用户名: 密码: 验证码:
短小芽孢杆菌碱性蛋白酶酶学特性及其酶基因克隆、表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着畜牧业的可持续发展,我国蛋白质饲料持续短缺,新型蛋白质饲料资源的开发变得越来越紧迫。新型蛋白质饲料的开发技术主要是利用现代生物技术将一些利用率低的饲料资源或非常规饲料资源变为新型蛋白饲料,提高其利用率。现代生物技术在开发利用新型蛋白质饲料方面主要应用发酵工程技术生产发酵饲料、酶工程技术生产酶解饲料等。无论是发酵工程技术还是酶工程技术都涉及微生物资源或微生物酶资源的开发与利用。利用发酵技术或酶技术在以羽毛粉为对象开发新型蛋白质饲料的过程中筛选各种细菌、真菌和放线菌。其中细菌以芽孢杆菌属细菌居多,该菌属细菌多数产碱性蛋白酶,已有大量的碱性蛋白酶被开发应用于各种工业生产。目前,在羽毛角蛋白降解方面还仅处于酶的分离与纯化的研究,如何采用基因工程技术提高酶的产量是当今的研究热点。本试验在本实验室前期微生物菌种资源筛选的基础上对比研究血红蛋白降解菌短小芽孢杆菌NJM4和角蛋白降解菌短小芽孢杆菌WHK产蛋白酶性质,从中选取产蛋白酶活力较高的WHK4菌株作为研究素材,对其蛋白酶进行分离纯化,并对蛋白酶的酶学性质进行了研究,深入了解该酶的特性,为今后的开发利用奠定理论基础。同时对于如何提高NJM4的产酶能力本试验采用基因重组的方式研究碱性蛋白酶基因在大肠杆菌和短小芽孢杆菌中的表达。试验分为以下6个部分:
     试验一、短小芽孢杆菌NJM4与WHK4生物学特性的比较研究
     系统地比较研究了短小芽孢杆菌—-NJM4与WHK4生物学的差异,分析两者产蛋白酶差异的原因。首先比较两者的培养、生理生化特性,然后比较分析了两者在相同培养基内对产蛋白酶活力及其对不同底物活力的影响。在基因水平上比较了两者碱性蛋白酶基因以及该基因上游启动子区域的基因序列。结果显示:两者生理生化特性无差异,在培养特性方面则有差异,WHK4的生长速度较快,在相同的培养基中24 h内产生芽孢,而NJM4在相同的时间内未形成芽孢;在产酶方面,WHK4在血红蛋白和羽毛粉发酵培养基内产蛋白酶活力高于NJM4,在营养丰富的LB培养基中产蛋白酶活力却低于NJM4。分别以不同底物测定的蛋白酶活力WHK4均高于NJM4。在基因水平上两者碱性蛋白酶基因1152bp的碱基中虽然只有一个碱基不同,但其对应的密码子所编码的氨基酸属同一个氨基酸,启动子区域49bp的基因序列完全相同。试验表明WHK4较NJM4产酶能力强,酶活力高,是产蛋白酶的优良菌株。
     试验二、短小芽孢杆菌WHK4以羽毛粉为底物产蛋白酶条件的优化
     探索WHK4以羽毛粉为底物产酶的最佳条件和最佳培养基组成。以羽毛粉发酵培养基为基础,首先采用单因子试验研究底物浓度、初始pH、接种量、外加碳源、外加氮源对WHK4产酶活力的影响。在单因子试验的基础上采用正交试验设计对底物浓度、温度、初始pH、接种量、外加(NH4)2SO4、外加麦芽糖进行优化。结果显示:WHK4最佳的产酶条件为初始pH 7.38,菌龄16 h,接种量5%,37℃。最佳的培养基组成为:1 L基础发酵培养基,40.0 g羽毛粉,10.0g(NH4)2SO4和10.0 g麦芽糖。在优化的条件下WHK424 h产蛋白酶活力为90U·mL-1。WHK4培养条件及培养基的优化为其产蛋白酶的分离纯化奠定了基础。
     试验三、短小芽孢杆菌WHK4蛋白酶的分离、纯化及酶学特性的研究
     为得到WHK4酶的纯品,更好的了解该酶的酶学特性,本试验在优化的产酶条件下首先制备粗酶液,然后采用50%饱和硫酸铵盐析,沉淀用1/10体积的PBS溶液溶解后透析除盐,经Sephdex G-100凝胶过滤层析分离出蛋白酶。对所得的蛋白酶进行SDS-PAGE酶谱分析,测定酶最适作用温度和pH,对酶学特性进行测定。结果显示:WHK4以羽毛粉为底物发酵液中含有两种蛋白酶,其中一种蛋白酶分子量约为50 KD,该酶作用最适温度为60℃,最适pH为8.5, Fe3+、Cu2+、SDS、EDTA对蛋白酶活力有较强的抑制作用,Ba2+、Ca2+、Mg2+和Fe2+以及有机溶剂DMSO、异丙醇、甘油,表面活性剂TritonX-100对蛋白酶活力几乎无影响。表明该酶属于金属蛋白酶,在耐有机溶剂生物催化剂方面有潜在的应用前景,在洗涤工业生产中也有较大的应用价值。
     试验四、短小芽孢杆菌NJM4碱性蛋白酶基因的表达与活性分析
     为提高碱性蛋白酶的产酶量,本试验研究其在大肠杆菌中的表达。采用同源克隆的方法设计碱性蛋白酶基因扩增引物,用高保真DNA聚合酶进行PCR扩增,然后将扩增的PCR产物和克隆载体pUC57经XbaⅠ和BamHⅠ(?)双酶切后连接构建pUC57-AP,转化TOP10感受态细胞,涂布LB/Amp/X-gal/IPTG培养基平板,挑选白色菌落进行PCR鉴定,然后测序分析。将PCR产物和表达载体pET-28b经NcoⅠ和BamHⅠ双酶切后连接构建pET-28b-AP,转化BL21(DE3)感受态细胞,涂布LB/Kan/酪蛋白培养基平板,挑选有水解圈的阳性克隆进行PCR鉴定,对阳性克隆用IPTG诱导4h后测定发酵液的蛋白酶活力。结果表明,克隆得到的NJM4碱性蛋白酶基因全长为1152 bp,编码383个氨基酸,成熟肽276个氨基酸。从LB/Kan/酪蛋白平板培养基筛选有透明水解圈的菌株,命名为BL21(DE3)-28b-AP。该菌株经IPTG诱导后发酵上清液蛋白酶活力为不含重组子菌株的37.3倍。成功地构建具有蛋白酶活力的高效表达的菌株为碱性蛋白酶的批量生产奠定了基础。
     试验五、短小芽孢杆菌NJM4原生质体转化研究
     探索短小芽孢杆菌原生质体的形成条件及其转化的可行性。采用溶菌酶脱壁制备原生质体,进行单因子试验,显微镜观察酶的浓度、作用温度,酶解时间对原生质体形成率的影响。在最适宜的条件下制备原生质体,在Ca2+的环境中用PEG6000诱导pUC57-AP重组质粒的转化,采用含氨苄青霉素的DM3培养基平板筛选转化子。结果显示,用含氨苄青霉素的DM3培养基平板筛选的转化子经含氨苄青霉素的液体培养基培养后其蛋白酶的活力几乎丧失。表明短小芽孢杆菌NJM4易于原生质体化,可以实现外源质粒转化,是一株潜在的基因工程受体菌。
     试验六、分光光度计法检测原生质体形成过程的初步研究
     探索芽孢杆菌原生质体形成过程中光密度的变化与原生质体形成率之间的关系。采用分光光度计测定原生质体形成过程中溶液的OD600nm,同时采用镜检计数测定原生质体形成率,分别绘制光密度变化曲线和原生质形成曲线,采用SPSS统计软件中Curve Estimation分析两者之间的相关性并进行曲线拟合。结果显示:原生质体溶液光密度的变化和原生质体的形成率之间存在显著的相关性(R2=0.985,P<0.01),随着原生质体形成率的增加溶液光密度逐渐减小,两者之间呈负相关,3次多项式曲线拟合最佳(Y=0.746-0.01t+1.83×10-4t2-1.171×10-6t3)。表明原生质体形成过程中通过动态监测原生质体溶液光密度的变化可实现原生质体形成率的定量分析。
Along with the sustainable development of animal husbandry, protein feeds is continuing shortage in our country, so exploitation of the new type protein feed resources become more and more urgent. The technology of the new type protein feed exploitation is to utilize modern biotechnoliques to take some low available feeds or uncommon feeds into the new type protein feeds, in order to enhance their availability. The application of the modern biotechniques is to produce fermentated feeds with fermentation engineering and enzymolysis feeds with enzyme engineering. No matter fermentation engineering or enzyme engineering is involved in the development and utilization of the microbial resources or microbial enzyme resources. A number of microorganisms such as bacteria, fungi, actinobacteria.have been isolated from exploitation of the new type feather protein feeds, Most of them belong to Bacillus which produces the alkaline protease. A number of alkaline proteases have been commercially exploited to assist protein degradation in various industrial processes. Many researchs are still only in the separation and purification of protease in aspect of degradation of feather keratin. How to improve the production of protease by technique for gene engineering is hot issue in present research. the comparative study of protease production characteristics between hemoglobin-degrading bacteria NJM4 and keratin-degrading bacteria WHK4 based on the previous research in our laboratory. WHK4 was selected for separating the protease and investigating the characteristics of the protease because of the high protease production. In order to improve the protease production of NJM4, the expression of alkaline protease in Escherichia. coli and Bacillus pumilus was studied by genetic recombination. The details are divided into six parts as follows:
     ExperimentⅠThe comparison of biological characteristics between Bacillus pumilus NJM4 and Bacillus pumilus WHK4 Comparison of biological characteristics between Bacillus pumilus NJM4 and Bacillus pumilus WHK4 were studied systematically, and the differences of protease production betweent them were analyzed. Firstly, the cultural, physiological and biochemical characteristics were compared. Then, the difference of protease production in the same medium and protease activity using the same protein as substrate were compared. The sequences of the alkaline protease gene and the promoter gene of alkaline protease were aligned in gene level. The results showed that there were no differences of physiological and biochemical characteristics between them. However, the growth velocity of WHK4 was faster than the NJM4. The spore of WHK4 was formted in 24 h in the same medium with NJM4,but the NJM4 did not. In aspect of protease production, the protease production of WHK4 was higher than NJM4 in hemoglobin and feather meal fermentation medium and lower than NJM4 in LB medium. The protease activity of WHK4 was always higher than NJM4 using different protein as substrate. There was only one base difference in gene level. It was suggest that WHK4 is a Superior strain for protease production.
     ExperimentⅡOptimization of protease production by Bacillus pumilus WHK4 using the feather meal as subtrate
     To obtain the maximum protease production the optimal conditions were studied. The effects of feather meal concentration, initial pH, inoculum size, the additional carbon source and nitrogen sources on protease activity were studied by single-factor test. Then the feather meal concentration, temperature, initial pH, inoculum size, the additional Ammonium Sulfate and maltose were optimized by orthogonal test based on the single-factor test. The optimal conditions were achieved at initial pH 7.38, inoculum size 5% with 16 h old inoculum, incubation temperature 37℃, and the medium composed of 40 g feather meal,10.0 g (NH4)2SO4,10.0 g maltos in 1000mL based fermentation medium. Maximum protease production attained at the optimal conditions was (90U·mL-1) after 24 h cultivation. Those conditions have established the base for further seperation and purification of protease of WHK4
     ExperimentⅢStudy on seperation, purification and enzymological characteristics of protease in Bacillus pumilus WHK4
     The aim of the experiment was to isolate and investigate the protease of Bacillus pumilus. The crude enzyme was achieved in optimal medium at optimal conditions. The protease was purified from crude enzyme by 50% Ammonium Sulfate, Sephdex G-100 chromatography and analyzed by SDS-PAGE and zymography. The effect of protease activity on temperature and pH was detected and the characteristics of protease were investigated. It showed that there are two proteases in crude enzyme. One protease with molecular weights of 50 KD showed an optimal activity at 60℃and pH8.5. The protease activity was inhibited in presence of Fe3+, Cu2+, SDS and EDTA identifying it as a metalloprotease. There was no effect on protease activity in presence of Ba2+, Ca2+, Mg2+, Fe2+, DMSO, isopropanol, glycerine and Triton X-100. It was suggest that the protease obtained will be potentially applied in organic solvent tolerant biocatalysis and detergent industry.
     Experiment IV Genetic expression and bioactivity of recombinant protein of alkaline protease in Bacillus pumilus NJM4
     The aim of this experiment is to express the alkaline protease in E. coli. Primers were designed by homology-based cloning to clone the alkaline protease gene use pfu DNA Polymerase. The DNA fragment was cloned into pUC57 clone vector by double digest with XbaI and BamHI, respectively, ligated together by T4 DNA ligase, Recombinant plasmid was named pUC57-AP and transformed into E.coli TOP 10. The positive clones with white color were selected from LB/Amp/X-gal/IPTG plate and identification by PCR. Sequencing of pUC57-AP was conducted using both the forward and reverse primers. The DNA fragment was cloned into pET-28b expression vector by double digest with Ncol and BamHI, respectively, ligated together by T4 DNA ligase, Recombinant plasmid was named pET-28b and transformed into E.coli BL21 (DE3). The positive clones with hydrolytic zone were selected from LB/Kan/casein plate and identification by PCR. The protease activity of the positive clone in medium was detected after inducing with IPTG. An 1152 bp length alkaline protease gene which encoded 383 amino acids was successfully cloned. A strain expressing the protease activity was named with BL21 (DE3)-28b-AP. The protease activity by BL21 (DE3)-28b-AP in medium was 37.3 times as large as the initial strain (BL21 (DE3)). The highly expression genetic engineering microorganism laid the groundwork for production of alkaline protease.
     Experiment V Study on the protoplast transformation of Bacillus pumilus NJM4 The conditions of protoplast formation and feasibility of protoplast transformation by plamid in Bacillus pumilus NJM4 was studied. The protoplast was prepared using lysozyme solution to remove the cell wall. The effects of lysozyme concentration, enzymolysis time and enzymolysis temperature on the formation ratio of protoplast were studied according to microscopy. The pUC57-AP was transformed into NJM4 by the induction by PEG 6000 with the presence of Ca2+ in reaction. DM3 medium (containing ampicillin 5μg·mL-1) was used for selected transformants. Amicillin resistance strains without protease activity were selected from DM3 medium. It was suggested that Bacillus pumilus NJM4 is a kind of potential genetic engineering recipient.
     Experiment VI Preliminary Study on Process of Protoplast Formation Monitored by Spectrophotometer
     To explore correlation between optical density and protoplast formation rates in process of bacillus protoplast formation. OD600nm were evaluated by spectrophotometer in process of protoplast formation, meanwhile protoplast formation rates were determined under microscope. Optical density curves and protoplast formation curve were drawn, respectively and analyzed correlation of them by statistical software(SPSS). It was shown that there were highly significant correlations between optical density and protoplast formation rates. It was suggested that quantitative analysis of protoplast formation rates could carried out by monitored the optical density of protoplast solution.
引文
[1]Garrity G M, Bell J A, Lilburn T G. Bergey's Manual of Systematic Bacteriology [M]. New York: Springer,2005:172-178
    [2]Skerman V B D, McGowan V, Sneath P H A. Approved Lists of Bacterial Names [M].Washington: American Society for Microbiology,1989
    [3]Holt J. The Shorter Bergey's Manual of Determinative Bacteriology [M]. Baltimore:Waverly Press,1997:201-207
    [4]廖延熊,傅筱冲.芽孢杆菌属(Bacillus)二分检索表[J].江西科学,1998,16(2):118-125
    [5]刘波,刘文斌,王恬,等.地衣芽孢杆菌对异育银鲫消化机能和生长的影响[J].南京农业大学学报,2005,28(4):80-84
    [6]赵卫红,陈立侨,刘晓利,等.地衣芽孢杆菌和荚膜红假单胞菌对异育银鲫鱼种非特异性免疫机能的影响[J].上海水产大学学报,2008,17(6):757-760
    [7]刘波,谢骏,刘文斌,等.地衣芽孢杆菌与低聚木糖对异育银鲫消化酶活性、肠道菌群及生长的影响[J].大连水产学院学报,2006,21(4):336-340
    [8]沈文英,余东游,李卫芬,等.地衣芽孢杆菌对三角帆蚌消化酶活性、免疫指标和抗氧化指标的影响,动物营养学报,2009,21(1):95-100
    [9]曹煜成,李卓佳,冯娟,等.地衣芽孢杆菌De株之胞外产物对凡纳滨对虾淀粉酶活性影响的体外研究[J].台湾海峡,2007,26(4):536-542
    [10]李卓佳,曹煜成,陈永青,等.地衣芽孢杆菌De株的胞外产物对凡纳滨对虾脂肪酶活性影响的体外实验[J].高技术通讯,2006,16(2):191-195
    [11]李小会,何斌,李雪影,等.地衣芽孢杆菌1411-1羽毛角蛋白固体发酵工艺的优化及角蛋白酶的初步研究[J].江苏农业科学,2009,(6):334-336
    [12]牛天贵,吕莹,蔡同一,等.降解食品中胆固醇的芽孢杆菌T12-1的筛选与应用研究[J].中国农业大学学报,2001,6(1):74-78
    [13]卜祥斌,陈洁,刘红艳,等.沸石粉、寡糖及益生素在黄鸡饲料中的应用效果研究[J].家畜生态学报,2006,27(1):37-40
    [14]Lee J P, Lee S W, Kim C S, et al. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea [J]. Biological Contro,2006,37 (3):329-337
    [15]纪兆林,凌筝,张清霞,等.地衣芽孢杆菌对苹果轮纹病菌和炭疽病菌的抑制及其对贮藏期苹果轮纹病的防治作用[J].果树学报,2008,25(2):209-214
    [16]孙启利,陈夕军,童蕴慧,等.地衣芽孢杆菌W10抗菌蛋白对油菜菌核病菌的抑制作用及防 病效果[J].扬州大学学报(农业与生命科学版),2007,28(3):82-86
    [17]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203-05
    [18]全艳玲.地衣芽孢杆菌对有害微生物的拮抗作用[J].食品科学,2002,23(8):67-69
    [19]Skjolaas K A, Burkey T E, Dritz S S, et al. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2 [J] Veterinary Immunology and Immunopathology,2007,115 (3-4):299-308
    [20]翟少华.肠生态制剂诱导H22细胞凋亡的实验研究[J].徐州医学院学报,2005,25(4):292-294
    [21]Susan van Dyk J, Sakka M, Sakka K. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex [J]. Enzyme and Microbial Technology,2009,45 (5):372-378
    [22]Ramnani Priya, Suresh Kumar S. Concomitant production and downstream processing of alkaline protease and biosurfactant from Bacillus licheniformis RG1:Bioformulation as detergent additive [J]. Process Biochemistry,2005,40 (10):3352-3359
    [23]丁海涛,李顺鹏,沈标.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究[J].土壤学报,2003,40(1):123-129
    [24]Li Z, Zhong S, Lei H Y, et al. Production and applicatio of a bioflocculant by culture of Bacillus licheniformis X14 using starch wastewater as carbon source [J]. Journal of biotechnology,2008, 136 (supplement1):313
    [25]戴晋军,罗毅,周小辉禽用枯草芽孢杆菌对白羽肉鸡生长性能的影响[J].饲料研究,2009,(8):30-32
    [26]谭荣炳,师昆景,吴灵英.枯草芽孢杆菌制剂对肉鹅早期生长和养分存留的影响[J].饲料工业,2008,29(8):9-11
    [27]李俊波成廷水吕武兴枯草芽孢杆菌制剂对蛋鸡生产性能、蛋品质和养分消化率的影响[J].中国家禽,2009,31(4):15-17
    [28]孙瑞锋,步长英,李同树.菊糖和枯草芽孢杆菌对肉鸡肠道菌群数量及排泄物氨气散发量的影响[J].华北农学报,2008,23(B06):252-256
    [29]朱五文,施伟领,陈晓峰.不同剂量枯草芽孢杆菌制剂对断奶仔猪饲养效果试验[J].畜牧与兽医,2007,39(8):32-33
    [30]王振华.活枯草芽孢杆菌制剂在奶牛生产上的应用研究[J].安徽农业科学,2008,36(27):11771-11773
    [31]Tseng D Y, Ho P L, Huang S Y. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20 [J]. Fish and Shellfish Immunology,2006,26 (2):339-344
    [32]闫茂仓,林志华,刘连生.枯草芽孢杆菌对泥蚶及养殖底泥中细菌总数和弧菌总数的影响[J].海洋科学,2009,(10):36-39
    [33]Zhang Q. Ma H M, Mai K S, et al. Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus [J]. Fish & Shellfish Immunology,2010, (In Press, Available online 3 April 2010)
    [34]陈文典,李义,郝向举.枯草芽孢杆菌微胶囊制剂对中华绒螯蟹免疫机能及抗病力的影响[J].中国饲料,2009,(5):33-36
    [35]Hagelin G, Oulie I, Raknes A, et al. Preparative high-performance liquid chromatographic separation and analysis of the Maltacine complex- a family of cyclic peptide antibiotics from Bacillus subtilis [J]. Journal of Chromatography B,2004,811 (2):243-251
    [36]孙卉,师俊玲,杨保伟.枯草芽孢杆菌BS-421发酵液对扩展青霉的抑菌特性[J].西北农业学报,2009,(5):98-104
    [37]王伟伟,郭志波,安德荣.枯草芽孢杆菌W-QX-1碱性蛋白酶的性质及其抗烟草花叶病毒活性初步研究[J].西北农业学报,2008,17(6):187-192
    [38]Chen Z J, Heng C, Li Z Y, et al. Expression and secretion of a single-chain sweet protein monellin in Bacillus subtilis by sacB promoter and signal peptide [J]. Applied Microbiology and Biotechnology,2007,73 (6):1377-1381
    [39]Yokoi H, Natsuda O, Hirose J, et al. Characteristics of a biopolymer flocculant produced by Bacillus sp.PY-90 [J]. Journal of Fermentation and Bioengineering,1995,79(4):378-380
    [40]方世纯,郝瑞霞,鲁志强.枯草芽孢杆菌(Bacillus subtilis)降解萘的动力学研究[J].高校地质学报,2007,13(4):682-687
    [41]Toledo F L, Calvo C, Rodelas B et al. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities [J]. Systematic and Applied Microbiology,2006,29 (3):244-252
    [42]慧明,窦丽娜,田青,等.枯草芽孢杆菌的应用研究进展[J].安徽农业科学,2008,36(27):11623-11627
    [43]连玲丽,谢荔岩,郑璐平,等.短小芽孢杆菌EN16诱导番茄对细菌性青枯病的抗性[J].福建农林大学学报(自然科学版),2009,38(5):460-464
    [44]张滨,马美湖,万佳蓉.短小芽孢杆菌(Bacillus pumilus)基因鉴定及畜血Hb降解技术[J]. 食品与生物技术学报,2008,27(3):68-72
    [45]吴琦,李军,李陈.一株产胶原蛋白酶短小芽孢杆菌的分离与鉴定[J].中国皮革,2007,36(17):16-19
    [46]周丽兴,万树青,陈泽鹏.短小芽孢杆菌(Bacillus umilis)对精喹禾灵的降解特性[J].农药,2006,45(9):627-629
    [47]Battan B, Sharma J, Dhiman S S et al. Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry [J]. Enzyme and Microbial Technology,2007,41 (6-7):733-739
    [48]de Barjac, Frachon E. Classification of Bacillus thuringiensis strains [J]. BionControl,1990,35 (2):233-240
    [49]吴昌标,邱津津,关雄.苏云金芽孢杆菌及其在动物疾病防治上的应用[J].中国农学通报,2008,24(7):1721
    [1]Kumar C G, Takagi H. Microbial alkaline proteases:from a bioindustrial viewpoint [J]. Biotechnology Advances,1999,17:561-594
    [2]Shimogaki H, Takeuchi K, Nishino T, et al. Purification and properties of a novel surface-active agent-and alkaline-resistant protease from Bacillus sp. Y [J]. Agricultural and Biological Chemistry,1991,55:2251-2258
    [3]Yamagata Y, Abe R, Fugita Y, et al. Molecular cloning and nucleotide sequence of the 90k serine protease gene, hspK, from Bacillus subtilis (natto) No.16 [J]. Current Microbiology,1995,31: 340-344
    [4]Gupta R, Beg Q K, Lorenz P. Bacterial alkaline protease: molecular approaches and industrial applications [J]. Applied Microbiological Biotechnology,2002,59:15-32
    [5]Neurath H. Evolution of proteolytic enzymes [J]. Science,1984,224:350-357
    [6]Nakamura T, Yamagata Y, Ichishima E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto) [J]. Bioscience Biotechnology Biochemistry,1992,56:1869-1871
    [7]李祖明,李鸿玉,荣瑞芬.碱性蛋白酶生产菌的育种及其液态发酵条件的研究[J].食品研究与开发,2008,29(5):19-23
    [8]El-Refai H A, AbdelNaby M A, Gaballa A, et al. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity [J]. Process Biochemistry,2005,40(7):2325-2332
    [9]褚忠志,于新,毕阳.产碱性蛋白酶菌株Zkud202-4发酵条件的研究[J].仲恺农业技术学院学报,2008,21(1):14-18
    [10]Puri S, Beg Q K, Gupta R. Optimization of alkaline protease production from Bacillus sp. using response surface methodology. Current Microbiology,2002,44:286-290
    [11]梁惠仪,郭勇.纤溶酶产生菌原生质体形成与再生条件的探索[J].现代食品科技,2007,23(5):23-25
    [12]杨文博,冯耀宇.利用淀粉生产碱性蛋白酶工程菌的构建[J].微生物学通报,1994,21(5):273-278
    [13]Fleming A B, Tangney M, Jorgensen P L, et al. Extracellular enzyme synthesis in spore-deficient strain of Bacillus licheniformis [J]. Applied and Environmental Microbiology,1995,61: 3775-3780
    [14]Bierbaum G, Karutz M, Botz D W, et al. Production of protease with Bacillus licheniformis mutants insensitive to repression of exoenzyme biosynthesis [J]. Applied Microbiology and Biotechnology,1994,40:611-617
    [15]Ellis R J, Morgan P, Weightman A J, et al. Cultivation-dependent and -independent approaches for determinging bacterial diversity in heavy-metalcontam inated soil [J]. Applied and Environmental Microbiology,2003,69:3223-3230
    [16]Li Y Z, Chen Q. The sources of marine microorganisms and their bioactive metabolites [J]. China Biotechnology,2000,20 (5):28231
    [17]Lorenz P, Liebeton K, Niehaus F. Novel enzymes from unknown microbes-direct cloning of the metagenome [C]. International Symposium on Biocatalysis and Biotransformation,2001,5: 379
    [18]Neklyudov A D, Ivankin AN, Berdutina A V. Properties and uses of protein hydrolysates (review) [J]. Applied and Environmental Microbiology,2000,36:452-459
    [19]吴定,刘长鹏,路桂红,等.固定化碱性蛋白酶制备麦胚降血压肽研究[J].食品科学,2009,30(23):255-258
    [20]Matsui T, Matsufuji H, Seki E, et al. Inhibition of angiotensin I converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscles [J]. Bioscience Biotechnology Biochemistry,1993,57:922-925
    [21]管刚,张俊,赵静,等.应用碱性蛋白酶制取牦牛血红素工艺的研究[J].食品科技,2009,34(10):133-136
    [22]马林.两株角蛋白降解NJY1和NJM4纯种及混合固态发酵[D].南京:南京农业大学,2009:19-29
    [23]陶艳华.高效血红蛋白降解菌的分离鉴定及其血红蛋白降解酶的一些性质研究[D].南京:南京农业大学,2009:19-29
    [24]Dayanandan A, Kanagaraj J, Sounderraj L, et al. Application of an alkaline protease in leather processing: an ecofriendly approach [J]. Journal of Cleaner Production,2003,11 (5):533-536
    [25]王海燕.脱毛蛋白酶产生菌的选育及其碱性蛋白酶基因的克隆与表达[D].成都:四川大学,2006
    [26]Kim W, Choi K, Kim Y, et al. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from chungkook-jangs [J]. Applied and Environmental Microbiology,1996,62:2482-2488
    [27]Kudrya V A, Simonenko I A. Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis [J]. Applied Microbiology and Biotechnology,1994,41:505-509
    [28]Dalev P G. Utilization of waste feathers from poultry slaughter for production of a protein concentrate [J]. Bioresource Technology,1994,48:265-267
    [29]胡学智.蛋白酶的生产和应用[J].江苏调味副食品,2007,24(1):1-5
    [30]王海亭,孔谧.黄海黄杆菌YS-9412-130低温碱性蛋白酶的应用研究Ⅱ.洗涤剂用包覆型酶的配伍特性与应用效果评价[J].海洋水产研究,2002,23(3)30-36
    [1]周东坡,平文祥.微生物原生质体融合育种[M].哈尔滨:黑龙江科学技术出版社,1990:10-27
    [2]葛岚,程树培.跨界原生质体融合产物细胞遗传物质整合过程中DNA含量变化[J].南京大学学报(自然科学),1997,33(3):381-385
    [3]李尔炀,郑晓林,史乐文.工程菌处理高纯二甲醚生产废水的研究[J].环境科学与技术,2003,26(2):47-48
    [4]Yari S, Inanlou D N, Yari Fatemeh. Effects of protoplast fusion on 8-endotoxin production in Bacillus thuringiensis SPP. (H14) [J]. Iranian Biomedical Journal,2002,6(1):25-29
    [5]黄勤妮,刘佳,宋秀珍,等.大肠杆菌和枯草芽孢杆菌的原生质体融合[J].首都师范大学学报(自然科学版),2002,23(1):55-59
    [6]Nakazawa N, Iwano K. Efficient selection of hybrids by protoplast fusion using dryg resistance markers and reporter genes in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering,2004,98 (5):353-358
    [7]Bakhtiari M R, Fallahpour M, Foruzanfakhr P. Protoplast fusion technique in Tolypocladium inflatum for increasing Cyclosporine production [J]. Journal of Biotechnology,2007,131 (2): 135-136
    [8]郑重谊,谢达平,谭周进,等.影响微生物原生质体融合技术的因素[J].湖南农业科学,2006,(4):35-38
    [9]张莉滟,黄勇,张德纯.双歧杆菌原生质体的制备与回复研究[J].微生物学杂志,2004,24(2):24-26!
    [10]Hanson L E, Howell C R. Biocontrol efficacy and other characteristics of protoplast fusants beteween Trichoderma koningii and T. virens [J]. Mycological Research,2002,106(3):321-328
    [11]袁铸,王忠彦,胡承.地衣芽孢杆菌JF-20菌原生质体的形成及其再生的最佳条件[J].四川大学学报,2001,38(5):723-727
    [12]卢志军,刘琛,刘西莉.枯草芽孢杆菌HL29与根瘤菌XJ83097原生质体融合及融合子特性的初步研究[J].植物病理学报,2005,35(6):108-110
    [13]假丝酵母原生质体系工程与再生的研究[J].遗传,1996,18(2):43-45
    [14]Zhang X X, Jia H L, Wu B. Genetic analysis of protoplast fusant Xhhh constructed for pharmaceutical wastewater treatment [J]. BioresourceTechnology,2009, (100):1910-1914
    [15]张学炜,王笑梅,李明春.以潮霉素B抗性为选择标记的深黄被孢酶原生质体转化[J].生物工程学报,2007,23(3):462-466
    [16]王永杰,李顺鹏.原生质体转化构建有机磷农药降解工程菌[J].应用与环境生物学报,1999,5 (Suppl):162-165
    [17]Sivakumar U, Kalaichelvan G, Ramasamy K. Protoplast fusionin Streptomyces sp. for increased production of laccase and associated ligninolytic enzymes [J]. World Journal of Microbiological Biotechnology,2004,20:563-568
    [18]John R P, Gangadharan D, Nampoothiri K M. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes [J]. BioresourceTechnology,2008,99: 8008-8015
    [1]陶艳华,姚大伟,王政,等.血红蛋白降解菌的分离筛选与鉴定[J].食品与生物技术学报,2009,28(6)854-857
    [2]聂康康,姚大伟,郭俊清,等.一株高效羽毛降解菌株的分离与鉴定[J].氨基酸和生物资源,2010,32(01):18-20
    [3]王继贵.临床生化检验[M].长沙:湖南科学技术出版社,1996:289-290
    [4]余瑞元,袁明秀,陈丽蓉,等.生物化学实验原理和方法[M].北京:北京大学出版社,2005:240-242
    [5]尹国强,崔英德,黎新明,等.碱发水解羽毛蛋白的工艺条件研究[J].食品科学,2005,26(9):347-349
    [6]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学技术出版社,2001:349-370
    [7]Holt J. The Shorter Bergey's Manual of Determinative Bacteriology [M]. Baltimore: Waverly Press,1997:201-207
    [8]中华人民共和国商业部.SB/T 1037-1999蛋白酶活力测定法[S].北京:中国标准出版社,2004
    [9]Miyaji T, Otta Y, Nakagawa T, Watnabe T, et al. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1 [J]. Lett Appl Microbiol.,2006,42:242-247
    [10]Pan J, Huang Q, Zhang Y. Gene cloning and expression of an alkaline serine protease with dehairing function from Bacillus pumilus [J]. Curr Microbiol,2004,49 (3):165-169
    [11]杨生玉,王刚,沈永红,等.微生物生理学[M].北京:化学工业出版社,2007,279-283
    [12]Kanekar P P, Nilegaonkar S S, Sarnaik S S, et al. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India [J]. Bioresour Technol.,2002,85:87-93
    [13]Bernal C, Cairo J, Coello N. Pufrification and characterization of a novel exocellular keratinase from Kocuria rosea [J]. Enzyme Microb Tech,2006,38:49-54
    [14]Wang S L, Hsu W T, Liang T W, et al. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium [J]. Bioresour Technol,2008,99:5679-5686
    [15]杨春晖,王海燕.短小芽孢杆菌碱性蛋白酶基因启动子的克隆、鉴定及其应用[J].遗传,2007,29(7):874-880
    [1]郭勇.酶工程原理与技术[M].北京:高等教育出版社,2005:46-49
    [2]El-Refai H A, AbdelNaby M A, Gaballa A, et al. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity [J]. Process Biochemistry,2005,40(7):2325-2332
    [3]Miyaji T, Otta Y, Nakagawa T, Watnabe T, et al. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1 [J]. Lett Appl Microbiol.,2006,42:242-247
    [4]Ravichandra P, Subhakar C, Annapurna J. Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042:Effect of aeration and agitation regimes [J]. Biochem Eng J,2007,34 (2):185-192
    [5]Kanekar P P, Nilegaonkar S S, Sarnaik S S, et al. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India [J]. Bioresour Technol,2002,85:87-93
    [6]Suntornsuk W, Suntornsuk L. Feather degradation by Bacillus sp. FK 46 in submerged cultivation[J]. Bioresour Technol,2003,86:239-243
    [7]Genckal H, Tari C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats [J]. Enzyme and Microbial Technology,2006,39 (4) 703-701
    [8]□alik P,□alik G, Ozdamar T H. Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: use of citric acid as the carbon source [J]. Enzyme Microb Tech 1998,23: 451-461
    [9]王政.降解羽毛角蛋白菌株的分离鉴定及角蛋白酶发酵生产的研究[D].南京:南京农业大学,2009:53-64
    [10]Cheng S W, Hu H M, Takaqi H. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1 [J]. Biosci Biotechnol Biochem,1995,59 (12) 2239-2243
    [1]Haddar H O, Zaghloul T I, Saeed H M. Biodegradation of native feather keratin by Bacillus subtilis recombinant strains [J]. Biodegradation,2009,20:687-694
    [2]Correa A P F, Daroit, D J, Brandelli A. Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment [J]. Inter Biodeterioration and Biodegradation,2010, 64 (1):1-6
    [3]Alexandre J M, Walter O B S, Renata G. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities [J].Appl Environ Microbiol,2005,71 (1):594-596
    [4]杨得坡,Chaumont J P,彭劲甫,等.角蛋白酶在真菌侵染皮肤过程中的作用[J].微生物学杂志,2002,20(02):51-53
    [5]王海亭,孔谧.黄海黄杆菌YS-9412-130低温碱性蛋白酶的应用研究Ⅱ.洗涤剂用包覆型酶的配伍特性与应用效果评价[J].海洋水产研究,2002,23(3)30-36
    [6]Gushterova A, Vaileva-Tonkova E. Kertinase production by newly isolated Antarctic catinomycete strains [J]. Word J Microbiol & Biotech,2005,21:831-834
    [7]Rani G, Priya R. Microbial keratinases and their prospective applications: an overview [J]. Appl Environ Microbiol,2006,70:21-33
    [8]Gushterova A, Vaileva T E, Dimova E, et al. Kertinase production by newly isolated Antarctic catinomycete strains [J]. Word J Micobiol Biotech,2005,21:831-834
    [9]Thys R C S, Brandelli A. Purification and properties of a keratinolytic metalloprotease from Mirobacterium sp. [J].J Appl Microbiol,2006,101:1259-1268
    [10]Tatineni R, Doddapaneni K K, Potumarthi R C. Purification and characterization of an alkaline keratinase from Streptomyces sp. [J]. Bioresour Tech,2008,99:1596-1602
    [11]聂康康,姚大伟,郭俊清,等.一株高效羽毛降解菌株的分离与鉴定[J].氨基酸和生物资源,2010,32(01):18-20
    [1]Sellami-Kamoun A, Haddar A, Ali N E, et al. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations [J]. Microbiol Res,2008,163 (3):299-306
    [2]Gupta R. Beg Q K. Lorenz P. Bacterial alkaline proteases:molecular approaches and industrial applications [J]. Appl Microbiol and Biotech,2002,59:15-32
    [3]肖香,钱静压,崔凤杰,等.碱性蛋白酶降解小麦面筋蛋白制备抗氧化产物的工艺优化[J].食品研究与开发,2009,30(8):38-41
    [4]吴定,刘长鹏,陆桂红,等.固定化碱性蛋白酶制备麦胚降血压肽研究[J].食品科学,2009,30(23)255-258
    [5]陈秀金,侯颖,张敏,等.2079碱性蛋白酶水解脱铬革屑的研究[J].中国皮革,2007,36,(19):47-50
    [6]李尔炀.多基因转化技术[M].北京:化学工业出版社,2006:32-38
    [7]Genckal H, Tari C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats [J]. Enzyme Microb Tech,2006,39 (4) 703-701
    [8]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].3版.黄培堂译.北京:科学技术出版社,2002:103-105
    [9]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].3版.黄培堂译.北京:科学技术出版社,2002:27-30
    [10]Novagen.pET System Manual [M].11th edition. Darmstadt:EMD Biosciences,2005:10-21
    [11]Nakamura T, Yamagata Y, Ichishima E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis(natto) [J]. Bioscience Biotechnology and Biochemistry,56:1869-1871
    [12]Novagen.pET System Manual [M].11th edition. Darmstadt:EMD Biosciences,2005:37-52
    [1]孙君社.酶与酶工程及其应用[J].北京:化学工业出版社,2006:119-122
    [2]Puntambekar U S, Mukherjee S N, Ranjekar.Toxicity of Bacillus thuringiensis and protoplast fusant against Spodoptera litura (F.) [J]. Lett Appl Microbiol.,1995.21:348-350
    [3]潘延云,张贺迎,周艳芬.原生质体融合构建高产碱性蛋白酶工程菌[J].应用与环境生物学报,2002,8(4):422426
    [4]周海霞,阚振荣,张双凤.产α-ALDC的枯草芽孢杆菌原生质体融合条件[J].河北大学学报(自然科学版),2004,24(3):288-292
    [5]李尔炀.多基因转化技术[M].北京:化学工业出版社,2006:32-38
    [6]Fodor K, Alfoldi L. Fusion of protoplasts of Bacillus megaterium [J]. Pro Natl Acad Sci,1976, 73 (6):2147-2150
    [7]Schaeffer P, Cami B, Hotchkiss R D. Fusion of bacterial protoplasts [J].Pro Natl Acad Sci,1976, 73 (6):2151-2155
    [8]Dillon A J P, Camassola M, Henriques J A P, et al. Generation of recombinants strains to cellulase production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum [J].Enzyme Microb Tech,2008,43:403-409
    [9]Prabawathy V R, Mathivanan N, Sagadevan E. Intra-strain protoplast rusion enhances carboxymethyl cellulase activity in Trichoderma reesei [J]. Enzyme Microb Tech,2006,38: 719-723
    [10]张学炜,王笑梅,李明春.以潮霉素B抗性为选择标记的深黄被孢酶原生质体转化[J].生物工程学报,2007,23(3):462-466
    [11]王永杰,李顺鹏.原生质体转化构建有机磷农药降解工程菌[J].应用与环境生物学报,1999,5 (Suppl):162-165
    [12]袁铸,王忠彦,胡承.地衣芽孢杆菌JF-20菌原生质体的形成及其再生的最佳条件[J].四川大学学报,2001,38(5):723-727
    [13]梁惠仪,郭勇.纤溶酶产生菌原生质体形成与再生条件的探索[J].现代食品科技,2007,23(5):23-25
    [14]汪玉松,邹思相,张玉静.现代动物生物化学[M].北京:高等教育出版社,2005:341-342
    [15]杨文博,冯耀宇.利用淀粉生产碱性蛋白酶工程菌的构建[J].微生物学通报,1994,21(5):273-278
    [1]Sara S, Jacinto L, Graciela S et al. Hydrolysis of orange peel by a pectin lyase-overproducing hydrid obtained by protoplast fusion between mutant pectinolytic Aspergillus flavipes and Aspergillus niveus CH-Y-1043 [J]. Enzyme Microb Tech,2009,44:123-128
    [2]张学炜,王笑梅,李明春,等.以潮霉素B抗性为选择标记的深黄被孢霉原生质体转化[J].生物工程学报,2007,23(3):463-466
    [3]潘延云,张贺迎,周艳芬,等.原生质体融合构建高产碱性蛋白酶工程菌[J].应用与环境生物学报,2002,8(4):422-426
    [4]黄勤妮,刘佳,宋秀珍,等.大肠杆菌和枯草芽孢杆菌的原生质体融合[J].首都师范大学学报(自然科学版),2002,23(1):55-59
    [5]梁惠仪,郭勇.纤溶酶产生菌原生质体形成与再生条件的探索[J].现代食品科技,2007,23(5):23-25
    [6]白春杰,钱锐,林峰,等.应用分光光度法测定气管炎疫苗原液配制浓度方法的研究[J].微生物学免疫学进展,2009,37(4):23-27
    [7]李华,黄科,罗华.酒酒球菌技术方法研究[J].酿酒科学,2007,(3):30-31
    [8]李学贵,袁生.微生物转化过程中利用OD值实时监测细菌生物量变化的研究[J].南京师范大学报(自然科学版),2003,26(4):90-93
    [9]乔军,孟庆龄,贾桂珍.运用OD值法进行细菌计数的研究[J].中国家禽,1996,(4):26-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700