用户名: 密码: 验证码:
水体Cu~(2+)对中华螯蟹(Eriocheir sinensis)毒性作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国的虾蟹养殖业发展迅速,形成了规模化生产,虾蟹养殖业已成为我国农民脱贫致富的重要产业。随着生产的发展,养殖用水的污染也在不断的加剧,其中除了受工业、农业和生活污水的影响之外,生产中大量使用硫酸铜等铜类化合物进行病害防治和清塘灭藻也已成为重要的水污染原因之一。2003年度的《中国渔业生态环境状况公报》强调指出我国近岸海域、江河、湖泊的渔业水域中,Cu~(2+)的污染超标程度仍在增加(以GB11607-89国家渔业水质标准中Cu~(2+)浓度不超过0.01mg/l为标准),特别是杭州湾、长江口和舟山近海平均值竟达0.07mg/l。Cu~(2+)是我国渔业水域环境中超标最严重的重金属。因此,自然水域中的经济甲壳动物的生长和发育受到Cu~(2+)胁迫的可能性充分存在。水污染的结果导致虾蟹成活率降低和养殖成本提高。同时,受Cu~(2+)等重金属污染后的产品出口创汇深受影响。因此,本项目选择水环境中重要的污染元素Cu~(2+)并深入开展Cu~(2+)对经济虾蟹动物生长的营养和毒性作用的研究,具有重要的现实意义和理论价值。
     微量元素Cu~(2+)是甲壳动物重要的营养素,是合成血蓝蛋白的必需成分之一,并对多种生长发育相关的生物酶的组成和功能有着重要意义。然而,过量的Cu~(2+)又会对上述蛋白和生物酶产生毒害,且这些危害可以反映在生物体、细胞或分子水平上。可见,Cu~(2+)与甲壳动物的生长发育关系密切。虽然有报道水体Cu~(2+)对中华绒螯蟹的毒性作用,但大都集中在估算半致死浓度,缺乏Cu~(2+)对中华绒螯蟹毒性作用机制的研究,特别是针对X-器官窦腺复合体(XO-SG)和Y-器官(YO)的结构、功能影响的直接研究极少,至今无法从机理上解释Cu~(2+)影响甲壳动物生长的现象。
     本研究以我国最重要的经济虾蟹类养殖品种之一中华绒螯蟹作为研究对象,综合形态学、生理学、生物化学、内分泌学、毒理生态学的方法和技术,辅以电镜、生化酶学、免疫检测、微量元素分析等手段,以期阐明水体Cu~(2+)对中华绒螯蟹的毒性作用机制。这不仅对丰富重金属对甲壳动物毒性作用的机制具有重要的理论价值,而且可以为健康养殖和水质监测提供参考数据,并对其它重金属类相应的研究建立成熟的方法。研究结果与结论如下:
In recent years, aquaculture industry of crustacean, especially shrimps and crabs, has shown rapid expansion in China, which has been developed into a major industry. However, effluent from human activities and application of Copper sulfate to control algal in crustacean ponds resulted in Copper (Cu~(2+)) pollution that stunts the further growth of this aquaculture industry. The 2003 Report on State of the Fishery Eco-environment in China emphasized that Cu~(2+) is the heavy metal that exceeds most evidently the Standards of the Water Quality in the Fishery Industry (GB11607-89). In certain regions severity of Cu~(2+) contamination is still increasing, e.g. in the Hangzhou bay, piscatorial areas of Yangtse Rivers and the coast of Zhoushan. The average Cu~(2+) level of these waters is 0.07 mg/1, being 7 folds higher than that stipulated of GB 11607-89. Therefore, the Cu~(2+) toxicity on crustacean of fisheries is of primary concern. As Cu~(2+) pollution can be severely limiting factors to future crustacean culture potentially, studies on its influence on E. sinensis are of great significance in elucidating the physiological alterations of animals and establishing methods for safe aquaculture. In the present study the toxic mechanism of water-borne Cu~(2+) on E. sinensis is investigated in detail. This work is believed to have both important realistic and theoretic significances.Cu~(2+) is one of the important nutrient elements, being essential to synthesize hemocyanin in crustaceans. Cu~(2+) is required for normal function of many proteins, including most biological enzymes that are necessary for normal growth and development. However, excess Cu~(2+) is toxic and can causes a variety of adversely affects to crustaceans on biological functions from molecule level to cell level. Although many works on the toxic effects of Cu~(2+) on E. sinensis have already been reported, they almost focus on the evaluation of LC_(50) of pollutants rather than on the mechanism of toxic effects of water-borne Cu~(2+), esp. the toxic impacts on the structure and function of X organ-sinus gland complex and the Y-organ, two most important organs for ecdysis and growth of crustaceans. So far the mechanism of Cu~(2+) on the growth of crustaceans has still not been well understood.
    In the present study, the effects of water-borne Cu~(2+) the Chinese mitten crab E. sinensis have been conducted by integrated morphologic, physiologic, biochemical, endocrinologic, ecotoxicologic approaches and equipments of electric microscopic, biochemical enzymes and trace element analysis. The aim of this work is to clarify the mechanism of toxic effects of Cu~(2+) on E. sinensis and it must not only be of important theoretic value on the toxic effects of heavy metal on crustaceans, but also provide useful references on the healthy aquaculture and the effective evaluation of water quality. The main results in this thesis can be summarized as follows:1 Effects of water-borne Cu~(2+) on molting, growth and survival in E. sinensisThe acute toxic effects of water borne Cu~(2+) on the molting rate, the weight gain and the survival rate in E. sinensis was conducted between I stage and 12-month-old juveniles. The 24, 48, 72 and 96 h LC_(50)s of Cu~(2+) on I stage juveniles (0.020 ± 0.01g) were 0.70, 0.43, 0.33, and 0.22 mg/l, and those on the 12-month-old animals (3.34 ± 0.26 g) were 18.20, 10.23, 9.12 and 8.51 mg/1, respectively. Results suggested that the survival rate of all I stage juvenile groups were higher than 50%, and furthermore it decreased in accordance with the increase of water borne Cu~(2+) level (from 0.00 to 0.01, 0.02, 0.03, 0.05 and 0.08 mg/l). The similar decrease tendency was also observed in the 12-month-old E. sinensis. In addition, the molting rate, weight gain and the survival rate of the 12-month-old animals decreased stably in accordance with the increase of Cu~(2+) level in the Cu~(2+) treated groups (0.01, 0.05, 0.10, 0.50, 1.00, 2.50 mg/l) groups. The survival rates in all groups studied were higher than 50%. Although the survival rate in
引文
蔡生力,1998.甲壳动物内分泌学研究与展望.水产学报,22(2):154-161.
    陈金堤,缪惠彬,郑建春,张壮丽,王华,1981.九龙江河口海区生物体内汞、铜、铅、锌和锡含量的初步调查.厦门大学学报,20(4):458-467.
    陈清西,陈素丽,石艳,朱凌翔,颜思旭,1996.长毛对虾碱性磷酸酶性质.厦门大学学报(自然科学版),35(2):257-261.
    陈志澄,赵淑媛,黄丽彬,黄小涛,洪华华,陈炳辉,1994.稀土矿山水系中Pb、Cd、Cu、Zn的化学形态及其迁移研究.中国环境科学,14(3):220-225.
    成永旭,王武,谭玉钧,严生良,施正峰,1997.盐度及钙镁离子对中华绒螯蟹大眼幼体育成Ⅲ仔蟹的成活率和生长的影响.水产学报,21(1):84-88.
    成永旭,徐兆礼,陈亚瞿,2000.Zn~(2+)对中华绒螯蟹溞状幼体肝胰腺超微结构的影响.动物学研究,21(5):343-347.
    孙平跃,王斌,2003.Zn、Cu和Pb在无齿相手蟹体内的积累和分布.海洋环境科学,22(1):43-47.
    堵南山,1993.甲壳动物学.北京:科学出版社,703-704.
    方允中,李文杰,2002.自由基与酶.北京:科学出版社,47-178.
    郭明申,康现江,陈红波.陈靖路,刘龙,李彦芹,黄增瑞,2002.中国对虾眼柄神经分泌结构的超微结构研究.台湾海峡,21(3):279-285.
    何海琪,孙凤,1992.中国对虾酸性和碱性磷酸酶的特性研究.海洋与湖沼,23(5):555-560.
    郝向英,赵慧,刘卫,2000.黄河中游主要重金属污染物的迁移转化.内蒙古环境保护,12(3):27-28.
    胡能书,万贤国,1985.同工酶技术及其应用.湖南:湖南科学技术出版社,30-47.
    黄鹤忠,梁守仁,吴康,杨彩根,1998.3种药物对河蟹幼体的毒性试验.水利渔业,6:15-28.
    黄玉瑶,2001.内陆水域污染生态学原理与应用.北京:科学出版社,77.
    姜仁良,谭玉钧,吴嘉敏,阎希柱,包祥生,姚继明,1992.中华绒螯蟹血淋巴中20-羟基蜕皮酮、17β-雌二醇和睾酮含量的变化.水产学报,16(2):101-106.
    金春华,钟爱华,张海琪,2004.大弹涂鱼不同组织器官的同工酶研究.海洋科学,28(3):35-40.
    康现江,李阳,王所安,1998.中国对虾眼柄的神经分泌结构.河北大学学报(自然科学版),18(1):45-48.
    孔繁翔,2000.环境生物学.北京:高教出版社,68-73.
    李少菁,王桂忠,翁卫华等,1998.重金属对日本对虾仔虾存活及代谢酶活力的影响.台湾海峡,17(2):115-120.
    李太武,1996.三疣梭子蟹肝脏的结构研究.海洋与湖沼,27(5):471-475.
    林梵,任宏伟,茹炳根,2001.鱼体内金属硫蛋白与水环境关系的研究.北京大学学报(自然科学版),37(6):779-784.
    林如杰,张乃禹,梁羡园,张伟权,1977.利用EDTA钠盐提高中国对虾幼虫成活率的初步报道.海洋科学,(1):22-24
    林汝榕,李少菁,1991.铜、镉对中华哲水蚤氨基酸含量影响的实验研究.海洋与湖沼,22(3):242-247.
    刘存歧,王安利,王维娜,刘媛,2001.海水中几种金属离子对中国对虾幼体体内碱性磷酸酶和ATPase的影响.水产学报,25(4):298-303.
    刘发义,1982.金属硫蛋白的研究概况及其与环境科学的关系.中国环境科学,3:72-74.
    刘发义,梁德海,孙凤,李荷芳,兰信,1990.饵料中的铜对中国对虾的影响.海洋与湖沼,21(5):404-410.
    刘发义,吴玉霖,1988a.重金属污染物在海洋生物体内的积累和解毒机理.海洋科学,(5):63-66.
    刘发义.吴玉霖,赵鸿儒,候兰英.孙凤,1988b.铜在中国对虾体内的积累和致毒效应.海洋与湖沼,19(2):133-138.
    刘建康.1999.高级水生生物学.北京:科学出版社,310.
    刘杰,1998.用转基因动物研究金属硫蛋白对镉毒性的作用.中华劳动卫生职业病杂志,16(1):57-60.
    刘晓梅,孙志伟,石龙,邱炳源,李春英,王忠伟,2000.锌诱导小鼠肝产生金属硫蛋白的实验研究,中国公共卫生,16(4):315-316.
    卢敬让,赖伟,1991.镉对中华绒螯蟹鳃组织及其亚显微结构的影响.海洋与湖沼,22(6):566-570.
    陆剑峰,赵维信,2004.中华绒螯蟹 Y-器官在蜕皮周期中的超微结构.中国水产科学,11(1):74-77.
    陆贻通,朱江,余佳丽,2004.环境污染物的分子毒理机制研究进展.环境污染与防治,26(3):185-188
    罗荣生,王幽兰,曹梅讯,顾志敏,1990.中华绒螯蟹血淋巴20-羟基蜕皮酮诱发蜕皮和卵巢发育的作用.动物学报,36(2):157-164.
    闵信爱,2002.南美白对虾养殖技术.北京:金盾出版社,155.
    牟海津,江晓路,刘树青等,1999.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活力的影响.青岛海洋大学学报,29(3):463-468.
    潘鲁青,王克行,1997.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究.中国水产科学,4(2):13-20.
    邱高峰,1999.中华绒螯蟹眼柄神经内分泌系统的组织学研究.上海水产大学学报,8(3):237-241.
    任加云,潘鲁青,姜令绪,2004.3种重金属离子对中华绒螯蟹鳃丝Na~+-K~+ ATPase活性的影响.中国水产科学,11(4):291-295.
    山根靖弘,高畠英伍,内山充,编著,1980.贺振东,林绍韩,李鸿海,译,1981.环境污染物质与毒性(无机篇).四川:四川人民出版社,2.
    上官步敏,李少菁,1994.锯缘青蟹 X-器官神经分泌细胞的细胞学研究.海洋学报,16(6):116-216.
    上官步敏,李少菁,1995.锯缘青蟹窦腺显微和超微结构研究.动物学报,41(4):341-346.
    施流章,1981.温、盐度与长毛对虾卵的孵化及无节幼体发育的关系.水产学报,5(1):57-62.
    孙金生,刘安西,杜育哲,顾景龄,2001.中华绒螯蟹窦腺的显微和超微结构.动物学报,47(1):27-31.
    王宏伟,刘瑞兰,商利新,赵伟,王维娜,王安利,2001.Zn~(2+)对日本对虾肝胰腺细胞培养及其RNA/DNA比率的影响.上海水产大学学报.10(3):282-284.
    王在照,相建海,2001.甲壳动物CHH家族神经激素结构和功能研究进展.水产学报,(2):175-180.
    王兰,王定星,王茜,杨秀清,2003.镉对长江华溪蟹肝胰腺细胞超微结构的影响.解剖学报,34(5):522-526.
    王安利,王维娜,李铁水,刘存歧,1992.铜、锌、锰和铬对中国对虾仔虾的急性致毒及相互关系的研究.海洋学报,14(4):134-139.
    王维娜,王安利,孙儒泳,2001.水环境中的铜锌铁钴离子对日本沼虾消化酶和碱性磷酸酶的影响.动物学报,47(专刊):72-77.
    谢松,王所安,刘存歧,1997.雌化中国对虾同工酶的研究.动物学报,43(增刊):49-54.
    薛俊增,2002.患“抖抖病”中华绒螯蟹可溶性蛋白质和同工酶分析.动物学杂志,37(2):17-21.
    杨美兰,林钦,王增焕,周国君,2004.大亚湾海洋生物体重金属含量与变化趋势分析.海洋环境科学,23(1):41-43.
    杨志彪,赵云龙,周忠良,周鑫,杨健,2005a.水体铜对中华绒螫蟹(Eriocheir sinensis)体内铜分布和消化酶活性的影响.水产学报,已录用待发.
    杨志彪,赵云龙,周忠良,杨健,2005b.CuSO_4对中华绒螯蟹蜕皮、生长和存活的影响.水生生物学报,已录用待发.
    杨志彪,赵云龙,周忠良,李娜,杨健,2005c.水体铜对中华绒螯蟹(Eriocheir sinensis)代谢酶活力的影响.海洋与湖沼,已录用待发.
    叶属峰,陆健健,2000.无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能.生物多样性,8(3):317-324.
    臧维玲,戴习林,江敏,姚庆祯,蔡云龙,陈皋,徐桂荣,丁幅江,2001.Cu~(2+)和Cd~(2+)对斑节对虾幼虾的毒性作用.水产科技情报,28(5):198-201.
    赵红霞,詹勇,许梓荣,2003.重金属对水生动物毒性的研究进展(二).内陆水产,(2):36-38.
    赵维信,王义强,欧阳迎春,1992.中国对虾体内20-羟基蜕皮酮含量与生长和性腺发育的关系.台湾海峡,11(4):305-309.
    赵维信,魏华,贾江,吕大可,1995.镉对罗氏沼虾组织转氨酶活性及组织结构的影响.水产学报,19(1):21-27.
    张克俭.1993.锌和氨氮对对虾肝胰脏的毒性作用.水产学报,17(1):52-59.
    张烈雄,袁崇刚,林龙年.1996.Hg~(2+)可增强Zn~(2+)对克氏螯虾触角神经动作电位放电的抑制作用.应用与环境生物学报,2(1):54-57.
    张烈雄,袁崇刚,林龙年,魏焕民.林丽芳.1998.Hg~(2+)、Pb~(2+)对克氏螯虾触角神经放电联合作用研究.华东师范大学学报(自然科学版),2:81-85.
    张毓琪,陈徐龙,1993.环境生物毒理学.天津:天津大学出版社,28-136.
    郑重,1989.甲壳动物激素的研究.台湾海峡,18(4):287-298.
    周永欣,章宗涉,1989.水生生物毒性试验方法.北京:农业出版社,114-131.
    朱小明,李少青,2001.甲壳动物幼体蜕皮的调控.水产学报,25(4):379-384.
    Lippard S J,Berg J M著,1994.席振峰,姚光庆,项斯芬等译,2000.生物无机化学原理.北京:北京大学出版社,6-7.
    APHA, 1980. Standard methods for the examination of water and wastewater, 15th Edition. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC20005.
    Ahsanullah M, D S Negilski and M C MoNey, 1981. Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis Ⅰ. Effect of individual metals. Marine Biology, 64: 299-305.
    Bambang Y, Thuet P, Charmantier-Daures M, Trilles J P, 1995. Effect of copper on survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus Bate (Crustacea, Decapoda). Aquatic Toxicology, 33: 125-139.
    Bagotto G, Alikhan M A, 1987. Copper, cadmium and nickel accumulation in crayfish populations near coppernickel smelters at Sudbury. Ontario, Canada, Bulletin of Environmental Contamination and Toxicology, 38: 540-545.
    Bebianno M J, Serafim M A, 1998. Comparison of metallothionein induction in reponse to cadmium in the gills of the bivalve molluscs Mytilus galloprovincialis and Ruditapes decussatus. The Science of the Total Environment, 214: 123-131.
    Bettger W J, O'Dell B L, 1981. A critical physiological: role of zinc in the structure and function of biomembranes. Life Science, 28: 1425-1438.
    Boeck G D, Ngo T T H, Campenhout K V, Blust R, 2003. Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquatic Toxicology, 65: 413-424.
    Bonwick G A, 1991. Hepatic metallothionein levels in roach {Rutilur rutilus L.) continuously exposed to water-borne cadmium. Comparative Biochemistry and Physiology C, 99: 119-125.
    Bouquegneau J-M, No-Lambot F, Disteche A, 1979. Fate of heavy metals in experimental aquatic food chains: uptake and release of Hg and Cd by some marine organisms: role of metallothioneins. in: (1979). Coordinated Research Actions Interuniversitary Actions Oceanology: Symposium Reports, 85-122.
    Boyd C E, 1990. Water Quality in Ponds for Aquaculture. Birmington Publishing. Birmingham, Alabama, 482.
    Brouwer M, Winge D R, Gray W R, 1989. Structural and functional diversity of copper-metallothioneins from the American lobster Homarus americanus. Journal of Inorganic Biochemistry, 35: 289-303.
    Brouwer M, Syring R, Brouwer T H, 2002. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. Journal of Inorganic Biochemistry, 88: 228-239.
    Bubel A, 1976, Histological and edlectron microscopical observations on the effects of different salinites and heavy metal ions on the gills of Jeara nordmanni (Tathke) (Crustacea, Isopoda). Cell and Tissue Research, 167: 65-95.
    Canli M, Stagg R M, Rodger G, 1997. The induction of metallothionein in tissues of the Norway lobster Nephrops norvegicus following exposure to cadmium, copper and zinc, the relationships between metallothionein and the metals. Environmental Pollution, 96(3): 343-350.
    Carlisle, Knowles, 1959. Endocrine control in crustaceans Cambridge Monographs in Experimental Biology. Cambridge University Press, 10: 1-104.
    Castany J, F Van Herp, G Charmantier, J-P Trilles, M Charmantier Daures, 1997. Ultrastrucructural study of the neurosecretary granulew and crustacean hyperglycemic hormone (CHH) immunolocalization in the sinus gland of Homarus gammarus. Jorunal of Crustacean Biology, 17(1): 6-12.
    Chan K M, 1995. Metallothionein, potential biomarker for monitoring heavy metal pollution in fish around Hong Kong. Marine Pollution Bulletin, 31: 411-415.
    Chen J C, Lin C H, 2001. Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture, 192: 55-65.
    Chan Siu-Ming, 1995. Possible roles of 20-hydroxyecdysone in the control of ovary maturation in the white shrimp penaeus vannamei (Crustacea, Decapoda). Comparative Biochemistry and Physiology C, 112 (1): 51-59
    Chvapil M, 1973. New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes. Life Science, 13: 1041-1049.
    Copeland D E, 1968. Fine structure of salt and water uptake in the land-crab. Gecarcinus lateralis. American Zoology, 8: 417-432.
    Copeland D E, Fizjarrell A T, 1968. The salt absorbing cells in the gill of the blue crab (Callinctes sapidus) with note on modified mitochondria. Zeitschrift fur Zellforschung und Mikroskopische Anatomie, 92: 1-22.
    Correia A D, Livingstone D R, Costa M H, 2002. Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod Gammarus locusta. Marine Environmental Research, 54: 357-360.
    Daly H R, Hart B T, Campbell I C, 1992. Short communication. Copper toxicity to Paratya australiensis, IV. Relation with ecdysis. Environmental Toxicology and Chemistry, 11: 881-889.
    Daly H R, I C Campbell, B T Hart, 1990. Copper toxicity to Paratya australiensis I. Influence of nitriloacetic acid and glycine. Environmental Toxicology and Chemistry, 9:997-1006.
    Denton G R W, C Burdon-Jones, 1982. The influence of temperature and salinity upon acute toxicity of heavy metals to banana prawn (penaeus merguiensis de Man). Chemical Ecology, 1: 131-143.
    Devescovi M, Lucu C, 2003. Growth of tissues related to haemolymph copper through the moult cycle of the lobster Homarus gammarus. Marine Ecology Progress Series, 247: 165-172.
    Dircksen H, 1992. Fine structure of the neurohemal sinus gland of the shore crab, Carcinus maneaus, and immuno-electron microscopic identification of neurosecretary endings according to their neuropeptide contents, Cell and Tissue Research, 269: 249-266.
    Dhavale D M, 1990. Environmental variables and heavy metal toxicity in crab Scylla serrata. Bulletin of Marine Science, 46: 244-245.
    Engel D W, Brouwer M, Mercaldo-Allen R, 2001. Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the american lobster, Homarus americanus. Marine Environmental Research, 52, 257-269.
    Fingerman M, 1987. Endocrine mechanism of crustacean. Journal of Crustacean Biology. 7(1): 1-24.
    Fingerman M, 1992. Glands and secretions. In: Harrison F W, ed. Microscopic Anatomy of Invertebrates. Harrison F W and A G Humes eds. Vol. 10, Decapod crustacean, New York: Wiley Liss Inc., 345-394.
    Fisher J M. 1972. Fine-structural observations on the gill filaments of the fresh water crayfish, Astacus pallipes Lereboullet. Tissue and Cell, 4: 287-299.
    George S G, 1983. Heavy metal detoxication in the mussel Mytilus edulis composition of Cd-containing kidney granules (tertiary lysosomes). Comparative biochemistry and physiology C, 76: 53-57.
    George S G, Frazier J M, 1982. Some aspects of the relationship between tolerance to heavy metal pollution and metabolism of Cd, Cu and Zn in oysters. Thalassia Yugaslavica, 18:203-211.
    Goldstein I M, Kaplan H B, 1979. Ceruloplasmin: A scavenger of superpside anionradicals. Biological Trace Element Research, 5: 35-45.
    Green J, 1968. The Biology of Estuarine Animals. London, Sidgwick and Jakson, 401.
    Gunamalai V, Kirubagaran R, Subramoniam T, 2004. Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). General and Comparative Endocrinology, 138(2): 128-138.
    Ishiguro T K, Kitajima, Chiba M, Fujisawa R, Ichikawa F, Kondo K, Takehana H, 1982. Studies on Cd-binding proteins in short-necked clam. Bulletin of Japanese Society of Fishery Sciences, 48: 793-798.
    Klaverkamp J F, MacDonald W A, Duncan D A, Wagemann R, 1984. Metallothionein and acclimation to heavy metals in fish: a review. In: Cairns V W, Hodson P V, Nriagu J O, (Eds.) Contaminant Effects on Fisheries, John Wiley & Sons, New York, 99-113.
    Koch H J, 1954. Cholinesterase and active transport of sodium chloride through isolated gills of the crab Ericheir sinensis (M. Edw.). In Recent Developments in Cell Physiology. Academic Press, London-New York, 15.
    Ismail P, 1990. Toxicity of copper to larval and post-larval stages of Macrobrachium rosenbergii (de Man). Proceedings of The Second Asian Fisheries Forum, TOKYO, Japan, 17-22, April 1989, Hirano R; Hanyu I, (eds). 927-930.
    Lecoeur S, Videmann B, Berny P, 2004. Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dreissena polymorpha. Environmental Research, 94: 184-191.
    Lehtonen K K, LeiniO S, 2003. Effects of exposure to copper and malathion on metallothionein levels and acetylcholinesterase activity of the mussel Mytilus edulis and the clam Macoma balthica from the Northern Baltic Sea. Bulletin of Environmental Contamination and Toxicology, 71: 489-496.
    Leungl K M Y, Furness R W, 1999. Induction of metallothionein in dogwhelk Nucella lapillus during and after exposure to cadmium. Ecotoxicology and Environmental Safety, 43: 156-164.
    Liao I-Chiu, Guo Jin-Ju, 1990. Studies on the tolerance of postlarvae of Penaeus mondon, P Japonicus, P Penicillatus, Metapenaeus ensis and Macrobrachium rasenbergii to copper sulfate, potassium permanganate and malachite green. COA Fisheries Series, Taipei, 24: 90-94.
    Lockwood A P M, 1968. Aspects of the Physiology of Crustacea. Aberdeen University Press, London, 65-75.
    Lockwood A P M, Inman C B E, 1973. Changes in the apparent permeability to water at molting in the amphipod Gammarus duebeni and the isopod Idotea Iinearis. Comparative Biochemistry and Physiology A, 44: 943-952.
    Mattson M P, Spaziani E, 1986a. Regulation of crab Y-organ steroidogenesis in vitro: evidence that ecdysteroid production increases through activation of cAMP- phosphodiesterase by calcium-calmodulin. Molecular and Cellular Endocrinology, 48: 135-51.
    Mattson M P, Spaziani E, 1986b. Regulation of Y-organ ecdysteroidogenesis by molt-inhibiting hormone in crabs: involvement of cyclic AMP-mediated protein synthesis. General and Comparative Endocrinology, 63: 414-23.
    Mendez L, Racotta I S, Acosta B, Rodriguez-Jaramillo C, 2001. Mineral level in tissue during ovarian development of white shrimp Penaeus vannamei (Decapoda: Penaeidae). Marine Biology, 138: 687-692.
    McLeese D W, 1974. Toxicity of copper at two temperatures and three salinities to the American lobster (Homarus americanus). Journal of the Fisheries Research Board of Canada, 31: 1949-1952.
    McLusky D S, 1968. Aspects of osmotic and ionic regulation in Corophium volutator (Pallas). Journal of the Marine Biological Association of the United Kingdom, 48: 769-781.
    Moksnes P-O, Lindahl U, Haux C, 1995. Metallothionein as a biodicator of heavy metal exposure in the tropical shrimp Penaeus vannamei, a study of dose-dependent indication. Marine Environmental, 39: 143-146.
    Natarajan E, Biradar R S, George J P, 1992. Acute toxicity of pesticides to giant freshwater prawn Macrobrachium rosenbergii(de Man). Journal of Aquaculture in the Tropics, 7(2): 183-187.
    Olafson R W, Kearns A, Sim R G. 1979. Heavy Metal Induction of metallothionein synthesis in the hepatopancreas of the Crab Scylla Serrata. Comparative Biochemistry and Physiology (B), 62: 417-424.
    Palmiter R D, 1994. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proceedings of the National Academy of Sciences of the USA, 91: 1219-1223.
    Pawina Kisawat, Sakchai Chuchot, 1991. Acute toxicity of formalin to giant freshwater prawn (Macrobranchium rosenbergii). King Mongkut's Agricultural Journal (Thailand), 9(3): 45-52.
    Piyan B T, Law A T, Cheah S H, 1985. Toxic levels of mercury for sequential larval stages of Macrobrachiwn rosenbergii (de Man). Aquaculture, 46: 353-359.
    Portmann J E, 1969. Toxicity test data. Proceeding Report I.C.E.S., Charlottenlund Slot, DK-2920 Charlottenlund, Denmark 1969. In: Cooperative Research Report, (Ser.A),No.l3:43.
    Portmann J E, K W Wilson, 1971. The toxicity of 140 substances to the brown shrimp and other marine animals. Shellfish Information Leaflet, No. 22: 1-38. Ministry of Agriculture. Fisheries and Food, Fisheries Laboratory, Burnham on Crouch, UK.
    Prasong Rotloetchanya, 1984. Acute toxicity of copper and cadmium in single and mixed salt solutions to juvenile giant freshwater prawn, Macrobrachium rosenbergii (de Man). Proceeding of the 22nd National Conference of Kasetsart University: Environmental Science Secton, Bangkok (Thailand), 5-1-22.
    Pratoomchat B, Sawangwong P, Machado J, 2003. Effects of controlled pH on organic and inorganic composition in haemolymph, epidermal tissue and cuticle of mud crab Scylla serrata. Journal of Experimental Zoology, 295A: 47-56.
    Quinn D J, C E Lane, 1966. Ionic regulation and Na+-K+ stimulated ATP'ase activity in the land crab, Cardisoma guanhumi. Comparative Biochemistry and Physiology, 19: 533-543.
    Rabin H, 1970. Hemocytes, hemolymph, and defense-reactions in crustaceans. Journal of the Reticuloendothel Society, 7: 195-207.
    Rainbow P S, 1990. Heavy metal levels in marine invertebrates. In: Furness R W and Rainbow P S (Editors), Heavy Metals in the Marine Environment. CRC Press, Boca Raton. FL, 67-69.
    Raymont J E G, Morris R J, Ferguson C F. 1975. Variation in amino acid composition of lipid-free residues of marine animals from the Northeast of Atlantic. Journal of Experimental Marine Biology and Ecology, 17(3): 261-267.
    Ringwood A H, 1991. Short-term accumulation of cadmium by embryos, larvae, and adults of a Hawaiian bivalve, Isognomon californicum. Journal of Experimental Marine Biology and Ecology, 149: 55-56.
    Roesijadi, G 1981. The significance of the low molecular weight M-like proteins in marine invertebrates, current states. Marine Environmental Research, 4: 167-180.
    S Casine, M H Depledge, 1997. Influence of Cooper, Zinic and Iron on Cadmium Accumulation in the Taltitrid Amphipod, Platorchestia Platensis, Bulletin of Environmental Contamination and Toxicology, 59: 500-506.
    Shivers R R, 1976. Exocytosis of neurosecretory granules from the crustacean sinus gland in freez-fracture. Journal of Morphology, 150: 227-252.
    Simkiss K, 1983. Lipid solubility of heavy metals in saline solutions. Journal of Marine Biological Association of the United Kingdom, 63: 1-7.
    Viarengo A, M Pertica, G Mancinelli, 1981. Synthesis of Cu-binding proteins in different tissues of mussels exposed to the metal. Marine Pollution Bulletin, 12:247-350.
    Weatherby T M, 1981. Ultrastructure study of the sinus gland of the crab, Cardisoma carnifex. Cell and Tissue Research, 220: 293-312.
    Wei Rong-bian, Qiu Gao-feng, Lou Yun-dong, 2002. Nerve terminal types of sinus gland and neurosecretory cell types of X-organ in crab Eriocheir sinensis. Zoological Research, 23: 226-232.
    White S L, Rainbow Ps, 1984. Regulation of zinc concentration by Palaoemon elgans(crustacean: decapoda): zinc flux and effects of temperature zinc centration and moulting. Marine Ecology Progress Series, 16: 135-147.
    Winge D, Krasno J, Colucci A V, 1973. Cadmium accumulation in rat liver: Correlation between bound metal and pathology. In Trace Elements Metabolism in Animals (Hoekstra W G, Suttie J W, Ganther H E et al. Eds). University Park Press, Baltimone, 2: 500-501.
    Winner R W, M P Farrel, 1976. Acute and chronic toxicity of cotter to four species of Daphnia. Journal of the Fisheries Research Board of Canada, 33: 1685.
    Wong C K, 1992. Effects of chromium, copper, nickel and zinc on survival and feeding of the cladoceran Moina macropora. Bulletin of Environmental Contamination and Toxicology, 49: 539-599.
    Wright D A, 1977. The effect of calcium on cadmium uptake by the shore crab Carcinus maenas. Journal of Experimental Biology, 10: 571-579.
    Yang Z B, Zhao Y L, Yang J, 2005d. Effects of copper in water on microstrcture of gills and hepatopancreas and its effect on content of metallothionein in Eriocheir sinensis. (prepared).
    Zabel T F, 1993. Diffuse sources of pollution by heavy metals. Journal of Industrial Waste Management Evaluation Model (IWEM), 7: 513-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700