用户名: 密码: 验证码:
大麻脱胶功能菌株的选育及在沤麻中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麻是重要的纤维作物,其纤维性能优异,具有耐用、卫生和附加值高等特点,是一种环保型的纤维原料,有着巨大的应用潜力。本项研究主要是通过大麻微生物脱胶功能菌株选育,并优化其产酶条件,从而建立一套完整的加菌沤麻脱胶新工艺,为提高大麻脱胶的效率和纤维的产质量奠定基础。
     从延寿县亚麻纺织厂41号大麻沤麻池的沤麻液中分离、筛选两株大麻脱胶功能菌株,编号分别为HDDMM02、HDDMG05。采用形态观察、生理生化试验及16S rDNA系统发育分析手段进行鉴定,确定两株菌分别为为地衣芽孢杆菌Bacillus licheniformis(EU723824)和大肠埃希氏杆菌Escherichia coli(EU723821)。
     采用单因素及响应面法优化两株功能菌的培养基,并确定其最佳产酶条件,菌株HDDMM02的培养基最佳配方是摩芋粉6%、蛋白胨0.25%、NaCl 0.5%、MgSO_4.7H_2O 0.05%,培养条件为pH值7、接种量2%、温度37℃,最大酶活为5.89 IU/mL,比优化前提高近2倍。菌株HDDMG05的培养基配方是桔皮粉16.1%、酵母提取物0.2%、NaCl 0.5%、K_2HPO_4 0.5%、MgSO_4.7H_2O 0.01%,培养条件为接种量2%、温度37℃,最大酶活为8126U/mL,比优化前提高了16倍。
     通过对大麻纤维化学成分测定,确定实验室的最佳沤制条件为:把选育的菌株HDDMG05和HDDMM02培育至最大产酶时期,以1:1的比例,两株菌接种量均为0.5%,助剂尿素为0.1%,NaCl为0.1%。其沤制后大麻纤维中果胶、半纤维素和木质素的含量分别为5.32%、17.96%和2.11%,与不加菌相比三者均下降1-3个百分点。工厂加菌中试的大麻纤维的平均出麻率为13.11%,加菌前的平均出麻率为11.66%。加菌后出麻率提高1-1.5%,大麻纤维的强度提高了20-25N(牛顿)。
Cannabis is an important fiber crop, its fiber has performance with durable, high added-value and it is an environment-friendly fiber raw materials, it has great potential applications. The mainly study is selection the cannabis degumming functional microbial strain and optimization of its enzyme production conditions, so as to establish a complete set of additional strains of retting process, for enhance the efficiency of degumming hemp fiber production and lay the foundation for quality.
     Two Function strains of degumming cannabis, HDDMM02 and HDDMG05, were isolated from the fermentation liquid of the 41# hemp retting. Two strains were identified as Bacillus licheniformis(EU723824) and Escherichia coli(EU723821) according to the morphological, physiological, biochemical characteristics and the sequencing of 16S rDNA.
     Single factors and response surface method was used to optimize function of two strains of the medium, and to determine the optimum conditions for enzyme production. The HDDMM02 strains grew best when cultured at 37℃with 6% konjac powder as carbon, 0.25% peptone as nitrogen source, 0.5% NaCl, 0.05% MgSO_4.7H_2O, pH 7.0, incolumn volume for HDDMM02 was 2%. The HDDMM02 strains could respectively show the highest mannanase activity as 5.89 IU/mL, the nearly 2 times before optimization. The HDDMG05 strains grew best when cultured at 37℃with 16% orange powderas carbon, 0.2% Yeast extract as nitrogen source, 0.5% NaCl, K_2HPO_4 0.5%, 0.01% MgSO_4.7H_2O, pH 7.0, incolumn volume for HDDMM02 was 2%. The HDDMG05 strains could respectively show the highest mannanase activity as 8126U/mL, the nearly 16 times before optimization.
     The best laboratory conditions for retting system wes determined by determing of hemp fiber chemical composition: The strains HDDMG05 and HDDMM02 were breed largest enzyme production period, the ratio of 1:1, two inoculum strains were 0.5%, CO(NH_2)20.1%, NaCl 0.1%.The retting of hemp fiber system in the pectin, hemicellulose and lignin content were 5.318%, 2.105% and 17.954%, and without bacteria are decreased compared to three percentage points 1-3.The average rate for hemp fiber is 13.11% after add the bacteria, 11.66% before add the bacteria. The rate of hemp fiber was improved 1-1.5%, the strength of hemp fiber was improved 20-25N.
引文
[1]陈其本,杨明.小议大麻的起源[J].农业考古, 1996, 44(1):46-48.
    [2]赵铭森,康红梅.关于发展大麻产业的研究[J].安徽农学通报, 2007, 13(10): 186-188.
    [3]杨艾.我国大麻种植利用情况调查分析[J].云南警官学院学报, 2008, 66(4): 71-75.
    [4]吴红玲,蒋少军,丁丽文.大麻纤维性能及其产品的研制生产[J].毛纺科技, 2004(6):36-39.
    [5]杨永红,诚敬容.大麻的实验分类学研究[J].中国麻业, 2004(4):164-169.
    [6]卢延旭,董鹏,崔晓光等.工业大麻与毒品大麻的区别及其可利用价值[J].中国药理学通报, 2007, 23(8):111-115.
    [7]杨红穗,张元明.大麻纺织应用前景及研究现状[J].纺织学报, 1999, 20(4):62-64.
    [8]王群,杨佩文,李家瑞.大麻育种现状[J].中国麻业, 2002(3):4-7.
    [9]邵松生.麻类纺织品的前景[J].国外纺织技术, 1999(12):24-25.
    [10]邵松生.麻类纺织品的开发前景[J].纺织导报, 2000(1):66-67.
    [11]周明惊.大麻及其抗菌纺织品[J].麻纺织技术, 1998(3):45-48.
    [12] J.E. Schofield, M.P. Waller. A pollen analytical record for hemp retting from DungenessForeland,UK[J]. Journal of Archaeological Science, 2005, 32(11):715-726.
    [13]顾名淦,汪家骏,王景葆等.麻纤维开发利用[J].北京纺织工业出版社, 1993, 13(5):1-19.
    [14]赵铭森,康红梅.关于发展大麻产业的研究[J].安徽农学通报, 2007, 13(10): 186-188.
    [15] N.P,Ingle等著,张予涛译.大麻未来最有前途的纤维素纤维[J].国外纺织技术, 2001(1): 7.
    [16] J.M. Ferreira, H. Silva, J.D. Costa, et al. Stress analysis of lap joints involvingnatural fibre reinforced interface layers[J]. Composites, 2005, 36(2):1-7.
    [17] Lisbeth G, Thygesen, Preben H. Image analysis for the quantication of dislocations in hemp fibres[J]. Industrial Crops and Products, 2005, 21(2):173–184.
    [18] G.. Schulze. Experience in Linen Fiber Processing[J]. Melliang, 1998(3): 14-16.
    [19]时春瑞.浅谈大麻纺织品的优异特性[J].中国纤检, 2003(1): 30-38.
    [20]郭鸿彦,杨明,谢晓慧等.云南工业大麻产业化发展前景广阔[J].中国麻业, 2002, 24(4): 46-49.
    [21]张建春,张华,张华鹏等.大麻综合利用技术[M].北京:长城出版社, 2006.
    [22]蒋少军,李志忠等.大麻纤维性能及生物酶脱胶工艺的研究[J].兰州理工大学学报, 2005, 31(2):125-129.
    [23]刘健,陈洪章,李佐虎.大麻纤维脱胶研究综述[J].中国麻业, 2002, 24(4):35-39.
    [24]孙小寅,管映亭,温桂清等.大麻纤维的性能及其应用[J].纺织学报, 2001(4): 34-36.
    [25] K. Drury. Fibres and the Environment[J]. Canadian TextileJournal, 1995, 36(5):13-15.
    [26]张道臣,李启岑.麻纤维的开发利用[J].中国麻作, 1998, 23(2): 39-40.
    [27]邵宽,纺织加工化学[M].北京:中国纺织出版社, 1996.
    [28]崇文,张元明,蒋繁昌.兰麻纱线生产工艺与质量控制[M].上海:中国纺织大学出版社, 1997: 18-21.
    [29]朱士凤.大麻机械脱胶研究[D].硕士论文,青岛大学, 2005.
    [30]蒋国华.超声波在大麻脱胶预处理中应用[J].中国麻作, 2003, 23(1): 16-18.
    [31]殷祥刚,滑钧凯,于伟东.“闪爆”处理对大麻脱胶及纤维性能的影响[J].中国麻业, 2003, 25(5):243-247.
    [32]殷祥刚,滑钧凯.大麻纤维“闪爆”处理脱胶方法初探[J].纤维素科学与技术, 2006, 14(3):41-45.
    [33] Robin A. Fogarty and Catherine Telly[J]. Microbial Enzymes and Biotechnology 2nd Edition, 1990, 13(5):133-169.
    [34]郑喜群,刘晓兰,冮洁.亚麻生物脱胶新方法及其比较[J].纺织学报, 2001, 22(4):231-233.
    [35] Anon. Canadian Clothing[J]. Textile Horizons, 1995, 5(3):48-49.
    [36]王根石.亚麻原料加工业发展思路的探讨[J].黑龙江纺织, 2000, 18(1):1-2.
    [37]孙庆祥.麻类作物的微生物脱胶[J].中国麻作, 1984, 15(1):38-41.
    [38]江洁,刘晓兰等.亚麻脱胶菌种的选育及脱胶过程的初步研究[J].微生物学通报, 1998, 25(3):23-29.
    [39]何绍江,冯新海.苎麻厌养脱胶菌研究Ⅲ脱胶菌种的鉴定[J].中国麻作, 1997, 25(1):33-35.
    [40]何绍江,苎麻厌养脱胶菌研究Ⅱ脱胶条件试验[J].中国麻作, 1995, 23(4):27-32.
    [41]何连芳,刘茵,郑来久等.红麻微生物脱胶菌种的选育[J].大连轻工业学院学报, 2001, 20(3):180-182.
    [42] Mukesh K, Qasim KB, Bharat B, et al. Application of an alkaline and thermostable polygalacturonase from Bacillussp.MG-cp-2 in degumming of ramie (Boehmerianivea) and sunn hemp (Crotalaria juncea) bast fibres[J]. Process Biochemistry, 2001, 36(5):803–807.
    [43]王立群,宣世纬,关凤芝等.亚麻微生物脱胶技术的研究Ⅱ脱胶菌种的鉴定[J].中国麻作, 1995, 17(1):34-36.
    [44] Lianshuang Zheng, Yumin Du, Jiayao Zhang. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes[J]. Bioresource Technology, 2001, 25(18):89-94.
    [45]黄小龙,孙焕良,谢达平等.南方亚麻微生物脱胶技术及其理论研究Ⅳ酶法脱胶菌种的分离与鉴定[J].湖南农业大学学报(自然科学版), 2006, 32(6):599-601.
    [46]胡延素,朱国华.苎麻微生物-化学联合脱胶[J].纺织科技进展, 2005, 23(1):63-65.
    [47]葛菁萍,凌宏志,赵丹等.沤麻用果胶酶产生菌的选育及脱胶过程中细菌种群的初步分析[J].黑龙江大学自然科学学报, 2007, 24(4):295-299.
    [48] Gunnar H, Danny EB, David S, et al. Production of highly efficient enzymes for flax retting by Rhizomucor pusillus[J]. Appl Environ Microbiol, 1999, 35(8):115-123.
    [49]刘自熔,任建平,冯瑞良等.大麻酶法脱胶研究[J].纺织学报, 1999, 28(5):286-288.
    [50]刘自熔,程海.大麻酶法脱胶机制初探[J].纺织学报, 2001, 28(8):45-47.
    [51]钱微君,冯新星,许丹等.酶Bioprep对大麻脱胶的研究[J].浙江理工大学学报, 2005, 25(1):1-4.
    [52]温桂清,孙小寅,郝凤鸣.大麻生物酶-化学联合脱胶工艺研究[J].广西纺织科技, 2001, 30(4):8-10.
    [53]龚三龙.开发应用大麻纤维的探讨[J].苎麻纺织科技, 1996, 25(3):32-35.
    [54]龙剑尔,陈一平.β-甘露聚糖酶的研究现状[J].微生物学杂志, 1998, 18(3):44-46.
    [55]张运熊.欧文氏杆菌CXJZ95-198非纤维素降解特征及manA的克隆研究[D].博士学位论文,中国农业科学院研究生院, 2006.
    [56]王傲雪,张丙秀,李景富.β-1,4-甘露聚糖内切酶在番茄发育中的作用[J].园艺学报, 2006, 33(5):1157-1161.
    [57] Politz O, Krah M, Thomsen K, et al. A highly thermostable endo -(1,4)-beta-mannansase from the marine bacterium Rhodothermus marinus[J]. Appl Microbiol Biotechnol, 2000, 53(6):715-721.
    [58] Courtios J E, Petek F, Kada T. Research on galactomannansⅡAction of takadiastase on the galactomannan of luceren[J]. Bull SocChem Biol, 1958, 40(8):2031– 2037
    [59]余红英,杨幼惠,杨跃生等.枯草芽孢杆菌β-甘露聚糖酶补料发酵及其特性研究[J].微生物学通报, 2002, 29(5):25-29.
    [60] Akino T, Nakamura N, Horiroshi K. Characterization of threeβ-mannanases of an Alkalophilic Bacillus sp[J]. Agric.Biol Chem, 1988, 52(3):773-779.
    [61]张云华.嗜碱芽孢杆菌N16-5碱性β-甘露聚糖酶的嗜碱机制研究[D].硕士论文,东北农业大学, 2006.
    [62]李剑芳,马丽萍,邬敏辰.宇佐美曲霉酸性β-甘露聚糖酶纯化及性质研究[J].食品与发酵, 2006, 32(9):5-9.
    [63] G. Talbot, J. Sygusch. Purification and Characterization of Thermostableβ-Mannanase and a-Galactosidase from Bacillus Stearothermophilus[J]. Applied and Environmental Microbiology, 1990, 56(11):3505-3510.
    [64]成莉凤.β-甘露聚糖酶高产菌株筛选及酶的纯化与性质研究[D].硕士论文,中国农业科学院, 2007.
    [65]柴萍萍.枯草芽孢杆菌(Bacillus subtilis)W45产β-甘露聚糖酶的纯化与性质研究[D].硕士学位论文,中国农业大学, 2007.
    [66]姚继明,龚秀斌,陈晓辉.甘露聚糖酶与低蛋白日粮在中猪日粮中的应用[J].广东饲料, 2008, 17(10):24-25.
    [67]生物系野生纤维生物脱胶研究小组.谈谈果胶质[J].四川大学学报, 1958, 121-124.
    [68]赵建.淀粉酶产生菌的分类鉴定、酶学性质分析及一株果胶酶产生菌的分类鉴定[D].硕士论文,新疆大学, 2008.
    [69]兰颖辉.果胶酶不同组分发酵条件的优化及酶学性质研究[D].硕士论文,天津科技大学, 2006.
    [70] Carr J G. Microbiology of fermented food[J]. Enzyme and Microbial Technology, 1985, 29(2):133-154.
    [71] Tzanko T, Margarita C, Georg M. Guebitzc Artur cavaco-pauloa bio-preparation of cotton fabrics[J]. Enzyme and Microbial Technology, 2001, 29(6):357-362.
    [72] Reid I, Ricard M. Pectinase in papermaking: solving re-tention problems in mechanical pulps bleached with hy-drogen peroxide[J]. Enzyme Microb Technol, 2000, 26(3):115-123.
    [73] Hoondal GS, Tiwari RP, Tewari R, et al. Microbial alka-line pectinases and their industrial applications: a review[J]. Appl Microbiol Biotechnol, 2002,59(5):409-418.
    [74] Chen H, Yang JK, Liu MX, et al. Optimization of lipaseproduction conditions for Aspergillussp. F-044 by responsesurface methodolog[J]. Industrial Microbiolog, 2007, 37(1):47-52.
    [75]陈晖,杨江科,刘曼西等.响应面法快速优化曲霉Aspergillus sp. F-044产脂肪酶培养条件[J].工业微生物, 2007, 37(1):47-52.
    [76]钱俊青,周文武,匡春兰.响应面法优化丁酸缩水甘油酯的酶法拆分工艺[J].生物工程学报, 2008, 24(6):1062-1067.
    [77]郝学财,余晓斌,刘志钰等.响应面方法在优化微生物培养基中的应用[J].食品研究与开发, 2006, 27(1):38-41.
    [78]杨超英,陶玉贵,徐先炉等.响应面法优化苏云金杆菌固态发酵培养基[J].中国农学通报, 2008, 24(7):69-73.
    [79]郭小华,陆文清,邓萍等.益生枯草芽孢杆菌MA139增殖培养基的优化[J].中国农业大学学报, 2006, 11(3):41-46.
    [80] William G W, Susan M B, Dale A P. 16S ribosomal DNA amplication for phylogenetic study[J]. Journal of Bacteriology, 1991, 35(1):697-703.
    [81]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社, 1999:210-227.
    [82]陈一平,龙健儿,廖连华等.芽孢杆菌M50产生β-甘露聚糖酶的条件研究[J].微生物学报, 2000, 2(40):1-6.
    [83]凌宏志.亚麻微生物多样性及果胶酶产生菌酶学基础的研究[D].硕士学位论文,黑龙江大学, 2005.
    [84]接伟光.黄檗Phellodendronamurense丛枝菌根真菌鉴定及菌群结构分析[D].硕士学位论文,黑龙江大学, 2008.
    [85]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001:353-363.
    [86]孔雷,赵鸣镝,吴永红.滤纸糖-DNS比色法测定纤维素酶活力[J].印染, 1999, 25(1):36-38.
    [87]李健武,余瑞元,袁明秀等.生物化学实验原理和方法[M].北京:北京大学出版社, 1997:128-130.
    [88] Downie B, Hilhorst H W M, Bewley J D. A new assay for quantifying endo-β-D-mannanase activity using congored dye[J]. Phyto-chemistry, 1994, 36(4):829-835.
    [89]杨幼慧, Mc Alan.β-甘露聚糖酶的产酶菌种、条件及部分性质研究[J].华南农业大学学报, 2001, 22(2):86-88.
    [90]邓立红.黑曲霉合成β-甘露聚糖酶及制备功能性甘露低聚糖的研究[D].硕士学位论文,中南林学院工业学院, 2002:12-25.
    [91]冮洁,刘晓兰.果胶酶活性分光光度测定方法的研究[J].齐齐哈尔大学学报, 1998, 14(1):63-66.
    [92]周俊怡.分子生物学基本技能和策略[M].北京:科学出版社, 2003:125-126.
    [93] Xu C P, Kim S W, Hwang H J, et al. Application of statistically based experimental designs for the optimization of exo-polysaccharide production by Cordyceps militaris NG3[J]. Biotechnola Appl Biochem, 2002, 36:127-131.
    [94]熊智强,徐平,涂国全.利用响应面法优化红谷霉素发酵培养基[J].微生物学通报, 2006, 33(4):5-9.
    [95]蒋丹丹,张彬,梁志宏等.响应面法优化降胆固醇马红球菌F21-1的发酵培养基[J].中国农业大学学报, 2008, 13(2):20-24.
    [96] Manohar B, Divakar S. Applications of surface plots and statistical designs to seleceted lipase catalysed esterification reactions[J]. Process Biochem, 2004, 39(2):847-853.
    [97]朱红,冯平庆,邬福麟.纺织材料学[M].北京:中国纺织出版社, 1996.
    [98]崔莉,张陈虎,钱国抵等.果胶酶酶解产物DNS比色法测定条件的研究[J].印染, 2002, 36(12):32-34.
    [99]马建华,高扬,牛秀田等.枯草芽孢杆菌中性甘露聚糖酶的纯化及性质研究[J].中国生物化学与分子生物学报, 1999, 15(1):79-82.
    [100]焦振泉,刘秀梅. 16s rRNA序列同源性分析与细菌系统分类鉴定[J].国外医学卫生学分册, 1998, 25(1):12-15.
    [101] Avishek M, Arun G. Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method[J]. Bioresource Technology, 2008, 99(8):3685-3691.
    [102]赵丹.甘露聚糖酶产生菌的分离、鉴定及产酶条件的研究[D].硕士学位论文,黑龙江大学, 2006.
    [103]江洁,刘晓兰,郑喜群等.化学助剂法亚麻生物脱胶新技术的研究[J].纺织学报, 2003, 24(1): 46-48.
    [104]赵丽坤,郭会灿.微生物培养基优化方法概述[J].石家庄职业技术学院学, 2008, 20(4):50-52.
    [105] Ertola J, Giuliettl A M, Castillo F J. Design for mulation and optimization of media[J]. Bioprocess Technol, 1995, 21(5);89-127.
    [106] Dan Y, Zhinan X, Peilin C. Medium optimization for enhanced production of cytosine substituted mildiomycin analogue(MIL-C) by stretoverticillium rimofaciens ZJU 5119[J]. J Zhejiang Univ Sci B, 2008, 9(1):77-84.
    [107] Xu C P, Yun J W. Optimization of submerged-culuture sonditions for mycelial growth and exobiopolymer production by auricularia polytricha using the methods of uniform design san regression analysis[J]. Biotechnol Appl Biochem, 2003, 38(6):193-199.
    [108] Liu C, Ruan H, Shen H, et al. Optimization of the fementation medium for alpha-galactosidase production from aspergillus foetidus ZU-G1 using reponse surface methodology[J]. J Food Sci, 2007, 72(4):120-125.
    [109] Saudagar P S, Singhal R S. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by streptomyces clavuligerus[J]. Bioresour Technol, 2007, 98(10):2010-2017.
    [110] Liu D, Wang P, Li F. Application of uniform design in lisoleucine fermentation[J]. China Biotechnol, 1991, 7(3):207-212.
    [111] Wang F Q, Gao C J, Yang C Y. Optimization of an ethanol production medium in very high gravity fermentation[J]. Biotechnol Lett, 2007, 29(2):233-236.
    [112]王惠,吴兆亮,童应凯等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发, 2006, 27(6):19-22.
    [113] Ratnam B V, Narasimharao M, Dmodar R M, et a1. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology[J]. Journal of Microbiology&Biotech-nology, 2003, 19:523-526.
    [114] Trupkin S, Levin S, Forchiassin F. Optimization of aculture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology[J]. Journal of Industrial Microbiology Biotechnology, 2003, 30:682-690.
    [115] Wu Q L, Chen T, Gan Y. Optimization of riboflavin production by recombinant bacillus subtilis RH44 using statistical designs[J]. Appl Microbiol Biotechnol, 2007, 76(4):783-794.
    [116]王殿奎,关凤芝.黑龙江省大麻生产现状及发展对策[J].中国麻业, 2005, 27(2):98-101.
    [117]吴广文.黑龙江省大麻发展问题和建议[J].中国麻业科学, 2007, 29(6):356-370.
    [118]周景辉,张高华等.纤维用大麻的开发利用.中国造纸, 2001, 20(5):63-65.
    [119]曲丽君.大麻机械脱胶与碱氧法脱胶研究[D].博士学位论文,东华大学, 2005.
    [120]陈明红.大麻工艺纤维的脱胶工艺研究[D].硕士学位论文,东华大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700