用户名: 密码: 验证码:
辽东半岛结缕草种群动态及其生活史格局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结缕草(Zoysia japonica Steud.)是一种典型的无性系草本植株,既具有地下根状茎又具有地上匍匐茎。我国大面积的野生结缕草分布在山东半岛和辽东半岛,是当地宝贵的乡土资源植物。本文以分布在辽东半岛的结缕草为研究对象,通过对结缕草实验无性系建立、观测和天然种群两个生长季的取样研究,分析了结缕草实验无性系的扩展动态规律及内在扩展机理,分析了不同生境条件下结缕草天然种群的动态及机理,按着结缕草生活史模型,阐述了结缕草种群的生活史格局。所得主要结论如下:
     1.在栽培条件下,经过一个生长季的生长,结缕草实验无性系大小的可塑性较大,但均遵循着规律性的时间生长和空间扩展。随着生长时间的进程,无性系分株构件种群以指数函数规律增加,匍匐茎主茎长度以直线函数规律伸长,主茎间隔子数量则以对数函数规律增加。在空间扩展上,无性系半径随着时间以直线函数规律延伸,面积随着时间以指数函数规律扩展,分株种群的数量则随着半径的延伸以指数函数规律增加,随着面积的扩展以直线函数规律增加,主茎间隔子数量随着半径的延伸以直线函数规律增加,随着面积的扩展以对数函数规律增加。
     2.对于天然结缕草种群,在两个生长季内未火烧样地的分株构件种群波动较小,火烧样地的在6、7月份出现密度峰值,波动较大,林下样地的分株密度在2005年的5月和10月出现峰值,在2006年波动很小。3个样地结缕草芽构件种群的变化趋势相似,在10月份达到密度峰值。火烧样地和未火烧样地的苗构件种群在生长季内的变化趋势相似,林下样地的则与其分株种群的变化趋势相似。结缕草根状茎的长度在3个样地中均是在生长季的两端高,在生长季的中间期较低。
     3.未火烧样地的枯落物生物量随着时间逐渐减少,而火烧样地枯落物生物量在整个生长季内虽有上下波动但幅度不大。在生长季内各月份火烧样地的其他植物种株数、生物量均小于未火烧样地的。火烧清除了样地的枯落物,改善了结缕草生长的生态条件,同时火烧能够导致其他植物种的植物体及种子死亡,而对结缕草自身的影响较小,因为结缕草主要靠营养繁殖,其主要繁殖体根状茎储藏在地下,分株直立茎的分生生长点基本贴于地表或潜在地下,而且受到叶鞘的包覆保护。这样,火烧样地结缕草种群各构件的数量整体上均高于未火烧样地的。林下样地由于受到光照和土壤条件的限制,各构件的数量整体上低于未火烧样地的。
     4.在未火烧样地、火烧样地和林下样地各月份的结缕草种群阶段结构中,整体上营养株所占的百分比均最高,平均64.5%以上,芽所占的百分比次之,平均为18.5%,除了生殖株以外苗所占的百分比最小,平均为14.2%。在结缕草种群生物量结构中,整体上茎生物量所占的百分比均最高,平均为51.7%,叶鞘生物量所占的百分比次之,平均为24.9%,叶片生物量的百分比最小,平均为23.3%。
     5.火烧样地在5-6月间结缕草种群的增长率最大(λ=1.1247),而在9-10月间种群增长率(λ=0.557)明显小于1。未火烧样地在8-9月间种群增长率最大(λ=1.1374),而在9-10月间种群增长率(λ=0.674)明显小于1。林下样地在8-9和9-10月间种群增长率分别为λ=1.1141和λ=1.1904,在整个生长季未出现负增长(λ <1)。3个样地结缕草种群生活史的主路径均是“营养株路径”,生长季的各月份间营养株的保持对种群增长率的贡献最大,维系着种群的相对稳定。种群增长率的增加主要来自于转移等级的繁殖和生长对种群增长率的贡献。
     6.营养繁殖在无性系植物种群生活史格局中处于核心地位。结缕草种群营养繁殖格局在天然结缕草种群和实验结缕草种群中明显不同。天然结缕草种群的营养繁殖体由根状茎、匍匐茎和分株直立茎的分蘖节组成,而且以根状茎为主,根状茎对芽和苗的贡献率分别大于95%和90%;实验结缕草种群的营养繁殖体由分蘖节和匍匐茎组成,二者扮演着缺一不可、同等重要的作用。实验结缕草种群营养繁殖力随着时间以指数函数增加;天然结缕草种群营养繁殖力随着时间在不同时期内大小差异较大,且不同样地间繁殖力的时间格局存在不同,火烧样地和未火烧样地在生殖期以前和果后营养期均表现出较高的营养繁殖力,而林下样地在生长季的前期其营养繁殖力较低,至7-8和9-10月份间各出现一个峰值。
     7.不同生境结缕草种群有性生殖株的数量特征主要受控于环境资源的限制,但不同生境结缕草种群有性生殖株的株高、花序长的不同变化及其比率关系蕴涵着其个体生殖生长具有自身调节策略。火烧并未改变每花序种子数、花序长、生殖生长比率、每花序种子重及生殖分配与生殖株高度间的定量关系,但火烧极显著地增加了生殖株密度,极显著地降低了结缕草每花序种子数,对千粒重没有显著影响,种子单位产量是未火烧的1.85倍。火烧样地土壤种子库中结缕草种子的数量也相应地高于未火烧样地的。
     8.牛、羊通过自己的粪便散布结缕草种子,牛粪、羊粪中结缕草种子的数量分别为101.70、6.88粒/g,牛粪和羊粪中结缕草种子的发芽率均高于对照的,牛粪中建植的种苗数是134.40株/牛粪样,羊粪中建植的种苗数是0.17株/羊粪球。羊粪的质地对种苗的建植有不利的影响,牛粪的没产生不利的影响,而且在自然界中牛粪样块还可以作为更新斑块,更有利于结缕草种群的有性更新。
     9.结缕草种群的总生物量及各构件生物量均随着种群密度的增大而以线性函数增加,各构件生物量与总生物量以及各构件生物量间亦均表现为线性函数关系,总生物量增量的56.43%分配给分株,43.57%分配给根状茎,分株构件生物量增量的49.77%分配给叶片,50.23%分配给叶鞘,叶片、叶鞘和根状茎构件生物量的积累按1:1.1:1.6比例形成。
Zoysia japonica Steud. is a typical clonal grass plant with underground rhizomesand aboveground stolons, which is mainly distributed in the Liaodong and JiaozhouPeninsulas in China. By establishing the experimental Z. japonica clone and samplingthe natural Z. japonica populations, this paper analysed the dynamics of Z. japonicaclone and populations, and studied the life history patterns of Z. japonica populations.The results indicated that:
     1. The ramets of Z. japonica clones increased with time by exponent function,the main stolon elongated with time by linear function, and the number of spacers onthe main stolon increased with time by logarithm function. The radius and area ofclones expanded with time by linear and exponent function, respectively.
     2. The number of Z. japonica ramets changed little in un-burned site andunder-forest site in2006, and large in burned site and in under-forest site in2005. Thechanging trends of bud numbers were similar in three sites. The length of rhizomeswas longer at the beginning and end of the growth season than in the middle of thegrowth season in these three sites.
     3. The mass of litter decreased in un-burned site and almost did not change inburned site with time. The number and biomass of other species were both lower inburned site than un-burned site. The burning improved the ecological condition andcould lead other species and their seeds to die. Thus, the numbers of all Z. japonicamodules were higher in burned site than un-burned site. The modular numbers werelower in under-forest site than un-burned site due to the limitation of light and soil.
     4. In the structure of stage classes, the percentage of vegetative adult ramets waslargest (more than64.5%), and the those of buds and juvenile ramets were18.5%and14.2%, respectively. In the structure of biomass, the percentage of rhizome mass waslargest (51.7%), and the those of buds and foliage mass were24.9%and23.3%,respectively.
     5. The population growth rate (λ) of Z. japonica in burned site was highest(λ=1.1247) between May and June, and less than one (λ=0.557)betweenSeptember and October. The population growth rate in un-burned site was highest(λ=1.1374)betweenAugust and September, and less than one (λ=0.674)betweenSeptember and October. The population growth rate in under-forest site was highest(λ=1.1904) between September and October, and more than one in all growthseason. The main life history pathway was adult ramet pathway‘in three sites, whichmeant that the stasis of adult ramets made the biggest contribution to λ to keep thepopulation relatively steady. The increased λ resulted from the contributions ofvegetative propagation and growth of transition classes.
     6. The propagules were composed of the rhizomes, stolons and ramets. Thecontribution rates of rhizome to buds and juvenie ramets were more than95%and90%in the natural Z. japonica populations, respectively. However, in experimental Z. japonica clones, the propagules were only composed of the stolons and ramets whichplayed the same important roles. The vegetative fertility of experimental Z. japonicaclone was increased with time by exponent function. The fertility of the natural Z.japonica populations varied between different periods and its time patterns weredifferent among sites.
     7. Burning extremely significantly decreased the number of seed per spike, andinsignificantly affected the weight of1000seeds, but extremely significantlyincreased the density of reproductive ramets. Thus, the seed yield in burned site was1.85times as high as in non-burning site. The quantitative relationships of thosequantitative characters to the height of reproductive ramets were same in burned andun-burned sites, respectively.
     8. The number of Z. japonica seeds in droppings of cattle and sheep per gramwas101.7and6.88, respectively. The ingestions of cattle and sheep increased thegermination percentage, germination energy, and vigor index of Z. japonica seeds,and shortened their germination time, but did not affect the viability; A number ofseedlings (134.40seedlings/pat) were established from cattle dung pat. A fewseedlings (0.17seedlings/pellet) were established from sheep pellets. These resultssuggest that cattle and sheep have the relevant potential of endozoochory as Z.japonica seed dispersers.
     9. The total biomass and the biomass of modules all increased with thepopulation size(population density), the biomasses of modules also increased withtotal biomass, and the biomasses of leaf, leaf sheath modules also increased with thebiomass of ramets all by the linear equation. The56.43%and43.57%of theincreased total biomass was allocated to ramets and rhizoms, and the50.23%and49.77%of the increased biomass of ramet was allocated to leaf sheath and leaf,respectively.
引文
[1]祝廷成,钟章成,李建东.植物生态学[M].北京:北京教育出版社,1988.
    [2]周纪纶,郑师章,杨持.植物种群生态学[M].北京:高等教育出版社,1992.
    [3]钟章成.植物生态学研究进展[M].重庆:西南师范大学出版社,1997.
    [4]杨允菲,祝廷成.植物生态学[M].北京:高等教育出版社,2011.
    [5] Harper J L. Population biology of plants[M]. London: Academic Press,1977.
    [6] Silvertown JW,Charlesworth D. Introduction to plant population biology[M].Oxford:Blackwell,2001.
    [7]李根前.无性系植物种群生态学研究进展[J].西南林学院学报,2000,20(4):243-249.
    [8]钟章成,曾波.植物种群生态学研究进展[J].西南师范大学学报(自然科学版),2001,26(2):230-236.
    [9]刘庆,钟章成.无性系植物种群生态学研究进展及有关概念[J].生态学杂志,1995,14(3):40-45.
    [10]陆大根,岳春雷,黄承才.无性系植物种群动态研究进展[J].浙江林业科技,1999,19(5):57-60.
    [11] Michaell L C, Hans Damman. Clonal growth and ramet performance in thewoodland herd, Asarum canadense[J]. J. Ecol.,1997,85:883-897.
    [12] Doust J L, et al. Modules of production and reproduction in deciduous clonalshrub Rhus typhina [J]. Ecology,1988,69(3):741-750.
    [13] Maillette L. Seasonal model of modular growth in plants [J]. J. Ecol.,1992,80:123-130.
    [14] Bazzaz F A, Harper J L. Demographic analysis of the growth of Linumusitafissimus [J]. New Phytol,1977,8:193-208.
    [15] Eriksson O. Patterns of ramet survivorship in clonal fragments of thestoloniferous plant Potentilla anserine [J]. Ecology,1988,69(3):736-740.
    [16] Hara T Van, der Toor J, Mook J H. Growth dynamics and size structure ofshoots of Phragmites australis, a clonal plant [J]. J. Ecol.,1993,81:47-60.
    [17] Eriksson O. Ramet behavior and population growth in the clonal herbPotentilla anserine [J]. J. Ecol.,1988,76:522-536.
    [18] Fitter A H. Fractal characterization of root system architecture [J]. Func. Ecol.,1992,6:632-635.
    [19]王昱升,李景信.羊草种群无性系生长格局的研究[J].植物生态学与地植物学报,1992,16(3):234-242.
    [20]王昱生.关于无性系植物生理整合作用研究的现状及其应用前景[J].生态学杂志,1994,3(2):57-60.
    [21]李振清.克隆植物构型及其对资源异质性的响应[J].植物学报,1999,41(8):893-895.
    [22]董鸣,阿拉腾宝,西邢雪荣.根茎禾草沙鞭的克隆基株及分株种群特征[J].植物生态学报,1999,23(4):302-310.
    [23]张淑敏,陈玉福,董鸣.匍匐茎草本绢毛委陵菜对局部遮荫的克隆可塑性[J].植物学报,2000,42(1):89-94.
    [24]陈玉福,董鸣.毛乌素沙地根茎灌木羊柴的基株特征和不同生境中的分株种群特征[J].植物生态学报,2000,24(1):40-45.
    [25]张淑敏,陈玉福,于飞海,等.林下和林窗内绢毛匍匐萎灵菜的克隆生长和克隆形态[J],植物生态学报,2003,27(4):567-571.
    [26]董鸣,张淑敏,陈玉福.匍匐茎草本蛇莓对基质养分条件的克隆可塑性[J].植物学报,2000,42(5):518-522.
    [27]董鸣.切断根茎对根茎禾草沙鞭和赖草克隆生长的影响[J].植物学报,1999,41(2):194-198.
    [28]董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报,1996,38(10):828-835.
    [29]何维明,董鸣.分蘖型克隆植物黍分株和基株对异质养分环境的等级反应[J].生态学报,2002,2(2):169-175.
    [30]于飞海,董鸣,张称意.匍匐茎草本金戴戴对基质盐分含量的表型可塑性[J].植物生态学报,2002,26(2):140-148.
    [31]葛颂,王珂青,董鸣.毛乌素沙地根茎灌木扬柴的遗传多样性和克隆结构[J].植物学报,1999,41(3):301-306.
    [32]王昱升,李景信.羊草种群无性系生长格局的研究[J].植物生态学与地植物学报,1992,16(3):234-242.
    [33]王昱生.羊草种群无性系种群动态的初步研究[J].生态学报,1993,13(4):291-299.
    [34]杨允菲,郑慧莹,李建东.根茎禾草无性系种群年龄结构的研究方法[J].东北师大学报自然科学版,1998,(1):59-53.
    [35]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37(2):147-153.
    [36]杨允菲,郑慧莹,李建东.不同生态条件下羊草种群分蘖植株年龄结构的比较分析[J].生态学报,1998,18(3):302-308.
    [37]杨允菲,王生忠,郎惠卿.松嫩平原湿地菰无性系种群结构的研究[J].草业学报,1999,8(3):66-71.
    [38]杨允菲,郑慧莹,松嫩平原假苇拂子茅无性系种群的年龄结构[J].草业学报,2000,9(3):8-13.
    [39]杨允菲,郑慧莹,李建东.放牧干扰对根茎冰草无性系种群年龄结构的影响[J].植物生态学报,2001,25(1):71-75.
    [40]杨允菲,李建东.松嫩平原寸草苔无性系种群分株的结构[J].草业学报,2001,10(1):35-41.
    [41]杨允菲,李建东.东北草原羊草种群单穗数量性状的生态可塑性[J].生态学报,2001,21(5):752-758.
    [42]杨允菲,张宝田.松嫩平原羊草种群营养繁殖的季节动态及其生物量与密度关系的分析[J].植物学报,1992,34(6):443-449.
    [43]杨允菲,祝玲.松嫩平原十五种多年生禾草种群营养繁殖体冬眠特性的分析[J].草业学报,1994,3(2):26-31.
    [44]杨允菲,李建东.松嫩平原碱化草甸獐毛种群有性生殖的数量特征及营养繁殖的研究[J].草业学报,1994,3(4):12-19.
    [45]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37(2):147-153.
    [46]杨允菲,祝玲,李建东.松嫩平原碱化草甸朝鲜碱茅种群生殖特性的定量分析[J].草地学报,1995,3(1):35-41.
    [47]杨允菲,李建东.松嫩平原几种根茎型禾草种群的营养繁殖特性及其持续更新分析[J].草业学报,1996,5(2):43-48.
    [48]杨允菲,郑慧莹,李建东.松嫩平原牛鞭草无性系种群的营养繁殖策略[J].草业学报,1997,6(2):36-40.
    [49]陈利顶,傅伯杰.干扰的类型、特征及其生态学意义[J].生态学报,2000,20(4):581-586.
    [50] Garren, K. H. Effects of fire on vegetation of the southeastern United States[J].Bot. Rev.1943,9:617-654.
    [51] Daubenmire, R. Ecology of fire in grasslands[J]. Adv, Ecol. Res.1968,5:209-266.
    [52] Gill, A.M. Fire and the Australian flora: a review[J]. Australian Forestry.1975,38:4-25.
    [53]周道玮.草地火生态学研究进展[M].长春:吉林科学技术出版社,1988.
    [54]内蒙古农牧学院主编.草原管理学[M].北京:农业出版社,1991,337-339.
    [55]陈忠林.延长结缕草草坪绿期的研究[J].辽宁大学学报,2004,31(3):265-267.
    [56]陈庆诚,赵松岭.甘肃南部山地草甸植被烧荒演替的研究[J].生态学报,1981,1(3):215-220.
    [57]董厚德,宫利君,王艳,等.中国结缕草生态学及其资源开发与应用[M].北京:中国林业出版社,2001.34-62.
    [58]陈佐忠.我呼吁:评―国草‖[J].四川草原,2004,No.10:1-2.
    [59]董令善,田有凤.胶州市结缕草资源及其开发利用的探讨[J].中国草地,1992,14(1):6-8.
    [60]董厚德,宫莉君.中国结缕草属———新变型[J].植物研究,1997,17(4):364-365.
    [61]刘建秀,刘永东,贺善安,等.中国暖地型草坪草物种多样性及其地理分布特点[J].草地学报,1998,6(1):45-52.
    [62]李亚,刘建秀,向其伯.结缕草属种质资源研究进展[J].草业学报,2002,11(2):7-14.
    [63] Beard J B, S-J Sifers, S D Griggs. Genetic diversity in low temperaturehardiness among35majorwarm-season turfgrass genotypes[J]. Progress reportTexas agricultural experiment station,1991:4881-4921.
    [64] Qian Y L, J D Fry, W S UpHan. Rooting and drought avoidance ofwarm-season turfgrass and tall fescue in Kansas[J]. Crop Sci,1997,37:906-910.
    [65] Loiselle BA, Blake JG (1999). Dispersal of melastome seeds by fruit-eatingbirds of tropical forest understory[J]. Ecology,80:330–336.
    [66] Marcum K B. Salinity tolerance mechanisms of six C4turfgrasses[J]. J AmSoc Hort Sci,1994,119(4):779-784.
    [67] Marcum K B, M C Englke, S J Morton,et al. Rooting characteristics andassociated resistance of zoysiagrass[J]. Agron J,1995,87(3):534-538.
    [68]李亚,耿蕾,刘建秀.中国结缕草属植物抗盐性评价[J].草地学报,2004,12(1):8-11.
    [69]刘建秀,贺善安,陈守良.华东地区结缕草属植物形态类型及其坪用价值[J].草地学报,1997,5:(1):42-47.
    [70]周嘉友,黄昌禄,张巨明.结缕草交播不同量高羊茅试验研究[J].草业学报,1998,7(3):56-61.
    [71] Lee G J, Y K Yoo, K S Kim. Comparative salt tolerance study in Koreanlawngrass. II. interspecific comparison among eight Zoysiagrass (Zoysia spp)[J]. Jour Kor Soc Hort Sci.1994,35(2):178-185.
    [72] Dunn J H. Thatch and Quality of Meyer Zoysia in Relation to Management[J],Agron. J.1981,73(6)49-52.
    [73]陈忠林,王艳,李超.不同处理技术对结缕草返青时间的影响[J].辽宁大学学报自然科学版,1999,26(2):188-190.
    [74]徐礼根,谭志坚,谭继清.美国结缕草品种来源和应用区域[J].园艺学报,2004,31(1):124-129.
    [75]柴明良,胡叔良.结缕草试管增殖与筛选[J].植物生理学通讯,1995,(3):24-29.
    [76]郭海林,刘建秀.结缕草属植物育种进展概述[J].草业学报,2004,13(3):106-112.
    [77]齐春辉,韩烈保,梁小红.日本结缕草转基因技术研究进展[J].草业学报,2003,12(6):53-57.
    [78]孙本信.结缕草种子的采集[J].辽宁林业科技,1992(1).
    [79]韩建国.结缕草种子的休眠机理[J].植物杂志,1994,(1):29-30.
    [80]韩建国.结缕草种子打破休眠方法的研究[J].草地学报,1996,4(4):246-251.
    [81]孙雨珍,胡小荣,陈辉.结缕草种子发芽温度及打破休眠方法的研究[J].中国草地,1996,18(1):42-45.
    [82]郑应顺辽东半岛自然地理[M],沈阳:辽宁教育出版社,1987.
    [83]王兆明,张学勇土壤种子库中结缕草种子分离的漂浮浓缩法研究[J],草业与畜牧,2008(7):11-12,14.
    [84] Lefkovitch LP. The study of population growth in organisms grouped bystages[J]. Biometrics,1965,21,1–18.
    [85] Bruna EM, Oli MK. Demographic effects of habitat fragmentation on a tropicherb: life-table response experiments[J]. Ecology.2005,86,1816–1824.
    [86] Koop AL, Horvitz CC. Projection matrix analysis of the demography of aninvasive, nonnatitive shrub (Ardisia elliptica)[J].Ecology.2005,86,2661–2672.
    [87] Hyatt LA, Araki S. Comparative population dynamics of an invading speciesin its native and novel ranges[J]. Biological Invasions.2006,8,261–275.
    [88] Xavier FP, Hans DK, Javier R. An extended flowering and fruiting season fewdemographic effects in a mediterranean perennial herb[J]. Ecology,2002,83(7):1991-2004.
    [89]杨允菲,张宝田.松嫩平原不同生境条件下羊草无性系的生长规律[J].应用生态学报,2006,(17):1419-1423.
    [90]张学勇杨允菲邵奎龙蔡秀芳.辽东半岛不同生境结缕草无性系种群构件生物量结构[J].草业科学,2006,23(4):78-81.
    [91]杨允菲,张宝田,张春华.松嫩平原赖草无性系构件的形成与空间扩展实验[J].应用生态学报,2007,(18):977-982.
    [92]郭力华,杨允菲,张宝田.松嫩平原光稃茅香实验无性系的营养繁殖力及生长规律[J].草业学报,2004,31(4):57-61.
    [93] Hulbert LC. Fire and litter effects in undisturbed bluestem prairie in Kansas[J].Ecology.1969,50:874–877.
    [94] Hulbert LC. Causes of fire effects in tallgrass prairie[J]. Ecology.1988,69:46–58.
    [95] Daubenmire R. Ecology of fire in grassland[J]. Adv.Ecol.Res.1968,5:209–66.
    [96] Peet MR, Anderson R, Adams MS. Effect of fire on big bluestemproduction[J]. American Midland Naturalist.1975,94:15–26.
    [97] Raison RJ. Modification of the soil environment by vegetation fires, withparticular reference to nitrogen transformation: a review[J]. Plant andSoil.1979,51:73–108.
    [98] Knapp AK, Seastedt TR. Detritus accumulation limits productivity of tallgrassprairie[J]. BioScience.1986,36:662–668.
    [99] Dudley JL, Lajtha K. The effects of prescribed burning on nutrient availabilityand primary production in sandplain grasslands[J]. American MidlandNaturalist.1993,130:286–298.
    [100] Brewer JS. The relationship between soil fertility and fire stimulated floralinduction in two populations of grass-leaved golden aster, Pityopsisgraminifolia[J]. Oikos.1995,74:45–54.
    [101] Daubenmire R. Ecology of fire in grassland[J]. Adv.Ecol.Res.1968,5:209–66.
    [102] Johnson SR, Knapp AK. The influence of fire on Spartina pectinata wetlandcommunities in a northeastern Kansas tallgrass prairie[J]. Can. J. Bot.1995,73:84–90.
    [103] Morrison DA, Cary GJ, Pengelly SM, Ross DG, Mullins BJ, Thomas CR,Anderson TS. Effects of fire frequency on plant species composition ofsandstone communities in the Sydney region: Inter-fire interval andtime-since-fire[J]. Aust. J. Ecol.1995,20:239–47.
    [104] Lonsdale WM, Braithwaite RW, Lane AM, Farmer J. Modelling the recoveryof a annual savanna grass following a fire-induced crash[J]. Aust. J. Ecol.1998,23:509–13.
    [105] Menges ES, Kimmich J. Microhabitat and time-sincefire: Effects ondemography of Eryngium cuneifolium (Apiaceae), a florida scrub endemicplant[J]. Am. J. Bot.1996,83:185–91.
    [106] Peláez DV, Bóo RM, Elía OR, Mayor MD. Effect of fire intensity on budviability of three grass species native to central semi-arid Argentina[J]. J. AridEnviron.1997,37:309–17.
    [107]王继朋,王贺,张福锁,毛达如.打破结缕草种子休眠的方法研究[J].草业科学,2004,21(2):25-29.
    [108]韩建国.结缕草种子的休眠机理[J].植物杂志,1994,(1):29-30
    [109]张学勇,杨允菲,王兆明.火烧对结缕草种群有性生殖的影响[J].草地学报,2006,14(4):324-327.
    [110]张春华,杨允菲.松嫩平原光稃茅香种群生殖分孽株数量特征分析[J].草业学报,2001,10(3):2-7.
    [111]张春华,杨允菲.松嫩平原寸草苔种群生殖分株的种子生产与生殖分配策略[J].草业学报,2001,10(2):7–13.
    [112]韩建国.实用牧草种子学[M].北京:中国农业出版社,1997.182-185.
    [113] Asquith NM, Terborgh J, Arnold AE, Riveros CM. The fruits the agouti ate:Hymenaea courbaril seed fate when its disperser is absent[J]. J. Trop. Ecol.,1999,15:229–235.
    [114] Howe HF. Implications of seed dispersal by animals for tropical reservemanagement[J]. Biol. Conserv.,1984,30:261–281.
    [115] Janzen DH. Herbivores and the number of species in tropical forests[J]. Am.Nat.,1970,104:501–528.
    [116] Cain LM, Milligan BG, Strand AE. Long-distance seed dispersal in plantpopulation[J]. Am. J. Bot.,2000,87:1217-1227.
    [117] Myers JA, Vellend M, Gardescu S, Marks PL. Seed dispersal by white-taileddeer: implications for long-distance dispersal, invasion, and migration ofplants in eastern North America[J]. Oecologia,2004,139:35-44.
    [118] Pakeman RJ. Plant migration rates and seed dispersal mechanisms[J]. J.Biogeogr.,2001,28:795-800.
    [119] Pakeman RJ. Consistency of plant species and trait responses to grazing alonga productivity gradient: a multi-site analysis[J]. J. Ecol.,2004,92:893-905.
    [120] Vellend M, Myer J A, Gardescu S, Marks PL. Dispersal of Trillium seeds bydeer: implications for long-distance migration of forest herb[J]. Ecology,2003,84:1067-1072.
    [121] Myers JA, Vellend M, Gardescu S, Marks PL. Seed dispersal by white-taileddeer: implications for long-distance dispersal, invasion, and migration ofplants in eastern North America[J]. Oecologia,2004,139:35-44.
    [122] Jones RM, Simao Neto M. Recovery of pasture seed ingested by ruminants.3.The effect of the amount of seed in the diet and of diet quality on seedrecovery from sheep[J]. Aus. J. Experimental Agriculture,1987,27:253–256.
    [123] Steyaert SMJG, Bokdam J, Braakhekke WG, Findo S. Endozoochorical plantseed dispersal by red deer (Cervus elaphus) in the Pol'ana Biosphere Reserve,Slovakia[J]. Ekológia,2009,28:191–205.
    [124] Calvi o-Cancela M. Ingestion and dispersal: direct and indirect effects offrugivores on seed viability and germination of Corema album (Empetraceae)[J].Acta Oecologica,2004,26:55-64.
    [125] Sánchez-Cordeiro V, Martínez-Gallardo R. Postdispersal fruit and seedremoval by forest-dwelling rodents in a lowland rainforest in Mexico[J]. J.Trop. Ecol.,1998,14:139–151.
    [126]张如莲等.不同温度处理对臂形草种子发芽速率的影响[J].四川草原,2005,116(7):27-28.
    [127]姜丽,韩建国,孙彦.通气浸种处理对不同质量结缕草种子发芽和活力的影响[J].中国草地,2005,27(4):25-29.
    [128]韩建国,钱俊芝,刘自学. PEG渗调处理改善结缕草种子活力的研究[J].中国草地,2000,22(3):22-28.
    [129]张如莲.牧草种子活力的检测方法[J].热带农业科学,2004,24(4):53-55
    [130]韩建国,浦心春,李敏.结缕草种子的休眠机理[J].植物杂志,1994,115:29-30.
    [131]浦心春,韩建国,李敏.结缕草种子脱落酸含量及打破休眠的研究[J].草地学报,1994,2(1):30-35.
    [132] Yeam, D.Y., Mandava, N.B., Terry, P.H., et al. Identification and quantificationof abscisic acid Zoysiagrass seeds and its inhibitory effect ongermination[J].Crop-Science,1998,28(2):317-321.
    [133]郭海林,刘建秀.结缕草种子的休眠机理及其打破休眠的方法[J].种子,2003,第3期:46-48.
    [134] Barnea A, Yom-Tov Y, Friedman J. Does ingestion by birds affect seedgermination[J] Funct. Ecol.,1991,5:394–402.
    [135] Suzanne J. Milton, Dean W. R. JSeeds dispersed in dung of insectivores andherbivores in semi-arid southern Africa [J]. Journal of Arid Environments,2001,47:465-483.
    [136] Malo JE, Suarez F. Herbivorous mammals as seed dispersers in aMediterranean dehesa [J]. Oecologia.1995,104:246-255.
    [137] Haskell JP, Ritchie ME, Olff H. Fractal geometry predicts varying body sizescaling relationships for mammal and bird home ranges[J]. Nature,2002,418:527-530.
    [138] Manzano P, Malo M, Peco B. Sheep gut passage and survival ofMediterranean shrub seeds[J]. Seed Sci. Res.,2005,15:21–28.
    [139] Cosyns E, Claerbout S, Lamoot I, Hoffmann M. Endozoochorous seeddispersal by cattle and horse in a spatially heterogeneous landscape[J]. PlantEcol.,2005,178:149–162.
    [140] Traveset A. Effect of seed passage though vertebrate frugivores‘guts ongermination: a review. Perspect[J]. Plant. Ecol. Evol. Syst.,1998,1:151–190.
    [141] Traveset A, Riera N, Mas RE. Ecology of fruit-colour polymorphism inMyrtus communis and differential effects of birds and mammals on seedgermination and seedling growth[J]. J. Ecol.,2001,89:749–760.
    [142] Traveset A, Riera N, Mas RE. Passage through bird guts causes interspecificdifferences in seed germination characteristics[J]. Funct. Ecol.,2001,15:669–675.
    [143] Calvi o-Cancela M. Ingestion and dispersal direct and indirect effects offrugivores on seed viability and germination of Corema album (Empetraceae)[J]. Acta Oecol.,2004,26:55–64.
    [144]王继朋,王贺,张福锁,等.打破结缕草种子休眠的方法研究[J].草业科学,2004,21(2):25-29.
    [145] Schupp EW. Quantity, quality and the effectiveness of seed dispersal byanimals[J]. Vegetatio,1993,108:15–29.
    [146] Howe HF. Scatter-and clump-dispersal and seedling demography: hypothesisand implications[J]. Oecologia,1989,79:417–426.
    [147] Jaremo J, Tuomi J, Nilsson P, et al. Plant adaptation to herbivory: M utualisticversus antagonistic coevolution [J]. Oikos,1999,84(2):313-321.
    [148] Loiselle BA. Seeds in droppings of tropical fruit-eating birds: importance ofconsidering seed composition[J]. Oecologia,1990,82:404–500.
    [149] Zhang XY, Yang YF, Shao KL. Biomass structure of modules in clonalpopulation of Zoysia japonica in different habitats in Liaodong Peninsula,China[J]. Prata. Sci.,2006,23:78-81.
    [150] Traveset A, Robertson AW, Rodriguez-Perez J. A review on the role ofendozoochory in seed germination[J]. In: Dennis AJ, Schupp EW, Green RJ,Westcott DA (eds) Seed Dispersal and Its Application in a Changing World,CABI Publishing, Wallingford,2007,pp.78–103.
    [151] Meyer GA, Witmer MC. Influence of seed processing by frugivorous birds ongermination success of three North American shrubs[J]. Am. Midl. Nat.,1998,140:129–38.
    [152] Bakker ES, Olff H. Impact of different-sized herbivores on recruitmentopportunities for subordinate herbs in grasslands[J]. J. Veg. Sci.,2003,14:465-474.
    [153] Ocumpaugh WR, Swakon DHD. Simulating grass seed passage through thedigestive system of cattle: A laboratory technique[J]. Crop Sci.,1993,33:1084-1090.
    [154] Olson BE, Wallander RT. Does ruminal retention time affect leafy spurge seedof varying maturity[J] J. Range Manage,2002,55:65-69.
    [155]李红,杨允菲,张成武.松嫩平原碱化草甸野大麦无性系构件的定量分析[J].草业学报,2000,9(4):13-19.
    [156]杨持,杨理.羊草无性系构件在不同环境条件下的可塑性变化[J].应用生态学报,1998,9(3):265-268.
    [157] Porter J R. A modular approach to analysis of plant growth [J]. NewPhytologist,1983,94:183-190.
    [158]杨允菲,张宝田,李建东.松嫩平原人工草地野大麦无性系冬眠构件的结构及形成规律[J].生态学报,2004,24(2):268-273.
    [159] Porter J R. A modular approach to analysis of plant growth [J]. NewPhytologist,1983,94:183-190.
    [160] McGraw J B and Garbutt K. Demographic growth analysis [J]. Ecology,1990,71(3):1199-2004.
    [161] Maillette L. Seasonal model of modular growth in plants [J]. Journal Ecology,1992,80:123-130.
    [162]祝宁,臧润国.刺五加种群生态学的研究——刺五加的种群结构[J].应用生态学报,1993,4(2):113-119.
    [163]张文辉,王延平,康永祥等.太白红杉种群结构与环境的关系[J].生态学报,2004,24(1):41-47.
    [164]杨允菲,张宝田.松嫩平原人工草地野大麦无性系构件的生物量结构及生产规律[J].应用生态学报2004,15(8)∶1378-1382.
    [165]刘佩勇.松嫩平原朝鲜碱茅无性系种群构件生物量结构及相关模型分析[J].应用生态学报2004,15(4)∶543-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700