粒所组成,颗粒的尺寸在20-30纳米。LuBO_3:Eu~(3+)(3mol%)纳米纤维红光与橙光强度的比值(R/O)很明显高于sol-gel法制备的纳米颗粒。纤维多孔隙结构拥有较高比表面积和表面能量,导致表面附近的高度的无序性。正是LuBO_3:Eu~(3+)纤维表面周围晶场的低对称性,诱导了较高的R/O比值。我们所合成的LuBO_3: Tb~(3+)纳米纤维的荧光寿命,在相对偏低Tb~(3+)离子浓度下,比文献报道的水热法合成的LuBO_3:15mol%Tb~(3+)荧光粉更长,并且随着Tb~(3+)离子浓度的增加,LuBO_3: Tb~(3+)纳米纤维发光强度不断的增大。从形貌上来看,LuBO_3:Tb~(3+)纤维具有多孔状纳米结构,拥有较高比表面积,提高了D_3与5D_4之间的能量传递效率,改善了发光活性。
     3. ZnFe_2O_4和ZnO:Fe微/纳米纤维
     利用溶胶凝胶法和静电纺丝技术制备ZnFe_2O_4微/纳米纤维。XRD结果表明ZnFe_2O_4微/纳米纤维衍射峰的位置和强度,与标准卡片ZnFe_2O_4(PCPDFNo.82-1049)一致,属于立方晶系,具有尖晶石结构。烧结前后纤维形貌发生了明显的变化,直径出现了收缩,扭曲,直径在300-400nm范围。研究了ZnFe_2O_4微/纳米纤维在亚甲基蓝溶液中的光催化性能。采用直接紫外-可见光照的方式,反应120分钟,加入ZnFe_2O_4微/纳米纤维催化剂,亚甲基蓝的降解率达到95%。铁酸锌纳米纤维较大的比表面积,增加了周围有机物的界面浓度加快了反应速度和效率。
     利用溶胶凝胶法和静电纺丝技术制备Zn_(0.8)Cu_(0.2)Fe_2O_4微/纳米纤维。室温下ZnFe_2O_4微/纳米纤维具有顺磁性,而Zn_(0.8)Cu_(0.2)Fe_2O_4纤维样品呈现铁磁性,其剩余磁化强度1.018emu/g,和矫顽力54.585Oe。Cu~(2+)作为掺杂离子,取代晶格格点位置,Cu~(2+)离子更倾向于占据八面体(B位置,这样一些Fe~(3+)离子从B位向A位移动,导致B-B超交换作用减弱,A-B超交换作用增强,两者产生剩余磁矩。因而Zn_(0.8)Cu_(0.2)Fe_2O_4纤维样品呈现铁磁性。
     利用静电纺丝法合成了Fe掺杂ZnO的一维纳米纤维。XRD结果表明,经过520℃左右煅烧后获得纳米纤维。SEM图显示纤维呈弯曲的形貌,直径分布在340-440nm范围内。Fe掺杂ZnO纳米纤维光致发光谱显示了没有精细结构的绿光发光峰。当X=5mol%时,Fe离子在ZnO晶格中达到最大的溶解度,绿光的发射强度达到最小值。当X≤5mol%时,呈现良好的铁磁性。这是因为Fe~(3+)离子替代Zn~(2+)的格点位置,由于属于异价取代,会产生大量的Zn~(2+)离子空位,导致近邻Fe~(3+)离子的超交换作用增强。
One-dimensional nanostructures, such as nanowires, nanorods, nanobelts,nanotubes and nanofibers, are defined as two-dimensional directions at nanomentersscale. Quantum effect in one-dimensional nanomaterials plays an important role, andtheir physical and chemical properties, such as thermal transport mechanisms, aresignificantly different from the bulk materials.
     Electrospinning represents a simple and convenient method for preparing ceramicfibers with both solid and hollow interiors that are exceptionally long, uniform indiameter ranging from tens of nanometers to several micrometers, and diversified incompositions. In recent years, many research institutes from both home and abroadsynthesized a variety of inorganic nanofibers by electrospinning method, such assemiconductor, rare earth luminescent, batteries, and catalytic fibers. In this paper,rare earth borate, ZnFe_2O_4and ZnO:Fe nanofibers were prepared by electrospinningcombined with heat treatment. We used as the theoretical basis of the spectralcharacteristics of the rare earth ions, energy transfer and transport, and the exchangeinteraction, and investigate how fibers morphology, crystal structure, size and surfaceaffect luminescence property, fluorescence lifetime and magnetism of the samples.
     1. GdBO_3: Ln~(3+)(Ln=Eu,Tb) nanofibers
     GdBO_3:Ln~(3+)(Ln=Eu, Tb) nanofibers were synthesized by electrospinningtechnique combined heat treatment. XRD results indicate the fibers sample calcined at800°C can be in accord with the characteristic peaks of GdBO_3phase. The obtainedGdBO_3:Ln~(3+)nanofibers are flexible and rough with an average diameter ofapproximately150nm. The emission spectrum of GdBO_3:Eu~(3+)nanofibers consists ofan orange emission at593nm and red emission at612and626nm. The R/O value is0.57, which is lower than those in previous reports. Fewer surface defects, holes, andinterface phase for the fibers sample enhance the symmetry of the crystal field aroundEu~(3+), thereby yielding a high orange emission. When the molar ratio of the starting material Gd(NO_3)3and H_3BO_3is1:1, the product deviate from the initialstoichiometric ratio to obtain new Gd_3BO_6phase. The emission spectrum ofGd_3BO_6:Eu~(3+)nanofibers showed the5D0→7F2transition is dominant. For color purity,Gd_3BO_6:Eu~(3+)nanofibers reflect the superior chromaticity. The difference betweendoping Eu~(3+)and Tb~(3+)may be attributed to the relative intensities of the orange andred emissions of Eu~(3+), which are sensitive to local symmetry. The anisotropy andspace dimensionality of the sample can affect the local environment surrounding theEu~(3+)ions. The blue to green ratio of Tb~(3+)depend on the cross relaxation between Tb~(3+)ions.
     2. LuBO_3:Ln~(3+)(Ln=Eu,Tb) nanofibers
     Tb doped LuBO_3nanocrystallines were prepared by sol-gel methods, XRD resultsshow that the doping Tb ions reduce the crystalline temperature of LuBO_3andimprove crystal quality. The crystallinity process of the solid materials is formed bythe atom diffusion. Tb~(3+)ions substitution Lu~(3+)ions in crystal lattice, which inevitablylead to the change of the charge density and the distortion of the electron cloud.Combination reactions will more easily occur between the anion and Lu ions.
     LuBO_3:Ln~(3+)(Ln=Eu, Tb) nanofibers were synthesized by electrospinningtechnique combined heat treatment. LuBO_3:Ln~(3+)(Ln=Eu,Tb) nanofibers can beobtained by sintering the electrospun composite fibers at800-900°C for2h. Theas-prepared nanofibers exhibit porous morphology and have the average diameters of200-300nm, which consist of closely lined nanoparticles with the size of about30nm.The high R/O values of LuBO_3:Eu~(3+)nanofibers are much higher than that ofnanoparticles synthesized by sol-gel methods. The nanoscale porous morphologypossesses higher surfaces area, resulting in a high degree of disorder near the surfaces.The sites at the surfaces of the porous nanofibers are of low site symmetry, therebyyielding a high R/O value. the emission intensities and the fluorescence lifetimeincrease slightly with increasing Tb~(3+)concentration, and its fluorescence lifetime issignificantly longer than that reported in previous literature. The porous structureslead to the most Tb~(3+)ions residing on the surface, improving the energy transferefficiency between adjacent Tb~(3+)ions.
     3. Oxide containing zinc nanofibers
     ZnFe_2O_4nanofibers were prepared using electrospinning technique combiningwith heating treatment at high temperature. XRD results indicate that diffractionpeaks of as-prepared nanofibers are very close to the standard pattern of ZnFe_2O_4(PCPDF82-1049), which possess cubic spinel structure. The morphologies offiber before and after the sintering show significant differences. The diameter ofnanofibers decreased remarkably and morphology becomes rough and porous.ZnFe_2O_4micro/nano fibers at the room temperature display paramagnetic character.The room temperature ferromagnetic behavior was observed in Zn_(0.8)Cu_(0.2)Fe_2O_4nanofibers. Their residual magnetization was1.018emu/g, and coercivity was54.585Oe. Dopants Cu ions can replace Zn or Fe in the substitutional sites, Cu ionshave strong preference for B-sites, more and more Fe~(3+)ions will start migrating fromA to B-sites, resulting in decrease of the B-B interaction and increase of the A-Binteraction. Thus, Zn_(0.8)Cu_(0.2)Fe_2O_4nanofibers possess room temperature ferromagneticproperties. Upon Xe lamp irradiation,95%of RhB could be removed in120minirradiation when ZnFe_2O_4nanoparticles were added. ZnFe_2O_4micro/nano fibers havelarge surface area, which accelerates the reaction speed and efficiency.
     Fe doped ZnO nanofibers are successfully synthesized via electrospinningmethods. XRD results indicate that the fiber samples calcined at520℃correspond tohexagonal wurtzite structure of ZnO. SEM images display that the precursornanofibers were relatively continuous and uniform. After heating treatment, themorphology of ZnO:Fe nanofibers show structure distortion such as wrinkles orcollapsing, and the average diameter decreases mainly100nm. When Feconcentration up to5%, the solubility of Fe~(3+)in ZnO incline to saturation, Fe ionseasily entering into interstitial position of ZnO lattice will form interstitial solidsolution of Fe2O_3-ZnO, which result in decrease VOconcentration, green-lightintensity abruptly reduced to minimum. M-H curves of Fe doped ZnO nanofibers atdifferent concentrations show saturation, reflecting room temperature ferromagnetism.When the Fe concentration is low, Fe~(3+)ions substitute Zn~(2+)in ZnO crystal lattice.This will produce large amounts of Zn~(2+)vacancies, enhancing the effect of the exchange interaction between Fe ions.
引文
[1]丁秉钧,纳米材料,机械工业出版社[M],2011年版。
    [2]夏和生,王琪,纳米技术发展[J],高分子材料科学与工程,2001,17(4):1-6.
    [3]白春礼,纳米科技及其发展前景[J],中国工程咨询,2000,(4):38-41.
    [4]张玉龙,李长得,纳米技术与纳米塑料[M],中国轻工业出版社,2002版。
    [5]崔作林,纳米技术与纳米材料[M],国防工业出版社。
    [6] H. S. Nalwa. Handbook of Nanostructure Materials and Nanotechnology [M].New York: Academic Press2000.
    [7] A. S. Edelstein, R.C.Cammarata [M]. Institute of Physics, Philadephia, PA1996.
    [8]张立德,纳米材料和纳米结构[M].北京:科学出版社。2001.
    [9]张志馄,崔作林。纳米技术和纳米材料[M].北京:国防工业出版社。2000.
    [10] Wang Y. Mahler W.[J]. Opt Commun,1987,61:233.
    [11] Brus LE.[J]. Phys Chem,1984,80:440.
    [12] Barbara B,Wernsdorfer W.[J].Curr Opin Solid State Mater Sci,1997,2(2):220-225.
    [13] J.Hu, T.W.Odom, C.M.Lieber.[J].Acc.Chem.Res.1999,32:435.
    [14]Iijima,Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [15]李永军,刘春艳。一维无机纳米材料的研究进展[J].感光科学与光化学,2003,21(6):446~468.
    [16] Wagner R S [J] Appl Phys Lett,1964,4:89~90.
    [17] Lee S T, Zhang Y F, Wang N,[J]. J Mater Res,1999,12,14(12):4503~4507.
    [18] Hu J Q, Bando Y, Zhan J H,[J]. Appl Phys Lett,2004,85(14):2931~2934.
    [19] Sun L, Searson P C,[J]. Appl Phys Lett,1999,74(9):2803~2805.
    [20] Peng X, Manna L, Yang W,[J]. Nature,200,404:59~61.
    [21] Rao C N R, Deepak F L, Gundiah G,[J]. Appl Phys Lett,1996,89(3):351~353.
    [22] Trentler T J,Hickman K M,Goel S C,[J]. Science,1995,270:1791~1794.
    [23]裴立宅,唐元洪,郭池,等[J].稀有金属,2005,29(2):194~199.
    [24]张亚利,郭玉国,孙典亭.纳米线研究进展(1):制备与生长制[J].材料科学与工程,200119(1):131~136.
    [25] Chopra N G, Luyken R J, Zettl A,[J]. Science,1995,269:965~967.
    [26] Xu B S, Zhai L Y, Liang J,[J]. J Cryst Growth,2006,291:34~39.
    [27] Han W Q, Zettl A.[J]. Appl Phys lett,2002,80,(2):303~306.
    [28] Loiseau A, Willaime F, Demoncy N,[J]. Phys Rev Lett,1996,76(25):4737~4740.
    [29] Yang Li, Xue C S, Wang C M,[J]. Nanotechnology,2003,14:50~52.
    [30] Huang Z M,Zhang Y Z,Kotaki M.[J].Compos Sci Technol,2003,63:2223-2253.
    [31] Yarin A L,Koombhongse S,.[J].Appl Phys,2001,90(9):4836-4846.
    [32] Reneker D H,Yarin A L and Fong H [J].Appl Phys,2000,87(9):4531-4547.
    [33] G.Larsen, R.velarde Ortiz I.G.Loscer tales.,[J].Am.Chem.Soc.2003,125:1154.
    [34] C.L.Shao,H.Y.Guan,X.H.Yang.[J].Cryst.Growth,2004,267,380,4.
    [35] S.H.Lee,C.Tekmen,W.M.Sigmund.[J].Mater.Sci.Eng.A-Struct.,2005,398:77-81.
    [36] H.Guan,C.Shao,and X.Yang,[J].Mater.Chem.Phys.2003,82:1002-1006.
    [37] Guan Hongyu, Shao Changlu Yang Xinghua.[J]. Inorganic ChemistryCommunications,2003,6(11):1409.
    [38] G.Zhang,W.Kataphinan,D.H.Reneker.[J].Mat.Sci.Eng.B-Solid,2005,116:353-8.
    [39] G.Larsen,R.Velarde-Ortiz,[J].Am.Chem.Soc.2003,125:1154-1155.
    [40] Ostermann Rainer, Li Dan,Xia Younan.[J]. Nano letters,2006,6(6):1297-1302.
    [41] Li Shouzhu, Shao Changlu,Mu Rixiang.[J]. Physics and Chemistry of Solids,2006,67(8):1869.
    [42] X.G.Yang, C.L.Shao, and H.Y.Guan.[J].Thin Solid Films,2005,478:228-31.
    [43] A.Wang, H.Singh, and G.C.Rutledge.[J].Polymer,2004,45:5505-14.
    [44] C.L.Shao,H.Y.Guan,and X.H.Yang.[J].Solid State Chem.,2004,177:2628-31.
    [45] Brener M P, et al.[J].Appl Phy Lett,2001,78(8):1149-1151.
    [46] Spivak A F, Dzenis Y A.[J].Appl Phys Lett,1998,173(21):3067-3096.
    [47] Fietier N. Int J Number Meth Fluids,2003,42:1345-1361.
    [48] Dayong Yang, Xin Niu,[J].Advanced Materials.2008,20(24):4770–4775.
    [49] Maheshwari S, Chang H C.[J].Appl Phys Lett,2006,89:234103.
    [50] Biao Dong, Hongwei Song, Hongquan Yu et al. Upconversion properties of Ln3+doped NaYF4polymer composite fibers prepared by electrospinning [J]. J. Phys.Chem. C,2008,112(5):1435~1440
    [51] Zhiyao Hou, Piaoping Yang, Chunxia Li et al.. Preparation and luminescenceproperties of YVO4-Ln and Y(V,P)O4-Ln(Ln=Eu3+,Sm3+, Dy3+) nanofibers andmicrobelts by sol-gel/electrospinning process [J]. Chem. Mater.,2008,20(21):6686~6696.
    [52] Chong Peng, Mengmeng Shang, Guogang Li, Zhiyao Hou, Dongling Geng andJun Lin, Electrospinning synthesis and luminescence properties ofone-dimensional La9.33(SiO4)6O2: Ln3+(Ln=Ce, Eu, Tb) microfibers, DaltonTrans.,2012,41,4780–4788.
    [53] Zhiyao Hou, Ziyong Cheng, Guogang Li, Wenxin Wang, Chong Peng, ChunxiaLi, Ping’an Ma, Dongmei Yang, Xiaojiao Kangand Jun Lin,Electrospinning-derived Tb2(WO4)3:Eu3+nanowires: energy transfer and tunableluminescence properties. Nanoscale,2011,3,1568–1574.
    [54] Hongwei Song, Hongquan Yu, Guohui Pan et al.. Electrospinning preparation,structure, and photoluminescence properties of YBO3:Eu3+nanotubes andnanowires [J]. Chem. Mater.,2008,20(14):4762~4767.
    [55] Guoping Dong, Xiudi Xiao, Yingzhi Chi, Bin Qian, Xiaofeng Liu, Zhijun Ma,Song Ye, E. Wu, Heping Zeng, Danping Chen, and Jianrong Qiu, PolarizedLuminescence Properties of TiO2:Sm3+Microfibers and Microbelts Prepared byElectrospinning, J. Phys. Chem. C2009,113,9595–9600.
    [56] Liu H.Q. Yang J.X., Liang J.H.,Huang Y.X.,Tangz C.Y.,J. Am. Ceram. Soc.,2008,91(4),1287—1291.
    [57] Wang W., Huang H. M., Li Z. Y., Zhang H.N., Wang Y., Zheng W., Wang C., J.Am. Ceram. Soc.,2008,91(11),3817—3819.
    [58] Lee H.U., Ahn K., Lee S. J., Kim J. P., Kim H.G., Jeong S. Y., Cho C. R., Appl.Phys. Lett.,2011,98(19),193114-1—193114-3.
    [59] Kim I.D., Jeon E. K., Choi S. H., Choi D. K., Tuller H. L., J. Electroceram.,2010,25(2—4),159—167.
    [60] Yang D.J., Kamienchick I., Youn D. Y., Rothschild A., Kim I. D., Adv. Funct.Mater.,2010,20(24),4258—4264.
    [61] Song M. Y., Ahn Y. R., Jo S.M., Kim D. Y., Ahn J.P., Appl. Phys. Lett.,2005,87(11),113113-1—113113-3.
    [62] Chuangchote S., Sagawa T., Yoshikawa S., Appl. Phys. Lett.,2008,93(3),033310-1—033310-3.
    [63]Shim H. S.,Kim J. W., Kim W.B., J. Nanosci. Nanotechnol.,2009,9(8),4721—4726.
    [64] Doh S. J., Kim C., Lee S. G., Lee S. J., Kim H., J. Hazard. Mater.,2008,154(1—3),118—127.
    [65] Li Q. M., Sun D. X., Kim H., Mater. Res. Bull.,2011,46(11),2094—2099.
    [66] Zheng W., Lu X. F., Wang W., Li Z. Y., Zhang H.N., Wang Y., Wang Z. J.,Wang C.,Sens. Actuators B,2009,142(1),61—65.
    [67] Lim S.K., Hwang S.H., Chang D., Kim S. Y., Sens. Actuators B,2010,149(1),28—33.
    [68] Wang Z, Liu X, Lu M, et al. Pr epar atio n of o ne-dimensional CoFe2O4nanostructures and their magnetic properties [J]. J Phys Chem C,2008,112(39):15171.
    [69] Nam J H, Joo Y H, Lee J H, et al. Preparation o f NiZn-ferrite nanofibers byelectrospinning for DNA sepa ratio n[J]. J Magn Magn Mater,2009,321(10):1389.
    [70] Li C J, Xu G R. Template pr epar ation of strontium hex a ferrite (SrFe12O19)micro/nanostr uctures: Characterization, synthesis mechanism and magneticproperties[J]. Mater Res Bull,2011,46(1):119.
    [71]Mingquan Liu, Xiangqian Shen, FuzhanS ong, Jun Xiang, Xianfeng Meng,Microstructure and magnetic properties of electrospun one-dimensionalAl3+-substituted SrFe12O19nanofibers, Journal of Solid State Chemistry184(2011)871–876.
    [72] Santala E, Marianna K, Markku L, et al. The preparation of reusable magneticand photocatalytic composite nanofibers by electr ospinning and atomic layerdeposit ion [J]. Nanotechnology,2009,20(3):035602.
    [73]张中太,张俊英,无机光致发光材料及应用[M],化学工业出版社,2004.
    [74]洪广言,稀土发光材料-基础与应用[M],科学出版社,2010.
    [75]吴代鸣,固体物理基础[M],高等教育出版社,2010.
    [1] Goldschmidt, V. M. and Hauptmann, H.(1931-32),Isomorphie von Boraten andKarbonaten: Nachr. Ges.Wiss. Gott. Math-Phys. KI.,53-72.
    [2] Ernest M. Levin, Robert S. Roth and Jerry B. Martin, The American mineralogist,vol.46, September-october,1961.
    [3] P. E. D. Morgan, CRYSTAL STRUCTURE OF YSiO2N AND REAPPRAISALOF THE VATERITE TYPE, YBO3, Mat. Res. Bull. Vol.12, pp.251-250,1977.
    [4] Fukushima M, Murayama S, Kaji T. IEEE Trans. On Electron Devices,1975,ED-22(9):657.
    [5] Ronda C R. Recent achievements in research on phosphors for lamps and displays.[J] Journal of Luminescence,1997,72-74:49-54.
    [6] Katsuhisa Tannaka, Noriyuki Tamura, Kazuguki Hirao and Naohiro Soga,Variation of optical properties with crystallization of InBO3:Cr3+from sodiumindium boro silicate glass.[J] Materials Chemistry and Physics,1999,59:82-87.
    [7] Blasse G, Donega de Mello, Efyushina N, Dotsenko V and Berezovskaya I.Luminescence of Pr3+in indium borate (InBO3).[J], Soild State Communicate,1994,92(8):687-688.
    [8] Agata Szczeszak, Tomasz Grzy, Stefan Li and Rafal J. Wiglus, Dalton Trans.41(19):5824-3122441421.
    [9] Zhenggui Wei, Lingdong Sun, Chunsheng Liao, Jialu Yin, Xiaocheng Jiang, andChunhua Yan, Size-Dependent Chromaticity in YBO3:Eu Nanocrystals:Correlation with Microstructure and Site Symmetry, J. Phys. Chem. B2002,106,10610-10617.
    [10] Jun Yang, Cuimiao Zhang, Lili Wang, Zhiyao Hou, Shanshan Huang, HongzhouLian, Jun Lin
    [11] Yanping Li, Jiahua Zhang, Xia Zhang, Yongshi Luo, Shaozhe Lu, Xinguang Ren,Xiaojun Wang, Lingdong Sun, and Chunhua Yan, Chem. Mater.2009,21,468–475.
    [13] M. Ren, J. H. Lin,Y. Dong, L. Q. Yang, and M. Z. Su, Chem. Mater.11(1999)1576.
    [14] G. X. Gu, D. Wang, X.S. Lv, S.M. Wan, J.L. You, Q. L. Zhang, S. T. Yin, Mater.Chem. Phys.131(2011)274.
    [15]张克立,张友祥,马晓玲,固体无机化学,武汉大学出版社,2003.
    [16] C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach,PlenumPress, New York,1998.
    [17] Y. H. Wang, K. Uheda, H. Takizawa, U. Mizumoto, T. Endo, J. Electrochem.Soc.148(2001) G430.
    [18] Y. Wang, T. Endo, L. He, C. Wu, J. Cryst. Growth268(2004)568.
    [19] G. H. Dieke, Spectra and energy level of rare earth ions in crystals, IntersciencePublishers, New York,1968.
    [20] Y. H. Sun, Y. X. Fu, J. Lumin.132(2012)550.
    [21] G. H. Jia, Peter A. Tanner, C. K. Duan, and J. Dexpert-Ghys, J. Phys. Chem. C114(2010)2769.
    [22] L. X. Yu, H. W. Song, S. Z. Lu, Z. X. Liu, L. M. Yang, and X. G. Kong, J. Phys.Chem. B108(2004)16697.
    [23] Hai Wang, HuiMin Li, Size dependent photoluminescence properties ofMn-doped ZnS Nanocrystals, Chalcogenide Letter,8(5),2011,309-313.
    [24] P.H.Chung, E.Perevedentseva, C.L.Cheng, the particle size-dependentphotoluminescence of nanodiamonds, Surface Science,601(18),2007,3866-3870.
    [25] Jun Zhang, Lingdong Sun, Chunsheng Liao, Chunhua Yan, size control andphotoluminescence enhancement of CdS nanoparticles prepared via reversemicelle method, Soild State Communications,124(1),2002,45-48.
    [26] J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and Chung-Hsin Lu,Photoluminescence Characteristics of Y2O3:Eu3+nanophosphors prepared usingsol-gel thermolysis, J. Phys. Chem. B,2001,105,11098-11105.
    [27] Yu-Chun Li, Yen-Hwei Chang, Yee-Shin Chang, Luminescence and energytransfer properties of Gd3+and Tb3+in LaAlGe2O7, J. Phys. Chem. C,2007(111),10682-10688.
    [28] G.H.Dieke, In spectra and energy levels of rare earth ions in crystal. Wileyinterscience, New York.
    [29] Lan Yang, Liqun Zhou, Ying Huang, Ziwei Tang, Materials Letters,64(24),2010,2704-2706.
    [30] Agata Szczeszak, Tomasz Grzyb, Stefan Lis and Rafal J.Wiglusz, Dalton Trans,2012,41,5824-5831.
    [31] Y.H. Sun, Y.X.Fu, J. Lumin.132(2012)550.
    [32] L. Yang, L. Q. Zhou, Y. Huang, Z. W. Tang, Mater. Chem. Phys.131(2011)477.
    [33] Masami Sekita, Yasuto Miyazawa, Shoiji Morita, Hideyuki Sekiwa, andYoichiro Sato, Appl. Phys. Lett.65,2380(1994).
    [34] A. K. Parchur, A. I. Prasad, A. A. Ansari, S. B. Rai and R. S. Ningthoujam,Dalton Trans,2012,41,11032-11045.
    [35] Yoshiyuki Kojima, Masaaki Numazawa, Shinnosuke Kamei, and NobuyukiNishimiya, International Journal of Optics,2012(2012)5.
    [36] S. L. Ng, Y. L. Lam, Y. Zhou, B. S. Ooi, C. H. Kam, K. S. Wong, U.Rambabu,Srinivasa Buddhudu, Journal of Materials Science Letters,19(6),495-497.
    [37] L. Zhao, Y. H. Wang, Y. Tao, Electrochem. Solid ST.15(3)(2012) B13.
    [38]陈文驹,林美荣,姜宏丽,双指数荧光衰减动力学模型分析,光学学报,6(12)
    [39] Diogo P. Volanti, Ieda L.V.Rosa, Elaine C.Paris, Carlos A. Paskocimas, Paulo S.Pizani, Optical Materials31(2009)995-999.
    [40]洪广言,稀土发光材料-基础与应用[M],科学出版社,2010.
    [41] L.X. Yu, H. W. Song, S. Z. Lu, Z. X. Liu, L. M. Yang, X.G. Kong, J. Phys.Chem. B108(2004)16697.
    [42]张克力,张友祥,马晓玲,固体无机化学,2012,武汉大学出版社。
    [43] P.E.D.Morgan, P.J.Carroll, F.F.Lange, Mater. Res. Bull.12,251(1977).
    [44] Y.T. Wu, D.Z. Ding, F. Yang, S.K. Pan, G.H. Ren, Mater. Res. Bull.47,106(2012).
    [45] J.H. Lin, Denis Sheptyakov, Y.X. Wang, and Peter Allenspach, Chem. Mater.16,2418(2004).
    [46] Z.G. Wei, L.D. Sun, X.C. Jiang, C.S. Liao, and C.H.Yan, Chem. Mater.15,3011(2003).
    [47] Y. H. Wang, K. Uheda, H. Takizawa, U. Mizumoto, T. Endo, J. Electrochem. Soc.148, G430(2001).
    [48] Y.P. Li, J.H. Zhang, X. Zhang, Y.S. Luo, S.Z. Lu, X.G. Ren, X.J. Wang, L.D.Sun, and C.H. Yan, Chem. Mater.21,468(2009).
    [49] Y. H. Sun, Y. X. Fu, J.Lumin.132,550(2012).
    [50] J. Yang, C.X. Li, X.M. Zhang, Z.W. Quan, C.M. Zhang, H.Y. Li, and J. Lin,Chem. Eur. J.14,4336(2008)
    [51] W. Chen, R. Sammynaiken, Y. Huang, J. Appl. Phys.88,1424(2000).
    [52] M. Zawadzki, D. Hreniak, J. Wrzyszcz, W. Mista, H. Grabowska, O.L. Malta etW.Strek, Chem. Phys.291,275(2003).
    [53] A. Podhorodecki, M. Banski, J. Misiewicz, J. Serafińczuk, and N. V.Gaponenkoc J. Electrochem. Soc.157, H628(2010).
    [54] J. Yang, C.M. Zhang, L.L. Wang, Z.Y. Hou, S.S. Huang, H.Z. Lian, J. Lin, J.Solid State Chem.181,2672(2008).
    [55] L. G. Jacobsohn, A. Toncelli, K. B. Sprinkle, C. J. Kucera, and J. Ballato, J. Appl.Phys.111,074315(2012).
    [56] Pushpal Ghosh, Arik Kar and Amitava Patra, Nanoscale,2012,2,1196-1202.
    [57] Baoling Wang, Liuzheng Sun, Haidong Ju, J.Sol-Gel Sci. Technol (2010)53:454-458.
    [58] Chongfeng Guo, Heng Jing and Ting Li, RSC Advance,2012,2,2119-2122.
    [59] D. Jia, X. J. Wang, W. Jia, and W. M. Yen, J. Appl. Phys.93,148,(2003).
    [60] L.van Pieterson, M.Heeroma, E.de Heer, A.Meijerink, Journal of Luminescence,91(2000)177-193.
    [61] Vesna M Lojpur, Phillip S Ahrenkiel, Color-tunable up-conversion emission inY2O3:Yb3+, Er3+nanoparticles prepared by polymer complex solution method,Nanoscale Research Letter,2013,8:131.
    [1] Scoffern, John, The useful metal and their alloys, Houlston and wright.1861:591-603.
    [2] Ingalls, Walter Renton, The Engineering and Mining Journal.1902:142.
    [3] Zinc Metal Properties, American Galvanizers Association.2008.
    [4] Wanquan Jiang, Zhen Cao, RuiGu, XingzhuYe, Cuifeng Jiang and Xinglong Gong,Smart Mater. Struct.18(2009)125013.
    [5]张晏清,张雄,纳米锌铁氧体的制备与微波吸收性能研究,《材料工程学报》,2006,第4期。
    [6] Changwa Yao, Qiaoshi Zeng, G.F. Goya, T. Torres, ZnFe2O4nanocrystals:synthesis and magnetic properties, J. Phys. Chem. C,111(33),12274-12278.
    [7] L. Nalbandian, A. Delimitis, V.T. Zaspalis, E.A. Deliyanni, D.N. Bakoyannakis,E.N. Peleka, Hydrothermally prepared nanocrystalline Mn–Zn ferrites: Synthesisand characterization, Microporous and Mesoporous Materials114(2008)465–473.
    [8] Jun Xiang, XiangqianShen, FuzhanSong, Mingquan Liu, Guangzhen Zhou,Yanqiu Chu, Fabrication and characterization of Fe–Ni alloy/nickel ferritecomposite nanofibers by electrospinning and partial reduction, Materials ResearchBulletin xxx (2010) xxx–xxx.
    [9] O. Mounkachi, M. Hamedoun, M. Belaiche, A. Benyoussef, M. Sajieddine,Critical behaviour and magnetic properties of A–B spinel ZnxCu1xFe2O4, SolidState Communications151(2011)938–942.
    [10] G. Vaidyanathan, S. Sendhilnathan, Characterization of Co_(1-x)Zn_xFe_2O_4nanoparticles synthesized by co-precipitation method, Physica B403(2008)2157–2167.
    [11] ü. zgür,_Ya. I. Alivov, C. Liu, A. Teke,_M. A. Reshchikov, S. Do an, V.Avrutin,S.-J. Cho, and H. Morko, A comprehensive review of ZnO materialsand devices, JOURNAL OF APPLIED PHYSICS98,041301,2005.
    [12] Manoranjan Ghosh_and A. K. Raychaudhuri, Electric field induced reversiblecontrol of visible photoluminescence from ZnO nanoparticles, APPLIEDPHYSICS LETTERS98,153109,2011.
    [13] Bharati Panigrahy, M. Aslam, and D. Bahadur, Controlled optical and magneticproperties of ZnO nanorods by Ar ion irradiation, APPLIED PHYSICSLETTERS98,183109,2011.
    [14] Chatchawal Wongchoosuk, Kittitat Subannajui, Andreas Menzel, IrisAmarilio Burshtein, Controlled Synthesis of ZnO Nanostructures: The Role ofSource and Substrate Temperatures, J. Phys. Chem. C2011,115,757–761
    [15] Hyun-Uk Lee, Kyun Ahn, Su-Jae Lee, Jong-Pil Kim, Hyun-Gyu Kim,Se-Young Jeong, and Chae-Ryong Cho, ZnO nanobarbed fibers: Fabrication,sensing NO2gas, and their sensing Mechanism, Appl. Phys. Lett.98,193114,2011.
    [16] Mariana Ungureanu_, Heidemarie Schmidt, Qingyu Xu, Holger von Wenckstern,Daniel Spemann, Holger Hochmuth, Michael Lorenz, Marius Grundmann,Superlattices and Microstructures42(2007)231–235.
    [17] Milan Gacic, Gerhard Jakob, Christian Herbort, and Hermann Adrian,Magnetism of Co-doped ZnO thin films, PHYSICAL REVIEW B75,205206,2007.
    [18] M. El-Hilo, A.A.Dakhel, Structural and magnetic properties of Mn-doped ZnOpowders, Journal of Magnetism and Magnetic Materials.
    [19] Dana A. Schwartz, Kevin R. Kittilstved, and Daniel R. Gamelin,Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared fromcolloidal diluted magnetic semiconductor quantum dots, Appl. Phys. Lett., Vol.85,No.8,23August2004.
    [20] Enzuo Liu, Naiqin Zhao, Jiajun Li, Xiwen Du, and Chunsheng Shi, Surface StateInduced Ferromagnetism in Co-and Mn-Doped ZnO Surfaces, J. Phys. Chem. C2011,115,3368–3371.
    [21] Debjani Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan,T. K. Nath, A. K. Das, Ferromagnetism in Fe-doped ZnO nanocrystals:Experiment and theory, PHYSICAL REVIEW B75,144404,2007.
    [22] Dana A. Schwartz, Kevin R.Kittilstved, and Daniel R.Gamelin, Appl. Phys. Lett.85,1395(2004).
    [23] Ruijin Hong, Herui Wen, Caiming Liu, Jinglin Chen, Jinsheng Liao, Dopantconcentration dependence of structure, optical, and magnetic properties ofZnO:Fe thin films, Journal of Crystal Growth314(2011)30–33.
    [24] Mazhar U. Rana_, Misbah-ul Islam, Tahir Abbas, Cation distribution andmagnetic interactions in Zn-substituted CuFe2O4ferrites, Materials Chemistryand Physics65(2000)345–349.
    [25] O. Mounkachia, M. Hamedouna,, M. Belaiche a,b,d, A. Benyoussef a,b,c, M.Sajieddine, Critical behaviour and magnetic properties of A–B spinelZnxCu1xFe2O4, Solid State Communications151(2011)938–942.
    [26] Mazhar U, Rana, Tahir Abbas, The effect of Zn substitution on microstructureand magnetic properties of Cu1-xZnxFe2O4ferrite, Journal of Magnetism andMagnetic Materials246(2002)110–114.
    [27] I. Dzh. Samadashvili, V. S. Varazashvili, T. E. Machaladze, and T. A.Pavlenishvili, INORGANIC MATERIALS, Vol.38, No.11,2002.
    [28] Changwa Yao, Qiaoshi Zeng, G. F. Goya, T. Torres, Jinfang Liu, Haiping Wu,ZnFe2O4Nanocrystals: Synthesis and Magnetic Properties, J. Phys. Chem. C2007,111,12274-12278.
    [29] Huaming Yang, Xiangchao Zhang, Chenghuan Huang, Wuguo Yang, GuanzhouQiu, Synthesis of ZnFe2O4nanocrystallites by mechanochemical reaction,Journal of Physics and Chemistry of Solids65(2004)1329–1332.
    [30] Feng Luo, Chun-Hua Yan, Anti-phase boundaries pinned abnormal positivemagnetoresistance in Mg doped nanocrystalline zinc spinel ferrite, ChemicalPhysics Letters452(2008)296–300.
    [31] Kang, E.; Park, J.; Hwang, Y.; Kang, M.; Park, J. G.; Hyeon, T. J. Phys. Chem. B2004,108,13932.
    [32] Zeng, H.; Philp, M. R.; Wang, S. X.; Sun, S. X. J. Am. Chem. Soc.2004,126,11485.
    [33] Easom, K. A.; Klabunde, K. J. Polyhedron1994,13,1197.
    [34] Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc.1999,121,11595.
    [35] Guo, Q.; Teng, X.; Rahman, S.; Yang, H. J. Am. Chem. Soc.2003,125,630.
    [36] A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Journal ofMolecular Structure, Volume1035, p.332-340.
    [37] Wichaid Ponhan, Santi Maensiri,Fabrication and magnetic properties ofelectrospun copper ferrite (CuFe2O4) nanofibers,Solid State Sciences11(2009)479–484.
    [38] M. Banerjee, N. Verma, R. Prasad, structural and catalytic properties ofZn1-xCuxFe2O4nanoparticles, Journal of Materials Science,42(5),2007,1833-1837.
    [39] Shao-Wen Cao, Ying-Jie Zhu, Guo-Feng Cheng, Yue-Hong Huang,ZnFe2O4nanoparticles: Microwave-hydrothermal ionic liquid synthesis andphotocatalytic property over phenol,Journal of Hazardous Materials171(2009)431–435
    [40] Xinyong Li, Yang Hou, Qidong Zhao, Lianzhou Wang,A general, one-step andtemplate-free synthesis of sphere-like zinc ferrite nanostructures with enhancedphotocatalytic activity for dye degradation,Journal of Colloid and InterfaceScience358(2011)102–108.
    [41] Guoying Zhang, Chunsheng Li, Fangyi Cheng, Jun Chen, ZnFe2O4tubes:Synthesis and application to gas sensors with high sensitivity and low-energyconsumption, Sensors and Actuators B120(2007)403–410.
    [42] S. Ayyappan, G. Paneerselvam, M.P. Antony, John Philip, Structural stability ofZnFe2O4nanoparticles under different annealing conditions, Materials Chemistryand Physics128(2011)400–404.
    [43] Chuanhui Xia, Chenguo Hu, Yongshu Tian, Peng Chen, Buyong Wan, Jing Xu,Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays, SolidState Sciences13(2011)388-393.
    [44] X.L. Chen, Z.W. Zhou, K. Wang, X.M. Fan, S.C. Hu, Y. Wang, Y. Huang,Mater.Res. Bull.44(2009)799.
    [45] G.Y. Ahn, S.I. Park, I.B. Shim, C.S. Kim, J. Magn. Magn. Mater.282(2004)166.
    [46] S.K. Mandal, T.K. Nath, D. Karmakar, Philos. Mag.88(2008)265.
    [47] D.W. Wu, M. Yang, Z.B. Huang, G.F. Yin, X.M. Liao, Y.Q. Kang, X.F. Chen,H. Wang, J. Colloid Interface Sci.330(2009)380.
    [48] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys.Lett.68(1998)403.
    [49] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J. A.Voigt, B.E. Gnade,J. Appl. Phys.79(1996)7983.
    [50] D.A. Schwartz, K.R. Kittilatved, D.R. Gamelin, Appl. Phys. Lett.85(2004)1395.
    [51] J.T. Richardson, W.O. Milligan, Phys. Rev.102(1956)1289.
    [52] Y.M. Sun. Ph.D. thesis. University of Science and Technology of China.(July2000).
    [53] B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films366(2000)107.
    [54] S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B.63(2001)075205.
    [55] A.J. Behan, A. Mokhtari, H.J. Blythe, D. Score, X-H. Xu, J.R. Neal, A.M. Fox,and G.A. Gehring, Two magnetic regimes in doped ZnO corresponding to adilute magnetic semiconductor and a dilute magnetic insulator, Phys. Rev. Lett.100,047206(2008).
    [56] Kazunori Sato and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys., Part239,L5552000.
    [57] Kazunori Sato and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys., Part240,L3342001.
    [58] Debjani Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan,T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Ferromagnetism in Fe-dopedZnO nanocrystals: Experiment and theory, PHYSICAL REVIEW B75,1444042007.
    [59] M.A. Ruderman, C. Kittel, Phys. Rev.96(1954)99.
    [60] K. Yosida, Phys. Rev.106(1957)893.
    [61] J. Spalek, A. Lewicki, Z. Tarnawski, Phys. Rev. B.33(1986)3407.
    [62] J.H. Shim, T. Hwang, S. Lee, Appl. Phys. Lett.86(2004)082503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700