用户名: 密码: 验证码:
分形编码在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多媒体通信技术的快速发展,人们迫切需要高效的图像压缩技术来满足日常工作生活的需要。分形图像编码是一种新颖且有很大发展潜力的图像压缩技术,自Jacquin提出第一个实用的分形图像编码算法以来,国内外学者对其产生了浓厚的研究兴趣。经过多年的发展,分形编码已经广泛应用到图像压缩以及其他图像处理任务中。本文对分形编码及其在其他图像处理任务中的应用进行了研究,主要包括如下内容:
     (1)快速分形图像编码算法的研究。分形编码过程是分形图像压缩的基础,因此加速分形编码是首先需要解决的问题,基于特征量最近邻搜索的快速分形编码是解决该问题的有效途径之一。在分析和研究图像灰度分布结构特性的基础上,提出结构信息特征和相关信息特征的定义,推导并证明了上述两个特征作为最近邻搜索特征是子块满足最佳匹配的必要条件。实验表明,在相同压缩比和编码时间情况下,本文算法较同类算法能够得到更好的解码图像质量。
     (2)基于快速分形编码的混合图像压缩算法。分形图像编码算法具有潜在高压缩比的特点,与一定分形码相对应的图像子块尺寸越大,则压缩比就越大。对输入图像进行四叉树分割,通过分析和对比快速分形编码算法与JPEG算法可知,快速分形编码算法适用于32×32和16×16子块,而JPEG算法则适用于剩余8×8子块。实验表明,在相同压缩比情况下,本文算法较JPEG算法能够得到更好的解码图像质量。最后,对本文算法在实际中应用进行了分析。
     (3)分形解码图像质量的可预测性。由拼贴定理可知,在已知拼贴误差的情况下,我们只能得到解码图像的误差上限。本文在大量实验基础上,总结出平均拼贴误差与解码图像质量之间的对数关系,然后据此提出分形解码图像质量的预测算法。通过该预测算法我们可以在分形编码过程中对解码图像质量进行实时预测,当解码图像质量不能达到特定要求时能够及时停止编码并更换编码算法,不必进行剩余部分的分形编码和分形解码操作,节省了时间和资源。
     (4)分形编码在压缩以外的其他图像处理任务中的应用研究。主要包括三个方面:(ⅰ)基于模型约束的分形图像去噪算法。经过分析可知,噪声图像的局部在分形编码去噪前后具有均值不变的特点,根据该约束模型对分形图像去噪的结果进行修正。实验表明,本文算法能够进一步改善分形图像去噪效果。(ⅱ)基于无损无搜索分形编码的图像放大算法。分形图像解码的分辨率无关性使其能够对编码图像进行放大。本文采用无搜索算法实时对低分辨率图像进行分形编码,然后增加一个误差补偿向量消除分形编码过程中的拼贴误差,实现无损无搜索分形图像编码,该算法能够在快速完成分形编码的同时,消除分形编码过程带来的信息损失。最后将该分形编码算法与其他分形图像放大技术相结合。实验表明,本文算法较传统和其他分形图像放大算法在达到较好性能的同时,具有更好的视觉效果。(ⅲ)分形图像编解码的整体快速实现算法。在分形编解码操作需要连续完成的应用场合,例如分形图像去噪和分形图像放大,分形编码过程的有用信息将有助于进一步加快分形解码,本文提出采用拼贴图像作为分形解码的初始迭代图像。实验表明,本文算法比单独进行分形编码和解码能够在更短的时间内完成。
     (5)基于结构方向信息的图像质量评价算法。在结构相似度的基础上进一步挖掘图像中包含的方向信息,将像素邻域中包含的方向信息作为图像相似度评价的因素之一,提出局部结构方向相似度的概念。采用局部结构方向相似度对图像的不同频率分量进行评价并加权求和。实验表明,本文算法能够更好地与人的主观感受相一致。
With the rapid development of multimedia communication technology, there is an urgent need for efficient image compression technology to meet people's daily life. Fractal image coding is a novel and promising image compression technology. Since Jacquin proposed the first block based fractal image coding algorithm, researchers worldwide have had a strong interest in the study. After many years'development, fractal image coding has been successfully applied in image compression as well as other image processing applications. In our research, the fractal image coding itself and its applications to other aspects of image processing are studied. The main contributions of the dissertation are as follows:
     (1) Research of the fast fractal image coding. Since the fractal encoding process is the first step of the fractal image coding, acceleration of fractal coding is the first issue to be resolved and the fast fractal coding algorithm based on feature vector's nearest search is a promising method. By analyzing the configuration of the image intensity, the definitions of structural information feature and correlation information feature are proposed. We can proof that the nearest neighbor search result for one range block in the feature space is a requirement for the best matched domain block. Experiments show that compared with similar fast fractal encoding algorithms, the proposed algorithm can provide better decoded image quality in the case of the same compression ratio and encoding time.
     (2) Hybrid image compression algorithm based on fast fractal coding. Fractal image coding algorithm has the potential of high compression ratio. If the size of the range block is bigger, the compression ratio will be higher. Firstly, the input image is segmented by the quadtree algorithm. By comparing the fast fractal image coding algorithm and the JPEG algorithm, we can see that the fast fractal image coding algorithm is suitable for the blocks of 32×32 and 16×16 pixels and the remain blocks of pixels can be coded by the JPEG algorithm. Experiments show that in the case of the same compression ratio, the proposed algorithm can obtain better decoded image quality. Lastly, the possibility of applying our algorithm in the practical applications is discussed.
     (3) Estimation of the decoded image quality in the fractal image coding. According to the collage theorem, we can only obtain the error limit of the decoded image from the collage error in the encoding process. Based on large amounts of experiments, we find that there exists a logarithmic relationship between the average collage error and the decoded image quality. Since the decoded image quality can be estimated by the average collage error, we can estimate the decoded image quality temporally in the fractal encoding process. For some images that are not suitable for fractal image coding, we can replace the fractal coding algorithm with other image compression methods without finishing the fractal encoding and decoding process completely.
     (4) Fractal coding used in other aspects of image processing except image compression. (ⅰ) Fractal image de-noising algorithm based on model constraint. Since the mean value will remain a constant for the local parts of the noisy image and restored image, the restored image quality can be further improved by the above constraint model. Experiments show that we can obtain better restored image quality. (ⅱ) Fractal image magnification based on no search lossless fractal image coding. Because of the resolution independence in the fractal decoding process, fractal image coding can be used to image magnification. Firstly, the no search fractal image coding is adopted to encode the low resolution image, then an error compensation vector is added to the block matching process in the fractal encoding and the collage error can be removed. According to the collage theorem, the fractal decoded image can be obtained losslessly. Lastly, the no search lossless fractal encoding algorithm is combined with some other existing fractal image magnification technique. Experiments show that the proposed algorithm can provide better performance than other similar fractal image magnification methods and the conventional ones. (ⅲ) Acceleration of the fractal image encoding and decoding process. Under some circumstances such as fractal image de-noising and fractal image magnification, the fractal encoding and decoding process will be completed continuously. Some useful information in the fractal encoding process can be used to help the fractal decoding process. We find that if the collage image is selected as the initial image, the fractal image decoding process can be completed in a shorter time.
     (5) Image quality assessment based on structural orientation information. The structural Similarity (SSIM) method can achieve better image assessment result compared with conventional Peak Signal to Noise Ratio (PSNR) method, but the structural information in SSIM is not completely extracted. In our research, the orientation information was further extracted and the Local Structural Orientation Similarity (LSOS) was proposed. Different frequencies of the image are assessed with LSOS and the results are summed with different weights. Experiments show that compared with other methods, the proposed method can be more consistent with the human visual system.
引文
[1]Shannon C E. A mathematical theory of communication. The Bell System Technical Journal, 1948, ⅩⅩⅦ(3),379-423.
    [2]吴乐南.数据压缩.北京:电子工业出版社,2008.
    [3]冈萨雷斯.数字图像处理(第二版).北京:电子工业出版社,2003.
    [4]Huffman D A. A method for the construction of minimum redundancy codes. Proceedings of the IRE,1952,40(9),1098-1101.
    [5]Musmann H G. Hotter M, Ostermann J. Object-oriented analysis-synthesis coding of moving images. Signal Processing:Image Communication,1989,1(2),117-138.
    [6]Welch T A. A technique for high performance data compression. Computer,1984,17(6), 8-19.
    [7]M. Barnsley, A. Sloan. A better way to compress images, BYTE,1988,1,215-223.
    [8]Jacquin A E. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on Image Processing,1992,1(1):18-30.
    [9]Mallat S E. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7),674-693.
    [10]张春田,苏育挺,张静.数字图像压缩编码.北京:清华大学出版社,2006.
    [11]Torres L, Kunt M. Video coding:the second generation approach. Kluwer academic publisher,1996.
    [12]Mandelbrot B. How long is the coast of britain? statistical self-similarity and fractional dimension. Science,1967,3775,636-638.
    [13]Mandelbrot B. Fractals:form, chance, and dimension. San Francisco:W. H. Freeman,1977.
    [14]Mandelbrot B. The fractal geometry of nature. San Francisco:W. H. Freeman,1982.
    [15]黄田匀.分形发展三十年.物理,1998,27(2),90-93.
    [16]Xu Y, Ji H, Fermuller C. Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision,2009,83,85-100.
    [17]王长宇,宋尚玲.一种基于分数维的虹膜识别方法.自动化学报,2007,33(7),698-702.
    [18]Wang G, Xiao L, He A Z. An improved computing method for the image edge detection. Chinese Optics Letters,2007,5(2),79-81.
    [19]Hewett T A. Fractal distribution of reservoir heterogeneity and their influence in fluid transport, Paper SPE 15386 presented at 1986 Annual Technical Conference and Exhibition, New Orleans,1986,5-8.
    [20]Zhang S, Zhang Q. Application of Fractal Theory to Agricultural and Food System s:A Review. Transactions of the CSAE,2002,18(5),13-18.
    [21]Batty M, Longley P. Fractal cities. Academic press,1994.
    [22]Shi D, Jiang J, Lung C. Correlation between the scale dependent fractal dimension of fracture surfaces and the fracture toughness. Physical Review B,1996,54 (24):17355-17358
    [23]Arimitsu T, Arimitsu N. Multifractal analysis of fluid particle accelerations inturbulence. Physica D:Nonlinear Phenomena,2004,193(1):218-222.
    [24]Borja C. High directivity fractal boundary microstrip patch antenna. Electronics Letters,2000, 36(9),778-779.
    [25]M. Barnsley. Fractals everywhere. New York:Academic,1988.
    [26]http://www.ononesoftware.com/.
    [27]Barnsley M.F., Hurd L.P.. Fractal Image Compression. AK Peters, Ltd. Wellesley, Massachusetts,1993.
    [28]Jacquin A. E..Fractal Image Coding:A Review. Proceedings of the IEEE,1993,81(10), 1451-1456.
    [29]Wohlberg B, Jager G. A review of the fractal image coding literature. IEEE Transactions on Image Processing,1999,8(12):1716-1729.
    [30]Koli N A, Ali M S. A survey on fractal image compression key issues. Information Technology Journal,2008,7(8):1085-1095.
    [31]赵耀,王红星,袁保宗.分形图像编码研究的进展.电子学报,2000,28(4):95-101.
    [32]Jacobs E W, Fisher Y, Boss R D. Image compression:A study of iterated transform method. Signal Processing,1992,29,251-263.
    [33]Saupe D, Jacob S. Variance based quadtrees in fractal image compression. Electronics Letters,1997,33(1),46-48.
    [34]Shusterman E, Feder M. Image compression via improved quadtree decomposition algorithms. IEEE Transactions on Image Processing,1994,3(2),207-215.
    [35]Saupe D. Optimal hierarchical partitions for fractal image compression. Proceedings of IEEE International Conference on Image Processing, Chicago, IL,1998,1,737-741.
    [36]Saupe D, Ruhl M. Evolutionary fractal image compression. Proceedings of IEEE International Conference on Image Processing, Lausanne, Switzerland,1996,1,129-132.
    [37]Ruhl M, Hartenstein H, Saupe D. Adaptive partitionings for fractal image compression. Proceedings of IEEE International Conference on Image Processing, Santa Barbara, CA,1997,2, 310-313.
    [38]Davoine F, Chassery J M. Adaptive delaunay triangulation for attractor image coding. Proceedings of 12th International Conference on Pattern Recognition, Jerusalem, Israel,1994, 801-803.
    [39]Reusens E. Partitioning complexity issue for iterated functions systems based image coding. Proceedings of European Signal Processing Conference, Edinburgh, U.K.,1994,1,171-174.
    [40]Reusens E. Overlapped adaptive partitioning for image coding based on the theory of iterated function systems. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Australia, Adelaide,1994,4,357-364.
    [41]Fisher Y. Fractal Image Compression:Theory and Application. New York:Springer-Verlag, 1994:79-90.
    [42]Oien G E. Parameter quantization in fractal image coding. Proceedings of the IEEE International Conference on Image Processing, Austin, TX,1994,3,142-146.
    [43]Vitulano. Fractal image coding schemes using nonlinear grayscale functions. Signal Processing:2001,81,1095-1099.
    [44]Lu J., Ye Z., Zou Y., Ye R.. An enhanced fractal image denoising algorithm. Chaos, Solitons and Fractals,2008,38,1054-1064.
    [45]Oien G E, Lepsoy S. Fractal based image coding with fast decoder convergence. Signal Processing,1994,40(1),105-117.
    [46]Tong C S, Pi M.. Fast fractal image encoding based on adaptive search. IEEE Transactions on Image Processing,2001,10(9),1269-1277.
    [47]Hamzaoui R. Fast decoding algorithms for fractal image compression. Technical report 86. Institute for Information, University of Freiburg,1997.
    [48]Hamzaoui R. Ordered Decoding Algorithm for Fractal Image Compression. Proceedings of the International Picture Coding Symposium, Germany, Berlin,1997:91-95.
    [49]Oien G E, Lepsoy S. Fractal-based image coding with fast decoder convergence. Signal Processing,1994,40,105-117.
    [50]Moon Y, Kim H, Kim J. A fast fractal decoding algorithm based on the selection of an initial image. IEEE Transactions on Image Processing,2000,9(5),941-945.
    [51]沈志超,李莉,王沛.以值域块均值为初始图像的快速分形解码算法.计算机工程,2004,30(10),145-147.
    [52]He C, Yang S, Huang X. Progressive decoding method for fractal image compression. IEE Proceedings:Vision, Image and Signal Processing,2004,151(3),207-213.
    [53]陈守吉,张立明.分形与图像压缩.上海:上海科技与教育出版社,1998.
    [54]Wang Q, Liang D, Bi S. Research of the relationship between average collage error and decoded image quality in fractal image coding. Journal of information and computational science, 2010,7(11),2280-2287.
    [55]印鉴,魏思兵.基于矢量量化的层次分形编码方法.通信学报,2001,22(1),92-96.
    [56]Kim C, Kim R, Lee S. A fractal vector quantizer for image coding. IEEE Transactions on Image Processing,1998,7(11),1598-1602.
    [57]Sun K T, Lee S J, Wu P Y. A neural network approaches to fractal image compression and decompression, Neurocomputing,2001,41,91-107.
    [58]Mitra S K, Murthy C A, Kundu M K. Technique for fractal image compression using genetic algorithm, IEEE Transactions on Image Processing,1998,7(4),586-593.
    [59]张元亮,郑南宁,贾天旭.基于遗传算法的分形图像压缩.信息与控制,1998,27(6),469-474.
    [60]Iano Y, da Silva F, Cruz A. A fast and efficient hybrid fractal wavlet image coder. IEEE Transactions on Image Processing,2006,15(1),98-105.
    [61]王瑞芳,姜威.结合小波零树的分形图像编码.系统工程与电子技术,2005,27(6),1120-1122.
    [62]Zhao Y, Yuan B. Image compression using fractal and discrete cosine transform. Electronics Letters,1994,30(6),474-475.
    [63]何佳,刘政凯.基于DCT变换的快速分形编码方法.电子学报,2001,29(6),748-750.
    [64]Zhou Y M, Zhang C, Zhang Z K. An efficient fractal image coding algorithm using unified feature and DCT. Chaos, Solitons and Fractals,2009,39,1823-1830.
    [65]Takezawa M, Sanada H, Watanabe K, Haseyama M. Quality improvement technique for JPEG images with fractal image coding. IEEE International Symposium on Circuits and Systems. 2005:6320-6323.
    [66]Rui Y, Huang J S. Image retrieval:current techniques, promising directions, and open issues. Visual Communication and Image Representation,1999,19 (1),39-62.
    [67]Swain M, Balland D. Color indexing. International Journal of Computer Vision,1991,7(1), 651-658.
    [68]Haralick R M, Shanmugam K, Dinstein I, Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics,1973,3(6),610-621.
    [69]Rui Y, She A C, Huang T S. Modified fourier descriptors for shape representation-A practical approach. Proceedings of the First International Workshop on Image Databases and Multimedia Search,1996,456-461.
    [70]王志勇,池哲儒,余英林.分形编码在图像检索中的应用.电子学报,2000,28(6),19-23.
    [71]Sloan A D. Retrieving database contents by image recognition:New fractal power, Advanced Imaging,1994,9(5),26-30.
    [72]Zhang A, Cheng D, Achaya R. An approach to query by texture in image database system. Proceedings of the SPIE conference on digital image storage and archiving systems, Philadelphia, USA,1995,338-349.
    [73]洪安祥,陈刚,吴炯锋,李均利.基于分形编码的图像相似匹配研究.电子学报,2002,30(5),624-627.
    [74]Wang X. Y. A fast fractal coding in application of image retrieval. Fractals,2009,17(4), 441-450.
    [75]Schouten B, Zeeuw P. Image databases, scale and fractal transforms. Proceedings of the International Conference on Image Processing, Canada,2000,2,534-537.
    [76]徐艳,王加俊.使用拼贴误差直方图的分形图像检索.电子与信息学报,2006,28(4),603-605.
    [77]Pal N R, Pal S K. A review on image segmentation techniques. Pattern Recognition,1993, 26(9),1277-1294.
    [78]Zhang Y J. A survey on evaluation methods for image segmentation. Pattern Recognition, 1996,29(8),1335-1346.
    [79]LindenY, Buzo A, Gray R M. An algorithm for vector quantizer design. IEEE Transanctions on Communications,1980,28,84-95.
    [80]Ida T, Sambonsugi Y. Image segmentation using fractal coding. IEEE Transactions on Circuits and Systems for Video Technology,1995,5(6),567-570.
    [81]Ida T., Sambonsugi Y.. Image segmentation and contour detection using fractal coding. IEEE Transactions on circuits and systems for video technology,1998,8(8),968-975.
    [82]Chan T F, Shen J H. Mathematical models for local non-texture inpainting. SIAM Journal of Applied Mathematics,2001,62(3),1019-1043.
    [83]Esedoglu S, Shen J H. Digital inpainting based on the mumford-Shah-Euler image model. European Journal on Applied Mathematics,2002,13(4),353-370.
    [84]付绍春,楼顺天.基于区域纹理合成的图像修补算法.电子与信息学报,2009,31(6),1319-1322.
    [85]Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing,2004,13(9),1200-1212.
    [86]杨秀红,郭宝龙.基于分形的数字图像修补算法.光电子.激光,2010,21(9),1402-1407.
    [87]李晋江,张彩明,范辉,原达.基于分形的图像修复算法.电子学报,2010,38(10),2430-2435.
    [88]Ghazel M, Freeman G H, Vrscay E R. Fractal image denoising. IEEE Transactions on Image Processing,2003,12(12),1560-1578.
    [89]Lee J S. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980, PAMI-2(2),165-168.
    [90]Ghazel M, Freeman G H, Vrscay E R. Fractal-Wavelet image denoising revisited. IEEE Transactions on Image Processing,2006,15(9),2669-2675.
    [91]Chang S G, Yu B, Vetterli M. Adaptive image thresholding for image denoising and compression. IEEE Transactions on Image Processing,2000,9(9),1532-1546.
    [92]Tenenbaum J B, Silva D V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science,2000,290(12),2319-2323.
    [93]Chung K H, Fung Y H, Chan Y H. Image enlargement using fractal. IEEE International Conference on Acoustics, Speech and Signal Processing, Hong Kong,2003,6,273-276.
    [94]Lai C M, Lam K M, Chan Y H, Siu W C. An efficient fractal based algorithm for image magnification. International Symposium on Intelligent Multimedia, Video and Speech Processing. Hong, Kong,2004,571-574.
    [95]张晓玲,沈兰荪,K. M. Lam一种基于分形码和模型约束的图像放大算法.电子学报,2006,34(3),433-436.
    [96]Wee Y C, Shin H J. A novel fast fractal super resolution technique. IEEE Transactions on Consumer Electronics,2010,56(3),1537-1541.
    [97]Hsu C T, Wu J L. Hidder digital watermarks in images. IEEE Transactions on Image Processing,1999,8(1),58-68.
    [98]Bender W, Gruhl D, Morimoto N, et al. Techniques for data hiding. IBM Systems Journal, 1996,35(3&4),313-336.
    [99]Cox I J, Kilian J, Leighton F T, et al. Secure spread spectrum watermarking for multimedia, IEEE Transactions on Image Processing,1997,6(12),1673-1687.
    [100]Tirkel A Z, Osbome C F, Hall T E. Image and watermark registration. Signal Processing, 1998,66(3),373-383.
    [101]Puate J, Jordan F. Using fractal compression scheme to embed a digital signature into an image, Proceedings of SPIE,1997,2915,108-118.
    [102]胡臻平,葛孚华,李天牧.基于分形压缩编码的数字水印技术.计算机应用,2001,21(3),34-36.
    [103]石磊,耿红琴,洪帆,等.一种基于二分形编码的小波域自适应水印.小型微型计算机系统,2004,25(12),2254-2257.
    [104]Pi M H, Li C H, Li H. A noval fractal image watermarking. IEEE Transactions on multimedia,2006,8(3),488-499.
    [105]Huang X Q, Yu S L, Zhang W. A noval method for embedding gray image watermarking into orthogonal fractal compression image. Proceedings of International Conference of Communications, Circuits and Systems,2009,485-488.
    [106]黄晓晴,于盛林.一种在分形编码图像中嵌入盲水印的方法.仪器仪表学报,31(12),2754-2760.
    [107]周景超,戴汝为,肖柏华.图像质量评价研究综述.计算机科学,2008,35(7),1-4.
    [108]魏政刚.图像质量评价方法的历史、现状和未来.中国图像图形学报,1998,3(5),236-239.
    [109]Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters,2010,17(5),587-599.
    [110]Wang Z., Sheikh H. R., Bovik A. C., No-reference perceptual quality assessment of JPEG compressed images. Proceedings of the IEEE International Conference on Image Processing,2002, 1,477-480.
    [111]Wang Z, Simoneclli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. Proceedings of SPIE-IS&T Electronic Imaging Human Vision and Electronic Imaging X, San Jose, CA,2005,149-159.
    [112]蒋刚毅,王旭,杨铀,郁梅.基于Contourlet变换的质降参考图像质量评价模型.光电子.激光,2009,20(12),1658-1662.
    [113]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image processing,2004,13(4):600-612.
    [114]Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing,2006,15(2),430-444.
    [115]Sheikh H R, Bovik A C, Veciana G. de. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing,2005,14(12), 2117-2128.
    [116]程光权,成礼智.基于正则化方向失真的压缩图像质量评价.电子与信息学报,2010,32(6),1316-1320.
    [117]蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展.电子与信息学报,2010,32(1),219-226.
    [118]Hurtgen B, Stiller C. Fast hierarchical codebook search for fractal coding of still images. Proceedings of EOS/SPIE Visual Communications PACS Medial Applications, Berlin,1993: 397-408.
    [119]Saupe D, Accelerating fractal image compression by multi-dimensional nearest neighbor search. Proceedings of Data Compression Conference,1995:222-231.
    [120]Distasi R, Nappi M, Riccio D. A range/domain approximation error based approach for fractal image compression. IEEE Transactions on Image Processing,2006,15(1),86-97.
    [121]Tong C S, Wong M. Adaptive Approximate Nearest Neighbor Search for Fractal Image Compression. IEEE Transactions on Image Processing,2002,11(6),605-615.
    [122]Friedman J H, Bentley J L, Finkel R A. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software,1977,3(3):209-226.
    [123]Arya S, Mount D M, Netanyahu N S, Silverman R, Wu A. An optimal algorithm for approximate nearest neighbor searching. Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,1994,573-582.
    [124]Polvere M, Nappi M, Speed-up in fractal image coding comparison of methods. IEEE Transactions on Image Processing,2000,9(6):1002-1009.
    [125]李高平.规范块义迹终止条件的分形图像编码算法.小型微型计算机系统,2009,30(7):1433-1436.
    [126]何传江,中小娜.改进分形图像编码的叉迹算法.计算机学报,2007,30(12):2156-2163.
    [127]Lee C K, Lee W K. Fast fractal image block coding based on local variances. IEEE Transactions on Image Processing,1998,7(6),888-891.
    [128]Lai C M, Lam K M, Siu W C. Improved searching scheme for fractal image coding. Electronics Letters,2002,38(25):1653-1654.
    [129]He C J, Xu X Z, Yang J. Fast fractal image encoding using one-norm of normalized block. Chaos, Solitons & Fractals,2006,27(5):1178-1186.
    [130]Li G P. Accelerating fractal image encoding based on gray value moment features of normalized block. International Symposium on Computer Science and Computational Technology, 2008:466-470.
    [131]王强,梁德群,毕胜.基于相关信息特征最近邻搜索的快速分形图像编码.小型微型计算机系统,2011,32(6),1108-1112.
    [132]杨海军,梁德群,毕胜.基于方向信息测度的图像分类算法.中国图像图形学报,2001,6(5),429-433.
    [133]Ran X, Favardin N. A perceptually motivated three-component image model—Part Ⅰ: description of the model. IEEE Transactions on Image Processing,1995,4(3):430-447.
    [134]Chou W S. Classify image pixels into shaped, smooth and textured points. Pattern recognition, 1999,32(9):1697-1706
    [135]Furao S, Hasegawa O. A fast no search fractal image coding method. Signal Processing and Image Communication,2004,19(5),393-404.
    [136]刘方敏,吴永辉,俞建新.JPEG2000图像压缩过程及原理概述.计算机辅助设计与图形学学报.2002,14(10),905-916.
    [137]孙水发,张华熊,仇佩亮.JPEG2000-新的静止图像压缩标准.计算机辅助设计与图形学学报.2003,15(11),1339-1352.
    [138]王升哲,马义德.基于JPEG和JPEG2000的思考.中国科技论文在线.2004.
    [139]刘方敏,吴永辉,俞建新.JPEG2000图像压缩过程及原理概述.2002,14(10),905-911.
    [140]http://en.wikipedia.org/wiki/JPEG_XR
    [141]http://code.google.com/intl/zh-CN/speed/webp/
    [142]邢赛鹏,平西建,詹杰勇.JPEG图像数据格式简明分析.微计算机信息.2005,12(3),166-168.
    [143]胡建彰,李炜,陈江涛.JPEG-算法与实现.南京邮电学院学报.1994,14(3),43-50.
    [144]USC-SIPI image database. University of Southern California. http://sipi.usc.edu/services/database.
    [145]Vision Texture database. Media Laboratory at MIT. http://vismond.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
    [146]Pratt W K. Digital image processing, John Wiley & Sons, INC.,1991.
    [147]Keys R G. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6),1153-1160.
    [148]Wang X Y, Wang S G. An improved no search fractal image coding method based on a modified gray level transform. Computers & Graphics,2008,32,445-450.
    [149]Monro D M, Woolley S.J. Fractal image compression without searching. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing,1994,5,557-560.
    [150]Eskiciogln A M. Image quality measures and their performance. IEEE Transactions on Communications,1995,43(12),2959-2965.
    [151]Mannos J L, Sakrison D J. The effect of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory,1974,20(4),525-536.
    [152]Watson A B. Digital images and human vision. Cambridge, Massacusetts, USA:The MIT Press,1993.
    [153]Wang Z, Bovik A C. A universal image quality index. IEEE Signal Processing Letters.2002, 9(3):81-84.
    [154]Yang W, Wu L, Fan Y, Wang Z. A method of image quality assessment based on region of interest. Proceedings of the World Congress on Intelligent Control and Automation,2008, 6834-6839.
    [155]王宇庆,刘维亚,王勇.一种基于局部方差和结构相似度的图像质量评价方法.光电子·激光,2008,19(11),1546-1553.
    [156]李航,路羊,崔慧娟,等.基于频域的结构相似度的图像质量评价方法.清华大学学报(自然科学版),2009,49(4),559-562.
    [157]Chen G, Yang C, Po L, et al. Edge-Based structural similarity for image quality assessment. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.2006, 14-19.
    [158]Chen G, Yang C, Xie S. Gradient-based structural similarity for image quality assessment. Proceedings of IEEE International Conference on Image Processing.2006,2929-2932.
    [159]Wang Z, Simoncelli E P. Stimulus synthesis for efficient evaluation and refinement of perceptual image quality methics. Proceedings of the IS&T/SPIE's 16th Annual Symposium on Electronic Imaging,5292, Human Vision and Electronic Imaging. San Jose, CA, US,2004,18-22.
    [160]Wang Z, Shang X. Spatial pooling strategies for perceptual image quality assessment. Proceedings of IEEE International Conference on Image Processing.2006,2945-2948.
    [161]杨春玲,何流,魏毅,等.基于图像块分类的加权结构相似度.华南理工大学学报(自然科学版),2009,37(1),42-47.
    [162]叶盛楠,苏开娜,肖创柏,等.基于结构信息提取的图像质量评价.电子学报,2008,36(5),856-861.
    [163]Mallat S, Peyre G. Orthogonal bandlet bases for geometric images approximation. Communications on Pure and Applied Mathematics,2008,61(29),1173-1212.
    [164]Sheikh H R, Wang Z, Cormack L, et al. LIVE Image Quality Assessment Database Release 2. http://live.ece.utexas.edu/research/quality.
    [165]Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Transactions on Image Processing,2006,15(11),3440-3451.
    [166]Rouse D M, Hemami S S. Understanding and simplifying the structural similarity metric. Proceedings of 15th IEEE International Conference on Image Processing.2008,1188-1191.
    [167]Video Quality Experts Group. Final report from the video quality experts group on the validation of objective models of video quality assessment[EB/OL]. [2000-03-05]. http://www.vqeg.org/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700