用户名: 密码: 验证码:
蠕虫捕食污泥过程的生长特性及对污泥性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于蠕虫捕食的污泥减量技术引起了广泛的关注。这一技术通过构建污泥捕食者-蠕虫与污泥之间的食物链关系实现污泥量的削减,具有二次污染低和能耗省的优势。然而,目前的多数研究更关注于污泥减量效能,在蠕虫生长、蠕虫捕食对污泥性质的影响方面的研究较为薄弱,蠕虫在捕食污泥过程中的种群稳定性、捕食对污泥中重金属等成分和胞外聚合物等性质的影响尚不明确,以至于无法完善地指导实际应用的开展。
     本研究将水生寡毛纲蠕虫-霍甫水丝蚓用于捕食污泥,深入研究蠕虫的生长特性和对污泥性质的影响。确定了与蠕虫发育阶段特性相适应的最优环境条件,考察了捕食污泥过程的蠕虫种群生长趋势;解析了典型的重金属在捕食过程中的相分布特征,探讨了污泥中重金属的赋存形式改变和蠕虫生理活性的影响;揭示了蠕虫生物捕食对污泥浓缩脱水性能和微生物活性的影响。
     蠕虫生长特性和种群特征的研究表明:幼蚓个体是蠕虫发育阶段中环境耐力最高的阶段。在温度25℃、虫体初始密度11~12g-worm/L、以2.8m~3/(m~2·h)的间歇曝气供氧、 pH值6.5、钠盐浓度不高于200mg/L、污泥浓度2000~6000mg/L、SRT≤3d,载体厚度为1cm,自然光照的环境条件下,蠕虫生长和捕食污泥效能最优,获得的平均污泥减量效率为297mg-TSS/L/d。在最优条件下,蠕虫的整体生长发育时间为74.6d。在长期的捕食污泥过程中,蠕虫种群增长速率趋近于1,逐渐接近种群生长的稳定状态。
     蠕虫生物捕食对污泥组分影响的研究表明:蠕虫捕食对污泥的碳氮成分没有特异选择性,对无机灰分略有累积;对难降解有机物没有明显的吸收作用。在蠕虫捕食过程中,泥相中4.1%的铜、9.7%的锌和4.8%的铅释放到水相中,同时,11.9%的铜、8.2%的锌和10.5%的铅累积在蠕虫体内;捕食后污泥相重金属含量为捕食前的81%以上。蠕虫捕食后污泥中以活跃化学形态存在重金属比例呈不变或降低趋势,捕食对污泥重金属生物利用度影响较弱。蠕虫捕食引起了有机碳和磷的明显释放。
     蠕虫生物捕食对污泥性质影响的研究表明:蠕虫捕食降低了污泥的SVI值、zeta电位、粘度和结合态胞外聚合物浓度,改善了污泥的凝聚和脱水性能。蠕虫捕食过程通过剥离污泥胶核外部蛋白质结合层,降解污泥可溶性蛋白质物质,促进了污泥调质过程的电中和和压缩双电层作用,提高了污泥的脱水效率。蠕虫对污泥微生物菌群具有随机捕食作用,对污泥的整体微生物群落结构并未造成显著的冲击,捕食后污泥对氨氮和COD污染物具有较好的削减性能。
     综上,霍甫水丝蚓是用于捕食污泥的较理想的微型动物。其生长特性能够适应长期的生物捕食,带来稳定的污泥减量效率和较低的环境影响。本研究结果为生物捕食污泥减量技术的完善和工艺应用的开展提供了理论参考和数据支持。
In the recent years, a novel strategy for sludge reduction through aquaticworms' predation has attracted significant attention. This technology is achieved onthe basis of a food chain from sludge to worms, and has advantages of lower secondpollution and less energy costs. At present, the majority of related researchesfocused on the performance of sludge reduction whereas few studies paid attentionto the worm growth and the influence of worm predation on sludge characteristics.Relatively little is known about the stability of worm population during sludgepredation and the variation in components and properties of sludge such as heavymetal, extracellular polymeric substances and microbial activity. However, all theseinformation are vital to the practical application of the technology.
     In the present study, aquatic oligochaeta worm Limnodrilus hoffmeisteri wasused as predator for sludge reduction. The worm growth and the influencemechanism of predation on sludge characteristics were further investigated. Thisobjective was accomplished by confirming the optimal habitat for the worms atdifferent development stages, describing the growth trend of worm populationduring sludge predation; analyzing the heavy metal distribution among sludge,supernatant and worms, discussing the variation in heavy metal speciation and thechange in worm activities; and revealing the effect mechanism of worm predationon sludge settling.
     The results of growth characteristics of worms showed that newborn wormshad relatively more tolerance to the improper process conditions. The suggestedoptimal process conditions for worm growth and sludge predation included a watertemperature of25°C, an initial worm density in the range of11~12g/L, intermittentaeration with intensity of2.8m~3/(m~2·h), a pH value of6.5, a NaCl concentrationbelow200mg/L, a sludge concentration in the range of2000~6000mg/L, a SRTwithin3days, a carrier thickness of1cm, and the natural light. Under such optimalconditions, the average sludge predation rate was297mg-TSS/L/d, the duration ofworm life cycle was74.6days, and the asymptotic population growth rate of wormpopulation was approximately1during a period of117days, indicating a stablepopulation size in the sludge predation system.
     The results of sludge components during worms' predation showed that theworms had no preference to the carbon or nitrogen in sludge and cannot absorb therefractory organics in their bodies, but had a slight accumulation for inorganiccomponent. More than81%of Cu, Zn and Pb remained in the sludge after predationby the worms, while4.1%,9.7%and4.8%of these metals were released into the liquid, and11.9%,8.2%, and10.5%of that accumulated in worms. The predationdid not increase heavy metal bioavailability in the final sludge as reflected by adecrease or unchanged levels in labile metal, while it caused a release of organiccarbon and phosphorus from solid into supernatant.
     The results of sludge properties during worms' predation showed that thepredation decreased the SVI value, the zeta potential, the viscosity, and the amountof bound-EPS of sludge, enhancing the cohesion and hydrophobicity of the sludge.A part of protein bound to sludge flocs were stripped out by worms while thesoluble protein were degradation, both of which helped for the sludge conditioningthrough neutralizing the charge and compressing the double electrode layer,resulting in a higher dehydrated efficiency. The predation of worms onmicroorganisms of sludge was random with low impact on the microbialcommunity structure. The final sludge also exhibited remarkable performance ofammonia nitrogen removal and COD removal.
     The present study gave a systemic analysis for the process of sludge predationby oligochaeta worm L. hoffmeisteri, and demonstrated that this species is an idealpredator for sludge reduction. The growth characteristics of worms can adapt to thelong-term operation of sludge predation, exhibiting stable sludge reductionefficiency and relatively low effects on predation process and environment. Theresults provide a further understanding for this novel technology for sludgereduction and may help for the development of practical application.
引文
[1] Khursheed A, Kazmi A. Retrospective of ecological approaches to excess sludgereduction [J]. Water research,2011,45(15):4287-4310.
    [2] Han Y, Liu J, Guo X, et al. Micro-environment characteristics and microbialcommunities in activated sludge flocs of different particle size [J]. Bioresourcetechnology,2012,124:252-258.
    [3] Ye F, Liu X, Li Y. Effects of potassium ferrate on extracellular polymericsubstances (EPS) and physicochemical properties of excess activated sludge [J].Journal of hazardous materials,2012,199-200,158-163.
    [4] Smollen M. Evaluation of municipal sludge drying and dewatering with respect tosludge volume reduction [J]. Water Science&Technology,1990,22(12):153-161.
    [5] Xu Z, Zhu W, Li M. Influence of moisture content on the direct gasification ofdewatered sludge via supercritical water [J]. International Journal of HydrogenEnergy,2012,37(8):6527-6535.
    [6] Turovskiy I S, Mathai P. Wastewater sludge processing [M]. Wiley-Interscience,2006.
    [7] Metcalf E, Eddy H. Wastewater engineering—treatment, disposal and reuse [M].Boston: McGraw Hill Inc.,1991.
    [8] Rulkens W. Sustainable sludge management-what are the challenges for thefuture?[J]. Water science and technology: a journal of the International Associationon Water Pollution Research,2004,49(10):11.
    [9] Pathak A, Dastidar M, Sreekrishnan T. Bioleaching of heavy metals from sewagesludge: A review [J]. Journal of environmental management,2009,90(8):2343-2353.
    [10]Vesilind P A. The role of water in sludge dewatering [J]. Water EnvironmentResearch,1994,4-11.
    [11]Vesilind P A, Martel C J. Freezing of water and wastewater sludges [J]. Journal ofEnvironmental Engineering,1990,116(5):854-862.
    [12]Chu C, Lee D. Moisture distribution in sludge: Effects of polymer conditioning [J].Journal of Environmental Engineering,1999,125(4):340-345.
    [13]Chu C P, Lee D J, Chang C Y. Thermal pyrolysis characteristics of polymerflocculated waste activated sludge [J]. Water research,2001,35(1):49-56.
    [14]Chen F, Zhu X L, Yu W. The Transformation of Heavy Metal Be in ActivatedSludge Process [J]. Applied Mechanics and Materials,2012,178:633-636.
    [15]Karvelas M, Katsoyiannis A, Samara C. Occurrence and fate of heavy metals in thewastewater treatment process [J]. Chemosphere,2003,53(10):1201-1210.
    [16]Su M-C, Cha D K, Anderson P R. Influence of selector technology on heavy metalremoval by activated sludge: secondary effects of selector technology [J]. Waterresearch,1995,29(3):971-976.
    [17]Lester J. Significance and behaviour of heavy metals in waste water treatmentprocesses I. Sewage treatment and effluent discharge [J]. Science of the totalenvironment,1983,30:1-44.
    [18]Matamoros V, Nguyen X L, Arias C, et al. Musk fragrances, DEHP and heavymetals in a20years old sludge treatment reed bed system [J]. Water research,2012,46(12):3889-3896.
    [19]周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报,2000,20(3):269-274.
    [20]周立祥,占新华,沈其荣,等.热喷处理污泥及其复混肥的养分效率与生物效应[J].环境科学学报,2001,21(1):95-100.
    [21]翁焕新.污泥无害化、减量化、资源化处理新技术[M].北京:科学出版社,2009.
    [22]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569.
    [23]Lopes M H, Abelha P, Oliveira J S, et al. Heavy metals behavior duringmonocombustion and co-combustion of sewage sludge [J]. Environmentalengineering science,2005,22(2):205-220.
    [24]Chipasa K B. Accumulation and fate of selected heavy metals in a biologicalwastewater treatment system [J]. Waste management,2003,23(2):135-143.
    [25]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用[J].生态学报,2002,22(1):125-133.
    [26]谭丽泉,卢宝光.活性污泥吸附重金属离子的研究[J].韶关学院学报(自然科学版),2005,26(3):73-75.
    [27]方琳,田禹,黄君礼, et al.微波干燥污泥重金属及有机物固定化机理研究[J].哈尔滨工业大学学报,2007,39(10):1591-1595.
    [28]Bin D, Xiaoguang L, LingLing D, et al. Changes of heavy metal speciation duringhigh-solid anaerobic digestion of sewage sludge [J]. Bioresource technology,2012,131:152-158.
    [29]Savonina E Y, Fedotov P, Wennrich R. Fractionation of Sb and As in soil and sludgesamples using different continuous-flow extraction techniques [J]. Analytical andbioanalytical chemistry,2012,403(5):1441-1449.
    [30]Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for thespeciation of particulate trace metals [J]. Analytical chemistry,1979,51(7):844-851.
    [31]Shuman L. Fractionation method for soil microelements [J]. Soil Science,1985,140(1):11-22.
    [32]Kersten M, F rstner U. Speciation of trace metals in sediments and combustionwaste [J]. Chemical speciation in the environment,1995,234-275.
    [33]Leleyter L, Probst J-L. A new sequential extraction procedure for the speciation ofparticulate trace elements in river sediments [J]. International Journal ofEnvironmental Analytical Chemistry,1999,73(2):109-128.
    [34]Ure A, Quevauviller P, Muntau H, et al. Speciation of heavy metals in soils andsediments. An account of the improvement and harmonization of extractiontechniques undertaken under the auspices of the BCR of the Commission of theEuropean Communities [J]. International Journal of Environmental AnalyticalChemistry,1993,51(1-4):135-151.
    [35]Cai Q-Y, Mo C-H, Wu Q-T, et al. Concentration and speciation of heavy metals insix different sewage sludge-composts [J]. Journal of hazardous materials,2007,147(3):1063-1072.
    [36]Fuentes A, Lloréns M, Sáez J, et al. Comparative study of six different sludges bysequential speciation of heavy metals [J]. Bioresource technology,2008,99(3):517-525.
    [37]Chen M, Li X-m, Yang Q, et al. Total concentrations and speciation of heavy metalsin municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south regionof China [J]. Journal of hazardous materials,2008,160(2):324-329.
    [38]马利民,陈玲,吕彦,等.污泥土地利用对土壤中重金属形态的影响[J].生态环境,2004,13(2):151-153.
    [39]Ahlberg G, Gustafsson O, Wedel P. Leaching of metals from sewage sludge duringone year and their relationship to particle size [J]. Environmental pollution,2006,144(2):545-553.
    [40]Song F, Gu L, Zhu N, et al. Leaching behavior of heavy metals from sewage sludgesolidified by cement-based binders [J]. Chemosphere,2013,92:344-350.
    [41]Biganzoli L, Grosso M, Giugliano M, et al. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance [J].Waste Management&Research,2012,30(10):1081-1088.
    [42]王彬全,麻红磊,金余其,等.污泥干化焚烧过程中的能量平衡及经济性分析[J].热力发电,2010,39(007):14-17.
    [43]Fullana A, Conesa J A, Font R, et al. Formation and destruction of chlorinatedpollutants during sewage sludge incineration [J]. Environmental science&technology,2004,38(10):2953-2958.
    [44]Chen T, Yan B. Fixation and partitioning of heavy metals in slag after incinerationof sewage sludge [J]. Waste management,2012,32(5):957-964.
    [45]Wu M-H, Shih K, Lin C-L. Impact of bed particle size distribution on thedistribution of heavy metal during defluidization process in fluidized bedincinerator [J]. Combustion Science and Technology,2012,184(6):811-828.
    [46]Lou R, Wu S, Lv G, et al. Energy and resource utilization of deinking sludgepyrolysis [J]. Applied Energy,2012,90(1):46-50.
    [47]Nogueira T A R, Franco A, He Z, et al. Short-term usage of sewage sludge asorganic fertilizer to sugarcane in a tropical soil bears little threat of heavy metalcontamination [J]. Journal of environmental management,2012,114:168-177.
    [48]王兴润,金宜英,聂永丰.国内外污泥热干燥工艺的应用进展及技术要点[J].中国给水排水,2007,23(8):5-8.
    [49]高颖.利用太阳能进行市政污泥干化处理和生物能源回收[J].太阳能,2010,04:29-32.
    [50]Chen G, Lock Yue P, Mujumdar A S. Sludge dewatering and drying [J]. DryingTechnology,2002,20(4-5):883-916.
    [51]顾忠民,杨殿海.太阳能污泥干化在欧洲的应用[J].四川环境,2008,27(6):93-96.
    [52]Van Loosdrecht M, Henze M. Maintenance, endogeneous respiration, lysis, decayand predation [J]. Water Science and Technology,1999,39(1):107-117.
    [53]Wei Y, Van Houten R T, Borger A R, et al. Minimization of excess sludgeproduction for biological wastewater treatment [J]. Water research,2003,37(18):4453-4467.
    [54]Abelleira J, Pérez-Elvira S I, Portela J R, et al. Advanced Thermal Hydrolysis:Optimization of a Novel Thermochemical Process to Aid Sewage Sludge Treatment[J]. Environmental science&technology,2012,46(11):6158-6166.
    [55] ahinkaya S, Sevimli M F. Sono-thermal pre-treatment of waste activated sludgebefore anaerobic digestion [J]. Ultrasonics sonochemistry,2012,20(1):587-594.
    [56]Savun B, Neis U, Ince N H, et al. Pretreatment of Sewage Sludge by Low-frequency Ultrasound [J]. Journal of Advanced Oxidation Technologies,2012,15(2):374-379.
    [57]Demir O, Filibeli A. Effects of partial ozonation on activated sludge process for theminimization of excess sludge production during biological treatment [J].Desalination and Water Treatment,2013, ahead-of-print:1-13.
    [58]Luo K, Ye Q, Yi X, et al. Hydrolysis and acidification of waste-activated sludge inthe presence of biosurfactant rhamnolipid: effect of pH [J]. Applied microbiologyand biotechnology,2013,97(12):5597-5604.
    [59]Tang Y, Yang Y-l, Li X-m, et al. The isolation, identification of sludge-lysingthermophilic bacteria and its utilization in solubilization for excess sludge [J].Environmental technology,2012,33(8):961-966.
    [60]Kamiya T, Hirotsuji J. New combined system of biological process and intermittentozonation for advanced wastewater treatment [J]. Water Science and Technology,1998,38(8):145-153.
    [61]沈同,王镜岩,赵邦悌.生物化学第二版[M].北京:高等教育出版社.1990.
    [62]Chen G-H, Mo H-K, Liu Y.3,3',4',5-tetrachlorosalicylanilide (TCS) to reducesludge growth in activated sludge culture [J]. Water research,2002,36(8):2077-2083.
    [63]Yang X-F, Xie M-L, Liu Y. Metabolic uncouplers reduce excess sludge productionin an activated sludge process [J]. Process Biochemistry,2003,38(9):1373-1377.
    [64]Zheng G, Li M, Wang L, et al. Feasibility of2,4,6-trichlorophenol and malonicacid as metabolic uncoupler for sludge reduction in the sequence batch reactor fortreating organic wastewater [J]. Applied biochemistry and biotechnology,2008,144(2):101-109.
    [65]Ye F, Shen D, Li Y. Reduction in excess sludge production by addition of chemicaluncouplers in activated sludge batch cultures [J]. Journal of applied microbiology,2003,95(4):781-786.
    [66]Aragón C, Quiroga J, Coello M. Comparison of four chemical uncouplers forexcess sludge reduction [J]. Environmental technology,2009,30(7):707-714.
    [67]Riveranevares J, Wyman J, Vonminden D, et al.2,6-Ditert-butyl-4-nitrophenol(DBNP) a potentially powerful uncoupler of oxidative phosphorylation [J]. EnvironToxicol Chem,1995,14(1):251-256.
    [68]Qiao J L, Wang L, Qian Y F. Fate and residual toxicity of a chemical uncoupler in asequencing batch reactor under metabolic uncoupling conditions [J]. Environmentalengineering science,2012,29(7):599-605.
    [69]Ratsak C, Koouman S, Kooi B. Modelling the growth of an oligochaete onactivated sludge [J]. Water research,1993,27(5):739-747.
    [70]Ratsak C, Maarsen K, Kooijman S. Effects of protozoa on carbon mineralization inactivated sludge [J]. Water research,1996,30(1):1-12.
    [71]Rensink J, Rulkens W. Using metazoa to reduce sludge production [J]. WaterScience and Technology,1997,36(11):171-179.
    [72]Lee N M, Welander T. Use of protozoa and metazoa for decreasing sludgeproduction in aerobic wastewater treatment [J]. Biotechnology Letters,1996,18(4):429-434.
    [73]Ratsak C H. Grazer induced sludge reduction in wastewater treatment [D].Amsterdam: Vrije Universiteit te Amsterdam PhD thesis,1994.
    [74]Ratsak C H. Effects of Nais elinguis on the performance of an activated sludgeplant [J]. Hydrobiologia,2001,463(1-3):217-222.
    [75]Rensink J, Corstanje R, Pal J. A newapproach to sludge reduction by metazoan [J].10th European Sewage and Reuse Symposium, IFAT, Munich,1996:339-364.
    [76]李博,生态学.生态学[M].北京:高等教育出版社,2000.
    [77]任南琪.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [78]Curds C R. The ecology and role of protozoa in aerobic sewage treatment processes[J]. Annual Reviews in Microbiology,1982,36(1):27-28.
    [79]Lapinski J, Tunnacliffe A. Reduction of suspended biomass in municipalwastewater using bdelloid rotifers [J]. Water research,2003,37(9):2027-2034.
    [80]Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reductionrates caused by microfaunas’ predation [J]. Bioresource technology,2006,97(6):854-861.
    [81]艾翠玲,蔡丽云.红斑顠体虫的污泥减量效果[J].环境工程学报ISTIC,2012,6(6):2082-2086.
    [82]Williams P M. Feeding behaviour of Lumbriculus variegatus as an ecologicalindicator of in situ sediment contamination [D]. Scotland: University of StirlingPhD thesis,2005.
    [83]Christensen B. Asexual propagation and reproductive strategies in aquaticOligochaeta [J]. Hydrobiologia,1984,115(1):91-95.
    [84]张绍园,闫百瑞.二段淹没式膜生物反应器处理城市污水的研究[J].工业用水与废水,2003,34(6):40-42.
    [85]Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge processthrough predation of Aeolosoma hemprichi [J]. Biochemical Engineering Journal,2006,28(2):117-122.
    [86]Wei Y, van Houten R T, Borger A R, et al. Comparison performances of membranebioreactor and conventional activated sludge processes on sludge reduction inducedby Oligochaete [J]. Environmental science&technology,2003,37(14):3171-3180.
    [87]翟小蔚,潘涛, Ghyoot W.利用原生动物削减剩余活性污泥产量[J].中国给水排水,2000,16(11):6-9.
    [88]梁鹏,黄霞,钱易,等.3种生物处理方式对污泥减量效果的比较及优化[J][J].环境科学,2006,27(11):2339-2343.
    [89]Huang X, Liang P, Qian Y. Excess sludge reduction induced by Tubifex tubifex in arecycled sludge reactor [J]. Journal of biotechnology,2007,127(3):443-451.
    [90]GUO X-S, LIU J-X, WEI Y-S, et al. Sludge reduction with Tubificidae and theimpact on the performance of the wastewater treatment process [J]. Journal ofEnvironmental Sciences,2007,19(3):257-263.
    [91]Elissen H J, Hendrickx T L, Temmink H, et al. A new reactor concept for sludgereduction using aquatic worms [J]. Water research,2006,40(20):3713-3718.
    [92]Wang Q, Wang Z, Wu Z, et al. Sludge reduction and process performance in asubmerged membrane bioreactor with aquatic worms [J]. Chemical EngineeringJournal,2011,172(2):929-935.
    [93]Wei Y, Liu J. The discharged excess sludge treated by Oligochaeta [J]. WaterScience and Technology,2005,52(10-11):265-272.
    [94]McCall P, Fisher J. Effects of tubificid oligochaetes on physical and chemicalproperties of Lake Erie sediments [M]. Aquatic oligochaete biology. Springer.1980:253-317.
    [95]梁鹏,黄霞,钱易.利用红斑体虫减少剩余污泥产量的研究[J].中国给水排水,2004,20(1):13-17.
    [96]梁鹏,黄霞,钱易,等.环境因子对红斑顠体虫生长的影响[J].中国环境科学,2004,24(005):610-613.
    [97]Hendrickx T, Temmink H, Elissen H, et al. Aquatic worms eat sludge: Massbalances and processing of worm faeces [J]. Journal of hazardous materials,2010,177(1):633-638.
    [98]Tamis J, van Schouwenburg G, Kleerebezem R, et al. A full scale worm reactor forefficient sludge reduction by predation in a wastewater treatment plant [J]. Waterresearch,2011,45(18):5916-5924.
    [99]Wei Y, Wang Y, Guo X, et al. Sludge reduction potential of the activated sludgeprocess by integrating an oligochaete reactor [J]. Journal of hazardous materials,2009,163(1):87-91.
    [100] Finogenova N, Lobasheva T. Growth of Tubifex tubifex Mueller (Oligochaeta,Tubificidae) under various trophic conditions [J]. Internationale Revue dergesamten Hydrobiologie und Hydrographie,1987,72(6):709-726.
    [101] Elissen H, Mulder W, Hendrickx T, et al. Aquatic worms grown on biosolids:Biomass composition and potential applications [J]. Bioresource technology,2010,101(2):804-811.
    [102] Hendrickx T, Temmink H, Elissen H, et al. The effect of operating conditions onaquatic worms eating waste sludge [J]. Water research,2009,43(4):943-950.
    [103] Buys B R, Klapwijk A, Elissen H, et al. Development of a test method to assessthe sludge reduction potential of aquatic organisms in activated sludge [J].Bioresource technology,2008,99(17):8360-8366.
    [104] Hendrickx T, Temmink H, Elissen H, et al. Aquatic worms eating waste sludge ina continuous system [J]. Bioresource technology,2009,100(20):4642-4648.
    [105] Hendrickx T, Temmink H, Elissen H, et al. Design parameters for sludgereduction in an aquatic worm reactor [J]. Water research,2010,44(3):1017-1023.
    [106]钟岩,潘浦群,王艳红.苯酚-硫酸法测定鲜人参中多糖含量[J].时珍国医国药,2008,19(8):1957-1958.
    [107]焦利敏,廖学品,石碧.紫外分光光度法下直接测定蛋白质溶液的浓度[J].化学研究与应用,2007,19(5):562-566.
    [108]周春生,尹军. TTC脱氢酶活性检测方法的研究[J].环境科学学报,1996,4:400-405.
    [109]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [110] Domínguez L, Rodríguez M, Prats D. Effect of different extraction methods onbound EPS from MBR sludges. Part I: Influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint [J]. Desalination,2010,261(1):19-26.
    [111] Cao B, Shi L, Brown R N, et al. Extracellular polymeric substances fromShewanella sp. HRCR‐1biofilms: characterization by infrared spectroscopy andproteomics [J]. Environmental microbiology,2011,13(4):1018-1031.
    [112]宫常修,蒋建国,杨世辉.超声波耦合Fenton氧化对污泥破解效果的研究-以粒径和溶解性物质为例[J].中国环境科学,2013,2):293-297.
    [113]呼庆,雷西萍,范海宏,等.分散剂对脱水污泥流动性能的影响[J].环境科学与技术,2010,33(7):61-64.
    [114]王浩宇,苏本生,黄丹,等.好氧污泥颗粒化过程中Zeta电位与EPS的变化特性[J].环境科学,2012,33(005):1614-1620.
    [115] Zhou S, Lin K. PCR-DGGE as a supplemental method verifying dominance ofculturable microorganisms from activated sludge [J]. Journal of microbiology andbiotechnology,2010,20(11):1592-1596.
    [116]陈佳荣.水化学实验指导书[M].北京:中国农业出版社,1996.
    [117]张铣,刘毓谷,张桥,等.毒理学[M].北京:北京医科大学,中国协和医科大学联合出版社,1997.
    [118]杞桑,梁轩,李文珍.温度对霍夫水丝蚓排粪的影响及其粪便的氨基酸分析[J].暨南大学学报,1993,11(3):54-58.
    [119] Elissen H J. Sludge reduction by aquatic worms in wastewater treatment: withemphasis on the potential application of Lumbriculus variegatus [M]. Netherlands:Wageningen University phD thesis,2007.
    [120] Caswell H. Matrix population models: construction, analysis, and interpretation
    [M]. Sunderland: Sinauer,2001.
    [121] Torres-Sorando L J, Zacarias D, Roa E Z d, et al. Population dynamics ofOithona hebes (Copepoda: Cyclopoida) in a coastal estuarine lagoon of Venezuela:a stage-dependent matrix growth model [J]. Ecological modelling,2003,161(3):159-168.
    [122] Edwards C. Biology and ecology of earthworms [M]. London: Chapman and Hall.2008.
    [123] Aubry A, Bécart E, Davenport J, et al. Estimation of survival rate and extinctionprobability for stage-structured populations with overlapping life stages [J].Population ecology,2010,52(3):437-450.
    [124] Brinkhurst R O, Chua K E, Kaushik N K. Interspecific interactions and selectivefeeding by tubificid oligochaetes [J]. Limnology and Oceanography,1972,122-133.
    [125] Milbrink G. Mutualistic relationships between cohabiting tubificid species [J].Hydrobiologia,1987,155(1):193.
    [126] Fisher J, Lick W, McCall P, et al. Vertical mixing of lake sediments by tubificidoligochaetes [J]. Journal of Geophysical Research: Oceans (1978-2012),1980,85(C7):3997-4006.
    [127] Ikeda T. Nutritional ecology of marine zooplankton [J]. Memoirs of the Faculty ofFisheries Hokkaido University,1974,22(1):1-97.
    [128] Landry M, Lehner-Fournier J, Sundstrom J, et al. Discrimination between livingand heat-killed prey by a marine zooflagellate, Paraphysomonas vestita (Stokes)[J].Journal of experimental marine biology and ecology,1991,146(2):139-151.
    [129] Gonzalez J M, Sherr E, Sherr B F. Differential feeding by marine flagellates ongrowing versus starving, and on motile versus nonmotile, bacterial prey [J]. MarineEcology Progress Series,1993,102:257-267.
    [130] Wang J, Huang C, Allen H E, et al. Effects of dissolved organic matter and pH onheavy metal uptake by sludge particulates exemplified by copper (II) and nickel (II):three-variable model [J]. Water Environment Research,1999,139-147.
    [131] Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokineticsof heavy metals in the earthworm [J]. Environmental pollution,1995,89(3):293-301.
    [132] Hopkin S P. Ecophysiology of metals in terrestrial invertebrates [M]. ElsevierApplied Science Publishers,1989.
    [133] Malley C, Nair J, Ho G. Impact of heavy metals on enzymatic activity of substrateand on composting worms Eisenia fetida [J]. Bioresource technology,2006,97(13):1498-1502.
    [134] Spurgeon D, Hopkin S. Comparisons of metal accumulation and excretionkinetics in earthworms (Eisenia fetida) exposed to contaminated field andlaboratory soils [J]. Applied Soil Ecology,1999,11(2):227-243.
    [135] Nomeda S, Valdas P, Chen S-Y, et al. Variations of metal distribution in sewagesludge composting [J]. Waste management,2008,28(9):1637-1644.
    [136] Amir S, Hafidi M, Merlina G, et al. Sequential extraction of heavy metals duringcomposting of sewage sludge [J]. Chemosphere,2005,59(6):801-810.
    [137] Jones D P. Redefining oxidative stress [J]. Antioxidants&redox signaling,2006,8(9-10):1865-1879.
    [138] Scuras S, Daigger G T, Leslie Grady Jr C. Modeling the activated sludge flocmicroenvironment [J]. Water Science and Technology,1998,37(4):243-250.
    [139]苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究[D].哈尔滨:哈尔滨工业大学博士论文,2007,6.
    [140] Zhen G, Lu X, Li Y, et al. Novel insights into enhanced dewaterability of wasteactivated sludge by Fe (II)-activated persulfate oxidation [J]. Bioresourcetechnology,2012,119:7-14.
    [141] Fu P, Wu F, Liu C-Q, et al. Spectroscopic characterization and molecular weightdistribution of dissolved organic matter in sediment porewaters from Lake Erhai,Southwest China [J]. Biogeochemistry,2006,81(2):179-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700