用户名: 密码: 验证码:
混合垃圾机械生物预处理燃烧和填埋特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为发展中国家,中国的城市生活垃圾管理水平较低,基础设施较为落后。多数城市产生的垃圾采取混合收集方式,厨余组分含量相对较高,导致混合垃圾具有含水率高、热值低和有机组分含量大的特点。混合垃圾填埋产生渗滤液和填埋气造成长期环境污染,给有限的土地资源带来沉重压力。混合垃圾热值低、含水率高的特点影响垃圾焚烧的经济性,并导致严重的环境污染。机械生物预处理(MBP)能够通过利用生物降解产生的生物反应热促进水分蒸发,降低含水率并提高热值,是填埋和焚烧的理想预处理技术,因而在一些发达国家得到了推广应用。
     本研究对中国典型城市垃圾管理情况进行了系统的调查研究,对原生垃圾及典型组分的理化性质进行了分析,确定MBP处理过程的影响因素和特性,研究了MBP处理对垃圾的燃烧特性和填埋特性的影响,提出了一种适用于中国混合垃圾的基于MBP的处理工艺,并在普兰店市和皮口镇得到了应用。本论文围绕以上内容,主要开展了以下几方面工作:
     (1)对大连市中心城区和周边中小城市的垃圾收集、运输、转运、处理和最终处置情况进行了调查研究。调研结果表明:大连市全域的垃圾目前仍采取填埋方式,中小城市普遍采用的垃圾简易填埋和露天堆放的方式对周边环境造成严重污染;对各区域的垃圾进行了取样,分析了容重、组分、含水率、可燃物和不可燃物组分、低位热值(LHV)等理化特性;混合垃圾厨余含量高(>50%)、高含水率(50.7%-56.9%)和低LHV(3310-4129kJ/kg)的特点表明不适宜直接进行填埋或焚烧处理;对垃圾典型组分(塑料、橡胶、纺织物、纸类、木竹、厨余、植物和灰土)和混合垃圾的工业分析、元素分析、总挥发性固体(TVS)、总有机碳(TOC)、总氮(TKN)和碳氮比(C/N)进行了测定。
     (2)采用自制的4套MBP反应器用于MBP反应过程影响因素的研究。结果表明可燃组分(塑料、橡胶、纺织物、木竹和纸类)增加物料孔隙率并降低厨余含水率;MBP过程物料产生渗滤液的COD明显低于原生垃圾直接填埋的渗滤液;MBP反应过程的初期、中期和后期适宜通风量分别为2.7×10-3,0.081,3.6×10-3Nm3/min·m3;混合垃圾的适宜初始粒径为5cm;机械搅拌不仅促进可生物降解组分粒径的减小,同时导致物料温度的显著下降,反应中期为避免生物反应热过多散失应停止机械搅拌;物料高度在反应期间逐渐减少并导致热量散失增加,对物料的及时补充可使物料温度显著升高;对比压缩预处理和堆酵预处理,对混合垃圾MBP处理过程参数变化进行了较为系统的研究。
     (3)对混合垃圾和MBP处理后垃圾的燃烧特性进行了研究。MBP处理过程(12d)垃圾物料含水率从61.2%降至11.3%,LHV从4862kJ/kg升至12843kJ/kg;可生物降解组分粒径在0-9d期间迅速减小,粒径小于7mm的组分具有高灰分(54.6%)、低LHV值(5505kJ/kg)的特点而不适宜进行焚烧处理;对垃圾初始物料和MBP处理后的物料进行非等温微量热重分析,应用Coats-Redfern法拟合获得反应动力学参数;通过对表观活化能、含水率、热值、粒径分布、理论空气量、烟气量、理论燃烧温度数据分析,研究了MBP处理对混合垃圾燃烧特性的影响。
     (4)对混合垃圾、MBP处理后垃圾和堆肥产品的填埋特性进行了研究。MBP处理后垃圾和堆肥产品的质量相对于混合垃圾大大减小;MBP处理后垃圾和堆肥产品在封闭填埋阶段无渗滤液产生;对降水作用下三种物料填埋产生的渗滤液COD、NH4+-N、 pH、EC和色度等特性进行了测定;与混合垃圾相(?)(COD:6,276~18,326mg/L, NH4+-N:332~621mg/L),MBP处理后垃圾和堆肥产品的渗滤液COD (1,757~9,874mg/L)和NH4+-N (22~154mg/L)均明显下降。
     (5)根据中国混合收集垃圾特性和MBP实验结果,提出了一项基于MBP的混合收集垃圾综合处理技术,并在普兰店市生活垃圾处理厂和皮口生活垃圾减量化及资源化转运中心取得了应用。
China as a developing country has a relatively poor infrastructure and low level of MSW management. The MSW generated in most cities is collected without separation and contains a relatively high proportion of food waste. As a result, the MSW is typically characterized by high moisture content, low heating value and high organic portions. Pressure on limited land resources and long-term environmental pollution such as leachate and landfill gas emissions accompany mixed MSW landfills. The low heating value and high moisture content of mixed MSW affects the economic applicability of incineration and may cause serious pollution in the environment. Mechanical-biological pretreatment (MBP), which could enhance evaporation of moisture and improve heating value by air ventilation and heat generated by biodegradation, has been regarded as a good pretreatment prior to landfill and incineration. Currently MBP facilities are in operation in some developed countries.
     In this work, status of municipal solid waste management in typical cities of China was investigated systematically. Characteristics of raw MSW and typical components of MSW were analyzed. Influencing factors and characteristics of MBP process were identified. Combustion properties and landfill behaviour of MSW after MBP process were studied. A treatment technology based on MBP suitable for mixed MSW generated in China was put forward. The technology had been applied in Pulandian city and Pikou town. In this dissertation, the following several parts of work have been done:
     (1) The study investigated the status of MSW collection, transfer, transportation, treatment and final disposal in urban district of Dalian and its surrounding small and medium-sized towns. Landfill (sanitary landfill and simple landfill) was the main MSW diposal method in the whole area of Dalian. Simple landfill yard and open dump in small and medium-sized towns led to serious pollution problems such as leachate and flue gas produced by spontaneous combustion process. MSW samples were collected from waste containers of different regions. The physical chemistry analysis including bulk density, composition, moisture content, combustible and incombustible fractions, and lower heating value (LHV) was carried out. The high proportion of food waste (>50%) and moisture content (50.7%-56.9%) and low LHV (3310-4129kJ/kg) indicated the mixed MSW was not suitable for landfill or incineration directly. The ultimate analysis, proximate analysis, total volatile solids (TVS), total organic carbon (TOC), total Kjeldhal Nitrogen (TKN) and C/N ratio of typical components (plastic, rubber, textile, paper, wood, food waste, plant and ash) and mixed MSW were measured.
     (2) In this study, four MBP reactors were operated in order to specify the influence factors of MBP process. The results showed that combustible components (plastic, rubber, textile, wood, paper) improved porosity and reduced moisture of the food waste. The MBP process of mixed MSW had a minimum COD, compared to untreated MSW in landfills. The feasible air-inflow rates at different stages (earlier, middle, later) were2.7×10-3,0.081,3.6×10-3Nm3/min·m3respectively. The intial particle size of mixed MSW that was suitable for MBP process was5cm. Mechanical agitation could not only reduce the particle size of biodegradable components effectively, but also reduce the material temperature obviously. At middle stage, mechanical agitation should be stopped in order to maintain the heat generated by biodegradation. The height of MSW could be reduced gradually in the MBP process and the heat loss increased. The temperature increased rapidly accompanied by supplementary MSW material. Compared to compression and fermentation pretreatment, the MBP process parameters of mixed MSW had been systematically studied.
     (3) Combustion properties of mixed MSW, mechanical-biological pretreated MSW (MBP MSW) were studied. Compared to compression and fermentation pretreatment, the moisture content of MSW dropped from61.2%to11.3%within12days of MBP process. The LHV increased from4862kJ/kg to12843kJ/kg. The particle size of biodegradable components sharply reduced during the period of9days. The material particle size of less than7mm was characterized with high ash content (54.6%) and low LHV (5505kJ/kg) and was not suitable for incineration. The kinetic characteristics of non-isothermal thermo gravimetric analysis of initial MSW and pretreated MSW was studied and kinetic parameters were obtained by Coats-Redfern method. The analysis results of moisture content, LHV, particle size distribution, apparent activation energy, theoretical air volume, combustion flue gas volume, theoretical combustion temperature indicated that MBP had a significant influence on combustion properties of mixed MSW.
     (4) Landfill behaviours of mixed MSW, mechanical-biological pretreated MSW (MBP MSW) and compost were studied. The weights of MBP MSW and compost was much lower than mixed MSW. There was no leachate generated in the MBP MSW and compost landfill reactor at the closed landfill stage. The characteristics (COD, NH4+-N, pH, EC, colority) of leachate generated in different material landfill after precipitation were determined. Compared to leachate generated in untreated MSW landfills (COD:6,276-18,326mg/L; NH4+-N:332~621mg/L), the leachte generated in the pretreated MSW landfill had a minimum COD (1,757~9,874mg/L) and NH4+-N (22~154mg/L) value.
     (5) According to the characteristics of mixed MSW generated in China and the MBP experimental results, an integrated treatment technology of mixed MSW based on MBP was put forward. The technology had been applied to Pulandian MSW treatement plant and Pikou MSW reduction and resource transfer center.
引文
[1]NGOC U N, SCHNITZER H. Sustainable solutions for solid waste management in Southeast Asian countries [J]. Waste Management,2009,29(6):1982-1995.
    [2]KOLLIKKATHARA N, FENG H, STERN E. A purview of waste management evolution:Special emphasis on USA [J]. Waste Management,2009,29(2):974-985.
    [3]鞠茂伟,李爱民,马蒸钊.城市生活垃圾机械生物预处理技术研究进展[J].化工进展,2010,29(S1):543-547.
    [4]JIN J, WANG Z, RAN S. Solid waste management in Macao:practices and challenges [J]. Waste Management,2006,26(9):1045-1051.
    [5]SHIMURA S, YOKOTA I, NITTA Y. Research for MSW flow analysis in developing nations [J]. Journal of Material Cycles and Waste Management,2001,3(1):48-59.
    [6]SHARHOLY M, AHMAD K, VAISHYA R, et al. Municipal solid waste characteristics and management in Allahabad, India [J]. Waste Management,2007,27(4):490-496.
    [7]BATOOL S A, CHAUDHRY N, MAJEED K. Economic potential of recycling business in Lahore, Pakistan [J]. Waste Management,2008,28(2):294-298.
    [8]BATOOL S A, CHUADHRY M N. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan [J]. Waste Management,2009,29(1):63-69.
    [9]国家民政部.社会服务发展统计报告[M].北京.2010.
    [10]国家统计局.第六次全国人口普查主要数据公报[M].北京.2010.
    [11]国家统计局.改革开放30年报告:城市社会经济建设发展成绩显著[M].北京.2008.
    [12]BANK W. Waste management in China:issues and recommendations [M]. Washington, DC.2005.
    [13]PATUMSAWAD S, CLIFFE K R. Experimental study on fluidised bed combustion of high moisture municipal solid waste [J]. Energy Conversion and Management,2002,43(17):2329-2340.
    [14]ABU QDAIS H, HAMODA M, NEWHAM J. Analysis of residential solid waste at generation sites [J]. Waste Management & Research,1997,15(4):395.
    [15]CHENG H, ZHANG Y, MENG A, et al. Municipal solid waste fueled power generation in China:A case study of waste-to-energy in Changchun city [J]. Environmental Science & Technology,2007,41(21): 7509-7515.
    [16]李晓东,陆胜勇,徐旭,et al.中国部分城市生活垃圾热值的分析[J].中国环境科学,2001,21(2):156-160.
    [17]ZHANG Y, CHEN Y, MENG A, et al. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration [J]. Journal Of Hazardous Materials,2008,153(1-2):309-319.
    [18]THIPSE S S, SHENG C, BOOTY M R, et al. Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration [J]. Chemosphere,2001,44(5):1071-1077.
    [19]USEPA. Municipal solid waste in the United States:2009 Facts and figures [M]. Washington, DC.2010.
    [20]PAPACHRISTOU E, HADJIANGHELOU H, DARAKAS E, et al. Perspectives for integrated municipal solid waste management in Thessaloniki, Greece [J]. Waste Management,2009,29(3):1158-1162.
    [21]BAI R, SUTANTO M. The practice and challenges of solid waste management in Singapore [J]. Waste Management,2002,22(5):557-567.
    [22]HUI Y, LI'AO W, FENWEI S, et al. Urban solid waste management in Chongqing:Challenges and opportunities [J]. Waste Management,2006,26(9):1052-1062.
    [23]ALAVI MOGHADAM M, MOKHTARANI N, MOKHTARANI B. Municipal solid waste management in Rasht City, Iran [J]. Waste Management,2009,29(1):485-489.
    [24]BATOOL S A, CH M N. Municipal solid waste management in Lahore city district, Pakistan [J]. Waste Management,2009,29(6):1971-1981.
    [25]CHATTERJEE R. Municipal solid waste management in Kohima city, Nagaland, India [J]. Waste Management,2009,29(11):2909-2910.
    [26]ZHEN-SHAN L, LEI Y, XIAO-YAN Q, et al. Municipal solid waste management in Beijing City [J]. Waste Management,2009,29(9):2596-2599.
    [27]ASASE M, YANFUL E K, MENSAH M, et al. Comparison of municipal solid waste management systems in Canada and Ghana:A case study of the cities of London, Ontario, and Kumasi, Ghana [J]. Waste Management,2009,29(10):2779-2786.
    [28]TROSCHINETZ A M, MIHELCIC J R. Sustainable recycling of municipal solid waste in developing countries [J]. Waste Management,2009,29(2):915-923.
    [29]UNEP. Key environmental issues:management of solid waste and sewage, Maldives:state of the Environment 2002 [M].2002:41-44.
    [30]国家统计局.中国统计年鉴[M].北京.2009.
    [31]国家统计局.中国统计年鉴[M].北京.2011.
    [32]赵丽君.城市生活垃圾减量与资源化管理研究:(博士学位论文)[D].天津;天津大学,2009.
    [33]国家环保总局/国家环保部.中国环境状况公报[M].2004-2010.
    [34]国家统计局,国家环保部.中国环境统计年鉴[M].北京.2009.
    [35]国家统计局,国家环保部.中国环境统计年鉴[M].北京.2010.
    [36]吉崇喆,张云,隋儒楠.沈阳市典型农村生活垃圾调查及污染防治对策[J].环境卫生工程,2006,14(2):4.
    [37]周雯,董雅文,方斌斌.上海南京深圳城市垃圾及处置的比较研究[J].环境污染与防治,2000,22(3):
    [38]肖黎姗,吝涛,潘玲阳,et al.半城市化地区生活垃圾产生及其影响因素分析[J].环境污染与防治,2011,33(2):
    [39]http://en.wikipedia.org/wiki/Waste hierarchy.
    [40]DEFRA. Revised Waste Framework Directive (2008/98/EC) Transposition/Implementation [M].2008.
    [41]MINISTRY OF THE ENVIRONMENT A. A Basic Policy to Facilitate Comprehensive and Systematic Promotion of Measures for Waste Reduction and other Appropriate Treatment [M].2005.
    [42]SKUMATZ L A, GREEN K, INSTITUTE R P P. Variable-rate Or "pay-as-you-throw" Waste Management: Answers to Frequently Asked Questions [M]. Reason Foundation,2002.
    [43]YOSHIDA H. Charge for residential waste and its effects on waste reduction [J]. Journal of Japan Waste Management Association,2004,57(257):29-33.
    [44]SAKAI S, IKEMATSU T, HIRAI Y, et al. Unit-charging programs for municipal solid waste in Japan [J]. Waste Management,2008,28(12):2815-2825.
    [45]FEDERAL MINISTRY FOR THE ENVIRONMENT N C A N S. Municipal solid waste management in Germany- A new era has dawned in municipal solid waste management [M]. Bonn, Germany; Municipal Solid Waste Management Report,2006.
    [46]ZURBRUGG C. Solid waste management in developing countries [J]. SWM introductory text on www sanicon net,2003,5.
    [47]ISWA, UNEP. Waste Management, Industry as a Partner for Sustainable Development[M].2002.
    [48]BMU. Waste Management in Germany 2011 [M].2011.
    [49]EUROSTAT. Environment in the EU27. Recycling accounted for a quarter of total municipal waste treated in 2009 [M].2011.
    [50]BMU. Technische Anleitung zur Verwertung, Behandlung und sonstigen Entsorgung von Siedlungsabfallen [M]. Dritte Allgemeine Verwaltungs vorschrift zum Abfallgesetz (Beil Banz Nr 99). Berlin.1993.
    [51]BEN-HADDEJ D, BUCHENAN A, OWEN A, et al. Managing Costa Rica's Waste:Recommendations for a municipal solid waste management plan [M].2010-2011.
    [52]M HLE S, BALSAM I, CHEESEMAN C. Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK [J]. Resources, conservation and recycling,2010,54(11): 793-801.
    [53](JAPAN) M O T E. State of Discharge and Treatment of Municipal Solid Waste in FY 2004 [M]. Tokyo. 2006.
    [54](JAPAN) M O T E. Municipal solid waste emissions and disposal in 2009 [M]. Tokyo.2011.
    [55]OKUDA I, THOMSON V E. Regionalization of municipal solid waste management in Japan:balancing the proximity principle with economic efficiency [J]. Environmental Management,2007,40(1):12-19.
    [56]日本環境省.日本の廃棄物处理2009[M].2011.
    [57]YOUSUF T B, RAHMAN M M. Transforming an open dump into a sanitary landfill:a development effort in waste management [J]. Journal of Material Cycles and Waste Management,2009,11(3):277-283.
    [58]CHENG H, HU Y. Municipal solid waste (MSW) as a renewable source of energy:Current and future practices in China [J]. Bioresource Technology,2010,101(11):3816-3824.
    [59]国家统计局,国家环保部.中国环境统计年鉴[M].北京.2008.
    [60]国家建设部.中国城市建设统计年鉴[M].北京.2006.
    [61]颜丽辉,吴银彪.城市生活垃圾处理带来的二次污染问题[J].中国环保产业,2003,(4):16-17.
    [62]KONG E P D O H. Monitoring of solid waste in Hong Kong [M]. Hong Kong.2006.
    [63]澳门特别行政区统计暨普查局.澳门统计年鉴2008[M].澳门;澳门政府印务局.2009.
    [64]LU L T, HSIAO T Y, SHANG N C, et al. MSW management for waste minimization in Taiwan:The last two decades [J]. Waste Management,2006,26(6):661-667.
    [65]FAN H, S H U H Y, YANG H S, et al. Characteristics of landfill leachates in central Taiwan [J]. Science Of The Total Environment,2006,361(1-3):25-37.
    [66](EPA) TSEPA.3-Year action plan of environmental protection execution and promotion [M]. Taipei.2004.
    [67]HASAN S E. Geology and hazardous waste management [M]. Prentice Hall Upper Saddle River, NJ,1996.
    [68]G. P F. Acceleration solid waste stabilization and leachate treatment by leachate recycle through sanitary landfills [J]. Progress in Water Technology,1975,7(3/4):753-765.
    [69]HUGHES K L, CHRISTY A D, HEIMLICH J E. Bioreactor Landfills. In:Encyclopedia of Agricultural, Food, and Biological Engineering [M]. New York:Marcel Dekker,2003.
    [70]WARITH M. Bioreactor landfills:experimental and field results [J]. Waste Management,2002,22(1):7-17.
    [71]KELLY R J. Solid waste biodegradation enhancements and the evaluation of analytical methods used to predict waste stability [D],2002.
    [72]SPONZA D T, AGDAG O N. Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors [J]. Process Biochemistry,2004,39(12): 2157-2165.
    [73]SAN I, ONAY T T. Impact of various leachate recirculation regimes on municipal solid waste degradation [J]. Journal Of Hazardous Materials,2001,87(1-3):259-271.
    [74]REINHART D R, BASEL A Y. The impact of leachate recirculation on municipal solid waste landfill operating characteristics [J]. Waste Management & Research,1996,14(4):337.
    [75]READ A D, HUDGINS M, HARPER S, et al. The successful demonstration of aerobic landfilling::The potential for a more sustainable solid waste management approach? [J]. Resources, conservation and recycling,2001,32(2):115-146.
    [76]MERTOGLU B, CALLI B, INANC B, et al. Evaluation of in situ ammonia removal in an aerated landfill bioreactor [J]. Process Biochemistry,2006,41(12):2359-2366.
    [77]M H, Y M, S H. A method of designing leachate treatment systems for landfill sites [J]. Cities and Waste, 1986,6(12):26-35.
    [78]M Y, H M. Characteristic and mechanism of semi-aerobic landfill on stabilization of solid waste [J]. Proceedings of the first Korea-Japan Society of Solid Waste Management,1997,87-94.
    [79]HUANG Q, YANG Y, PANG X, et al. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill [J]. Journal of Environmental Sciences,2008,20(4):499-504.
    [80]VEEKEN A, HAMELERS B. Sources of Cd, Cu, Pb and Zn in biowaste [J]. The Science of the Total Environment,2002,300(1-3):87-98.
    [81]AYUSO M, HERNANDEZ T, GARCIA C, et al. Biochemical and chemical-structural characterization of different organic materials used as manures [J]. Bioresource Technology,1996,57(2):201-207.
    [82]ESSE P, B RKERT A, HIERNAUX P, et al. Decomposition of and nutrient release from ruminant manure on acid sandy soils in the Sahelian zone of Niger, West Africa [J]. Agriculture, ecosystems & environment, 2001,83(1-2):55-63.
    [83]CASTALDI P, GARAU G, MELIS P. Influence of compost from sea weeds on heavy metal dynamics in the soil-plant system [J]. Fresenius Environmental Bulletin,2004,13(11b):1322-1328.
    [84]SANABRIA-LE NA R, CRUZ-ARROYOA L A, RODR GUEZA A A, et al. Chemical and biological characterization of slaughterhouse wastes compost [J]. Waste Management,2007,27(12):1800-1807.
    [85]EPSTEIN E. The science of composting [M]. CRC,1997.
    [86]GRAY K, BIDDLESTONE A. Agricultural use of composted town refuse. Inorganic Pollution and Agriculture. Ministry of Agriculture, Fisheries and Food, Reference Book 326, F,1980 [C]. London, UK.
    [87]GRUNEKLEE C. Development of composting in Germany [J]. Organic Recovery and Biological Treatment into the Next Millennium,1997,313-316.
    [88]COMMISSION E. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste [J]. Official Journal of the European Communities,1999, (182):1-19.
    [89]SCHENKEL W. Conceptual approach in legislation and regulation concerning organic wastes from cities [J]. Management of Urban Biodegradable Wastes,1997,25-38.
    [90]HOORNWEG D, THOMAS L, OTTEN L. Composting and Its Applicability in Developing Countries [M]. Washington DC.2000.
    [91]WILSON D. A brief history of solid-waste management [J]. International Journal of Environmental Studies,1976,9(2):123-129.
    [92]GERHARD L. Innovative Concepts for Highly Efficient and Reliable Energy-from-Waste Plants [J]. Sektorel Fuarcilik Ltd Sti,38.
    [93]H. LANIER HICKMAN J. A Brief History of Solid Waste Management During the Last 50 Years:Part 9a: The Awakening of Waste-to-Energy in the U.S. [M].
    [94]PHILLIPS J A, ASSOCIATES J A P, BOULDER C. Managing Americais Solid Waste [M]. Golden, Colorado.1998.
    [95]ASME. Waste-to-Energy:A Renewable Energy Source from Municipal Solid Waste [M]. New York; American Society of Mechanical Engineers.2008.
    [96]KNOX A. An overview of incineration and EFW technology as applied to the management of municipal solid waste (MSW) [J]. University of Western Ontario,2005.
    [97]LEE W J, LIOW M C, TSAI P J, et al. Emission of polycyclic aromatic hydrocarbons from medical waste incinerators [J]. Atmospheric Environment,2002,36(5):781-790.
    [98]DYKE P H, FOAN C, FIEDLER H. PCB and PAH releases from power stations and waste incineration processes in the UK [J]. Chemosphere,2003,50(4):469-480.
    [99]MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review [J]. Chemical Engineering Journal,2002,86(3):343-368.
    [100]ZSIGRAIOV Z, TAVARES G, SEMI O V, et al. Municipal solid waste incineration-contribution to sustainable development of energy and environment [J]. Acta Metallurgica Slovaca,2005,11(4):450-459.
    [101]LIU Z, LI X. Status and prospect of the application of municipal solid waste incineration in China [J]. Applied Thermal Engineering,2006,26(11):1193-1197.
    [102]SHEN B. Study on MSW catalytic combustion by TGA [J]. Energy Conversion and Management,2006, 47(11-12):1429-1437.
    [103]MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals:A thermogravimetric analysis [J]. Applied Energy,2010,87(1):141-148.
    [104]徐文龙,刘晶吴.我国垃圾焚烧技术现状及发展预测[J].中国环保产业,2007,(11):6.
    [105]袁克,萧惠平,李晓东.中国城市生活垃圾焚烧处理现状及发展分析[J].能源工程,2008,(5):43-46.
    [106]中华人民共和国可再生能源法:北京:国务院,2006.
    [107]中华人民共和国国家发展和改革委员会.可再生能源发电价格和费用分摊管理试行办法[M].北京.2006.
    [108]中华人民共和国国家税务总局.财政部、国家税务总局关于部分资源综合利用产品增值税政策的补充通知[M].北京.2004.
    [109]方源圆,周守航,阎丽娟.中国城市垃圾焚烧发电技术与应用[J].冶金环境保护,2011,(4):60-64.
    [110]李爱民,鞠茂伟,刘卓,et a1.基于机械生物联合预处理的生活垃圾焚烧工艺及其系统:中国,ZL2009 1 0010923.4[P].2009.
    [111]World Bank Technical Guidance Report, Municipal Solid Waste Incineration [M]//BANK T W. Washington, DC.1999.
    [112]ZERBOCK O. Urban solid waste management:Waste reduction in developing nations [J]. Written for the Requirements of CE,2003,5993.
    [113]NIE Y. Development and prospects of municipal solid waste (MSW) incineration in China [J]. Frontiers of Environmental Science & Engineering in China,2008,2(1):1-7.
    [114]HOGG D, GIBBS A, NORTH J. Meeting ireland's Waste targets: The Role of MBT [M]//LTD E R C, ENGINEERS T C.2008.
    [115]BONI M R, LEONI S, SBAFFONI S. Co-landfilling of pretreated waste:Disposal and management strategies at lab-.scale [J]. Journal Of Hazardous Materials,2007,147(1-2):37-47.
    [116]LEIKAM K, STEGMANN R. The emission behavior of mechanicallybiologically pretreated residual waste [J]. Waste Reports Emissionsverhalten von Restmull, ABF-BOKU, Vienna, Austria,1995.
    [117]RIEGER A, BIDLINGMAIER W. The reactivity of mechanically biologically pretreated residual wastes [J]. Waste Reports Emissionsverhalten von Restmull Vienna, Austria: ABF BOKU,1995.
    [118]SOYEZ K, PLICKERT S. Mechanical-biological pre-treatment of waste:State of the art and potentials of biotechnology [J]. Acta Biotechnologica,2002,22(3):271-284.
    [119]Our View of MBT:MBT evolved from "in-vessel" composting [M].
    [120]ARCHER E, BADDELEY A, KLEIN A, et al. Mechanical-Biological-Treatment-A Guide for Decision Makers. Processes, Policies & Markets [J]. Juniper Consultancy Services Ltd, Marz,2005.
    [121]BEZAMA A, AGUAYO P, KONRAD O, et al. Investigations on mechanical biological treatment of waste in South America:Towards more sustainable MSW management strategies [J]. Waste Management,2007, 27(2):228-237.
    [122]PONS S, GEA T, S NCHEZ A. The effect of storage and mechanical pretreatment on the biological stability of municipal solid wastes [J]. Waste Management,2010,30(3):441-445.
    [123]SLATER R A, FREDERICKSON J. Composting municipal waste in the UK:some lessons from Europe [J]. Resources, conservation and recycling,2001,32(3-4):359-374.
    [124]FARRELL M, JONES D L. Use of composts in the remediation of heavy metal contaminated soil [J]. Journal Of Hazardous Materials,2010,175(1-3):575-582.
    [125]JEWELL W, DONDERO N, VAN SOEST P, et al. High temperature stabilization and moisture removal from animal wastes for by-product recovery [J]. Department of Agricultural and Biological Engineering, Cornell University,1984.
    [126]VELIS C, LONGHURST P, DREW G H, et al. Biodrying for mechanical-biological treatment of wastes:a review of process science and engineering [J]. Bioresource Technology,2009,100(11):2747-2761.
    [127]NAVAEE-ARDEH S, BERTRAND F, STUART P R. Emerging biodrying technology for the drying of pulp and paper mixed sludges [J]. Drying Technology,2006,24(7):863-878.
    [128]BARTON A F M. Resource recovery and recycling.[includes glossary] [J].1979.
    [129]TROIS C, SIMELANE O T. Implementing separate waste collection and mechanical biological waste treatment in South Africa:A comparison with Austria and England [J]. Waste Management,2010,30(8-9): 1457-1463.
    [130]M NNICH K, MAHLER C, FRICKE K. Pilot project of mechanical-biological treatment of waste in Brazil [J]. Waste Management,2006,26(2):150-157.
    [131]李清伟.城市生活垃圾和粪便好氧堆肥影响因素研究[D],2003.
    [132]杜彦武.城市生活垃圾与粪便混合好氧堆肥化处理的试验研究[D],2003.
    [133]TCHOBANOGLOUS G, THEISEN H, VIGIL S A. Integrated solid waste management:engineering principles and management issues [M]. McGraw-Hill New York,1993.
    [134]秦莉,李玉春,李国学,et a1.城市生活垃圾堆肥过程中腐熟度指标及控制参数[J].农业工程学报,2006,22(12):189-194.
    [135]JERZYKIEWICZ M, DROZD J, JEZIERSKI A. Organic radicals and paramagnetic metal complexes in municipal solid waste composts. An EPR and chemical study [J]. Chemosphere,1999,39(2):253-268.
    [136]KABASHI N A, ALAM Z, AINUDDIN M. Bio-Composting Process Development by SSF for Utilization Agro-Industrial Wastes, F,2007 [C]. Springer.
    [137]RIFFALDI R, LEVI-MINZI R, PERA A, et al. Evaluation of compost maturity by means of chemical and microbial analyses [J]. Waste Management & Research,1986,4(4):387-396.
    [138]SHAO L M, MA Z H, ZHANG H, et al. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery [J]. Waste Management,2010,30(7):1165-1170.
    [139]ZHANG D Q, HE P J, SHAO L M. Potential gases emissions from the combustion of municipal solid waste by bio-drying [J]. Journal Of Hazardous Materials,2009,168(2-3):1497-1503.
    [140]ZHANG D Q, HE P J, SHAO L M. Sorting efficiency and combustion properties of municipal solid waste during bio-drying [J]. Waste Management,2009,29(11):2816-2823.
    [141]NORBU T, VISVANATHAN C, BASNAYAKE B. Pretreatment of municipal solid waste prior to landfilling [J]. Waste Management,2005,25(10):997-1003.
    [142]ZHANG D Q, HE P J, JIN T F, et al. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation [J]. Bioresource Technology,2008,99(18):8796-8802.
    [143]HE P, TANG J, ZHANG D, et al. Release of volatile organic compounds during bio-drying of municipal solid waste [J]. Journal of Environmental Sciences,2010,22(5):752-759.
    [144]韩竞耀,何品晶,张冬青,et al.通风量和翻堆对生活垃圾好氧生物干化的影响[J].环境卫生工程,2008,(3):23-25.
    [145]ADANI F, TAMBONE F, GOTTI A. Biostabilization of municipal solid waste [J]. Waste Management, 2004,24(8):775-783.
    [146]FEHR M. Environmental management by the learning curve [J]. Waste Management,2003,23(5): 397-402.
    [147]MBULIGWE S, KASSENGA G, KASEVA M E, et al. Potential and constraints of composting domestic solid waste in developing countries:findings from a pilot study in Dar es Salaam, Tanzania [J]. Resources, conservation and recycling,2002,36(1):45-59.
    [148]PONS S, GEA T, ALERM L, et al. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process [J]. Waste Management,2008,28(12):2735-2742.
    [149]BONHOMME M, PA VIA A. A new system for treatment of urban refuse:the Valorga process [J]. Revue de I'Energie,1986, (385):674-680.
    [150]NITHIKUL J, KARTHIKEYAN O P, VISVANATHAN C. Reject management from a Mechanical Biological Treatment plant in Bangkok, Thailand [J]. Resources, conservation and recycling,2011,55(4): 417-422.
    [151]中国中小城市发展报告[M]//中小城市经济发展委员会.北京.2010.
    [152]石德智.基于新型分类收集系统的生活垃圾焚烧过程污染物控制及其机理研究[D];浙江大学,2009.
    [153]JU M, LI A, LIU Z, et al. Municipal solid waste management in Dalian municipality, China [J]. Waste Management,2011,31(4):809-810.
    [154]大连市2010年第六次全国人口普查主要数据公报[M]//大连市统计局.大连.2011.
    [155]JU M W, LI A M, LIU X. Status of the Municipal Solid Waste Management in Small and Medium-Sized Towns:A Case Study of Pulandian, China [J]. Advanced Materials Research,2012, (347):2365-2368.
    [156]ENG N Z. Second Interim Report of the Inter-departmental Committee on Utilization of Organic Wastes [J]. November/December,1951.
    [157]GOTAAS H. Composting and Sanitary Disposal and Reclamation of Solid Waste [J]. World Health Organization Ginebra,1956.
    [158]聂晓飞,王峰.煤的工业分析过程及意义[J].能源技术与管理,2012,(1):125-127.
    [159]葛运升.沙河口环卫处企业化管理模式研究[D];大连理工大学,2007.
    [160]大连市环境监测中心.大连市环境状况公报[M].大连.2000-2008.
    [161]大连市统计局.大连市国民经济和社会发展统计公报[M].大连.2000-2008.
    [162]李东风.大连城镇生活垃圾调查及生物预处理特性研究[D];大连理工大学,2008.
    [163]宋庆彬.厨余与污泥联合厌氧发酵制氢研究[D];大连理工大学,2008.
    [164]RUNDBERGET T, SKAAR I, FL YEN A. The presence of Penicillium and Penicillium mycotoxins in food wastes [J]. International Journal Of Food Microbiology,2004,90(2):181-188.
    [165]赵蔚蔚.大连市城市中心区生活垃圾调查与分析[J].环境卫生上程,2007,14(6):29-31.
    [166]刘晓红,张增强,王琼,et al.延安市区生活垃圾可焚烧性的调查分析[J].延安大学学报:自然科学版,2004,23(2):51-56.
    [167]聂永丰.三废处理工程技术手册固体废物卷北京:化学工业出版社[J].2000,
    [168]HAZRA T, GOEL S. Solid waste management in Kolkata, India:Practices and challenges [J]. Waste Management,2009,29(1):470-478.
    [169]TCHOBANOGLOUS G T, VIGIL H. S.(1993),"Integrated Solid Waste Management Engineering Principles and Management Issues" [M]. McGraw-Hill, Inc. New York, NY.
    [170]ZHANG D, KEAT T S, GERSBERG R M. A comparison of municipal solid waste management in Berlin and Singapore [J]. Waste Management,2010,30(5):921-933.
    [171]闫蒙钢,汪晓玲.塑料回收标志中的化学[J].化学教育,2012,32(12):1-3.
    [172]李清海.层燃-流化复合垃圾焚烧炉燃烧与排放研究[D];清华大学,2007.
    [173]肖刚.城市垃圾流化床气化与旋风燃烧熔融特性研究[D];浙江大学,2006.
    [174]李爱民,楚华,李润东,et al.典型城市垃圾组分热重试验研究[J].可再生能源,2004,(4):22-25.
    [175]朱颖.城市生活垃圾两步法气化熔融焚烧技术研究[D],2008.
    [176]杨延梅,席北斗,刘鸿亮,et al.餐厨垃圾堆肥理化特性变化规律研究[J].环境科学研究,2007,20(2):72-77.
    [177]杨文霞,郑金伟,李志鹏,et al.果皮,菜叶混合垃圾的蚯蚓堆制处理[J].生态与农村环境学报,2006,22(2):49-53.
    [178]HOORNWEG D, THOMAS L, OTTEN L. Composting and its applicability in developing countries [J]. Urban waste management Washington, DC, USA:Urban Development Division, World Bank,1999.
    [179]朱亚民,杨玲洁.用自动凯氏定氮仪测定水中氨氮[J].化学分析计量,2007,16(2):37-39.
    [180]安国安,武力平,吉军凯,et al.凯氏定氮仪测定水样中氨氮的方法研究[J].现代科学仪器,2004,(1):28-29.
    [181]STEVENSON F.腐殖质化学[M].北京:北京农业大学出版社.1994.
    [182]刘瑶,庞金钊,杨宗政,et al.垃圾压缩站污水的生物强化处理[J].环境污染与防治,2007,29(8):605-607.
    [183]阿世孺,张洪波.堆酵——低热值生活垃圾焚烧工艺的重要环节[J].能源研究与利用,2003,(4):39-40.
    [184]吴立,张洪波.城市生活垃圾堆酵实验研究[J].铁道劳动安全卫生与环保,2002,29(3):117-120.
    [185]胡天觉.城市有机固体废物仓式好氧堆肥工艺改进及理论研究[D];湖南大学,2005.
    [186]杨毓峰,薛澄泽.畜禽废弃物的强制通风静态堆肥化处理及其生物学效应[J].农业环境保护,2000,19(4):209-212.
    [187]秦莉,李玉春,李国学,et al.城市生活垃圾堆肥过程中腐熟度指标及控制参数[J].农业工程学报,2006,22(12):189-194.
    [188]鲍士旦.土壤农化分析[J].北京:中国农业出版社,2000.
    [189]BARRAL L, DIEZ F, GARC A-GARABAL S, et al. Thermodegradation kinetics of a hybrid inorganic-organic epoxy system [J]. European Polymer Journal,2005,41(7):1662-1666.
    [190]COATS A, REDFERN J. Kinetic parameters from thermogravimetric data [J]. Nature,1964, (201):68-69.
    [191]胡荣祖,史启祯.热分析动力学[M].科学出版社,2001.
    [192]高宁博.高温过热水蒸气的制备及生物质高温气化重整制氢特性研究[D];大连理工大学,2009.
    [193]马长永.CFB垃圾焚烧炉绝热炉膛热平衡计算及燃烧特性分析[J].工业锅炉,2010,(3):13-16.
    [194]赵仲琥,电力行业电力规划设计标准化技术委员会,国家电力公司,et a1.火力发电厂制粉系统设计计算技术规定[M].中国电力出版社,2002.
    [1951孙晋涛,方建钢.计算理论燃烧温度的新方法[J].上海建材学院学报,1988,1(1):44-50.
    [196]SWEETEN J M, ANNAMALAI K, THIEN B, et al. Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics [J]. Fuel,2003,82(10):1167-1182.
    [197]楼紫阳,赵由才,柴晓利,et a1.生活垃圾可持续化填埋[J].环境工程学报,2007,1(1):4.
    [198]SALA O, LAUENROTH W, GOLLUSCIO R. Plant functional types in temperate semi-arid regions [J]. 1997,217-233.
    [199]赵冬艳.大连市近60年降水变化特征分析[J].现代农业科技,2011,(6):23-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700