用户名: 密码: 验证码:
影响淀粉酶、纤维素酶活力与应用性能的因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纺织工业的发展,酶在纺织行业上的应用越来越广。淀粉酶主要用于织物退浆,纤维素酶主要用于织物生物抛光。文章主要讨论分析影响淀粉酶、纤维素酶活力与应用性能的因素,通过用淀粉分解量的多少来表征各种因素淀粉酶活的影响。
     采用不同阴离子的钠、钾、钙、镁等盐作为酶添加剂,在不同温度、不同浓度下测定淀粉分解率,比较得出硝酸钠在提高淀粉分解率方面有较大促进作用,在退浆方面,加入硝酸钠,从50到70℃,淀粉去除率均可达到90%以上。中温、高温混合酶测定的分解率在各个温度下都达到了70%左右,最高和最低相差10%左右,结合硝酸钠,淀粉分解率有较大提高并适应于宽温范围。研究表面活性剂对淀粉分解率的影响,发现两性表面活性剂能较大提高淀粉分解率,并且在pH=3~9下都能使中温或者高温酶获得较高的淀粉分解率。因此可以采用硝酸钠和两性表面活性剂根据需要作为淀粉酶的有效助剂。
     在牛仔布退浆应用方面,比较了酶退浆和其它退浆方法,发现了酶退浆退浆彻底,掉色少,手感柔软等。
     探讨纤维素酶各个成分及其作用机理,用不同染料染色织物进行纤维素酶抛光处理,由于部分染料抑制酶解,因此会产生不一样的物理性能如失重率、颜色强度变化率等。通过工艺优化设计,根据需要的物理性能选择合适的实验条件。
Determination of amylase activity are many, but the guidance for the product application is not very good. Actual production requires a certain period of time, the amount of starch conversion as more as possible. Enzyme activity characterized by what the amount of starch decomposition.
     With different anions of sodium salt, potassium salt, calcium salt and magnesium salt as enzyme additives, at different temperatures, different concentrations the starch decomposition rate were measured to compare to get sodium nitrate promote a greater role in increasing the rate of starch decomposition . In the desizing, the adding of sodium nitrate, from 50 to 70℃, starch removal rate can reach more than 90%.The decomposition rate of medium temperature, high-temperature mixed enzyme in various temperature has reached about 70%, between the highest and lowest are a difference of about 10%, combined with sodium nitrate, starch decomposition rate has improved greatly, and adapted to wide temperature range. Study of surfactant effects on the decomposition rate of starch found that amphoteric surfactants can be greatly enhanced rate of starch breakdown, and under all the various pH, temperature, medium or high temperature enzymes to get the higher starch decomposition rate. Therefore, sodium nitrate and amphoteric surfactants can be used as needed as an effective amylase additive.
     In cattle sub-fabric desizing applications, compared enzyme desizing and other methods, it was found that the enzyme desizing desizing thoroughly, fade less soft to the touch and so on.
     The various components of cellulase and its mechanism of action were explored, different dyed fabrics were cellulase polished, as some dyes inhibited enzymolysis and would therefore have different physical properties such as weight loss rate, color intensity change rate. Process optimization design to get the physical properties required to select the appropriate experimental conditions.
引文
[1]陈坚,华兆哲,堵国成.新型纺织酶制剂的发酵与应用.北京:化学工业出版社, 2007: 1-2
    [2]周文龙.酶在纺织中的应用.北京:中国纺织出版社, 2002
    [3]许益.生物酶, 21世纪的一道独特风景.纺织导报, 2008, (8): 28
    [4]沈一丁,朱平,辛中印等.轻化工助剂.北京:中国轻工业出版社, 2004
    [5]张济邦.生物酶在印染工业中的应用现状和发展前景.印染, 2000, (4): 47
    [6]陈颖.生物酶在染整加工中的应用(一).印染, 2003, (11): 30
    [7]曾琦.染整前处理中退浆工艺的探讨.纺织科学研究, 2004, (3): 40
    [8]李立.酶退浆工艺探讨.印染, 2004, (12): 17-18
    [9]王美琴.纤维素酶酶洗工艺的探讨. S I L K丝绸, 2003, (10): 44
    [10]陈娜.纤维素酶对棉织物抛光整理研究.山东纺织科技, 2009, (2): 5
    [11]王莉.生物酶对纤维素织物前处理的工艺研究. [天津工业大学工程硕士论文]. 2006: 2-3
    [12]冯碧波.棉织物生物酶前处理工艺研究. [东华大学工程硕士论文]. 2004: 6
    [13]孙君社,江正强,刘萍.酶与酶工程及其应用.北京:化学工业出版社, 2006: 9-10
    [14]沈同.生物化学.北京:人民教育出版社, 1980
    [15]刘昌龄,唐志翔译.蛋白酶作为棉的煮练剂.印染译丛, 2000, (4): 49-56
    [16]陈石根,周润琦.酶学.上海:复旦大学出版社, 2001
    [17]欧伶,俞建瑛,欧阳立明等.应用生物化学.第2版.北京:化学工业出版社, 2009: 157-158
    [18]逄锦江,王晶晶.淀粉及其衍生物在造纸工业中的应用.江苏造纸, 2009, (2): 35
    [19]朱志飞.α-淀粉酶与抑制剂和直链淀粉20. [江南大学理学硕士论文]. 2008: 1
    [20] Linden A, MayansO, Meyer-klauckeW. Differential regulation of a hyperther-mophilic alpha-amylase with a novel (Ca, Zn) two-metal center by zinc, J Biol Chem, 2003 Mar 14, 278(11): 9875-84
    [21] Feller G., Bussy O, Houssier C. Structural and functional aspects of chloride binding to Alteromonas haloplanctisα-amylase[J]. JBioChem, 1996, 271: 23836-23841.
    [22] Aghajari N., Felle G., Gerday C. Structural basis of–amylase activation by chloride[J]. Protein Science, 2002, 11: 1435-1441
    [23] Gerard Pujadas, Jaume Palau. Evolution ofα-Amylases: Architectural feature sand key residues in the stabilization of the(β/α)8 scaffold[J]. Mol Biol Evol, 2001, 18: 38-54
    [24]王楠,马荣山.耐高温α-淀粉酶的研究进展.中国食品添加剂试验研究, 2007, (4): 91
    [25] Pallavi Tripathi, Leila Lo Leggio ,Johanna Mansfeld, etal. a-Amylase from mung beans (Vigna radiata)– Correlation of biochemical properties and tertiary structure by homology modeling. ScienceDirect, 2007: 1623-1631
    [26] Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases, Biochim Biophys Acta, 2000 Dec 29, 1543(2): 253-274
    [27]李剑芳.α-淀粉酶测定方法的探讨[J].江苏食品与发酵, 1996, (3): 8-14
    [28]闻年云.啤酒糖化用α-淀粉酶活力的测定方法.广州食品工业科技, 1995, 11(3): 35
    [29]姚继明,贾佳.中高温淀粉酶混合实现宽温退浆.印染助剂, 2009, 26(7): 36-38
    [30]梅自强主编.牛仔布和牛仔服装实用手册[M].北京:中国纺织出版社, 2000
    [31]赵文斌.牛仔服常用水洗整理工艺[J].印染, 2008, (7): 34
    [32]潘建民.生物酶在纺织染整前处理中的应用[J].印染助剂, 2005, 22(7): 45-46
    [33]张智荣,刘玉森.苎麻/棉牛仔布淀粉酶退浆工艺的研究[J].西安工程科技学院报, 2007, 21(4): 445-447
    [34]陈莉.羊绒/棉牛仔布淀粉酶退浆工艺的优化[J].纺织科技进展, 2007, 3: 61-63
    [35]姚继明,贾佳.牛仔布的几种退浆方法比较.印染, 2009, 35(19): 21-22
    [36]教学课题:纤维素纤维结构与性质. http://www.jzit.name/jpkj/rzhx/txt/ja/24.doc, 2008-10-28
    [37]王雷.棉织物生物酶前处理探究. [东华大学工程硕士论文]. 2006: 9-10
    [38]扎柯希柯夫,波斯特尼斯夫.棉纤维素.北京:国防出版社. 1957
    [39]陈燕勤,毛培宏,曾宪贤.细菌纤维素酶结构和功能的研究.化学与生物工程, 2004, 6: 4-6
    [40]吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向.生物工程进展, 1994, 14(4): 25-27
    [41]杨永彬,黄谚谚,林跃鑫.纤维素酶结构及分子多样性.生命的化学. 2004, 24(3): 211-213
    [42] TilbeurghH., etal, FEBSLett., 1986, 204, 223-227.
    [43]吕家华.纤维素酶对纤维素纤维的作用. [东华大学工程博士论文]. 2003: 18-20
    [44] Knowles J., etal, Biochemistry and Genetics Cellulose Degration, 1988, 153-170
    [45] WoodWordJ., etal, Enzyme Microb. Technol., 1992, 14, 625-630
    [46] Clarkson Kathleen, etal, Opportunities for Use of .Biochemicals in Textile Finishing, AATCC Paper, 1997, 319-323.
    [47] KraulisG, etal ,Biochemistry, 1989, 28, 7241-7251
    [48] Mackay R M, etal, Nucleic Acid Res., 1986, 14, 9159-9176
    [49]宋贤良,温其标,朱江.纤维素酶法水解的研究进展[J].郑州工程学院学报, 2001, 24(4): 67-72
    [50] Heorissat B, eta1. Biol Tecl, 1985, (3): 722-726
    [51]夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯, 1999, 33(1): 23-28
    [52] Wood T M3. cellulase of fusarium solani purification and specificity of the(1,4)-glucosidase components[J]. Biochem, 1971, 121: 353
    [53]刘树立,王华,王春艳等.纤维素酶分子结构及作用机理的研究进展.食品科技,2007(7): 13-15
    [54] Betcheva, R., Stamenova, M., Boutris, C., & Tzanko, T. Objective evaluation of the efficiency of cellulase finishing of cotton fabrics dyed with reactive dyes.Macromolecular Materials and Engineering, 2003: 957–963.
    [55] Yamade, M., Amano, Y., Horikawa, E., Nozaki, K., & Kanda, T. Mode of action f cellulase on dyed cotton with a reactive dye. Bioscience Biotechnology and Biochemistry, 2005, 69(1): 45–50
    [56] Traore, M. K., & Diller, G. B. (1999). Influence of wetting agent and agitation on enzymatichydrolysis of cotton. Textile Chemist and Colorists & American Dyestuff Reporter, 1(4), 21–56
    [57] D. Saravanan., N.S. Vasanthi., T. Ramachandran. A review on influential behaviour of biopolishing on dyeability and certain physico-mechanical properties of cotton fabrics. Carbohydrate Polymers, 2009(76): 2
    [58] Cavaco - Paulo,LuisAlmeida. Hydrolysis of Cotton Cellulose by Engineered Cellulases from Trichoderma Reesei [ J ]. Textil Res. J. , 1998, 68 (4): 273-280
    [59]张瑞萍.纤维素酶对色光的影响.印染, 2006(13): 1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700