用户名: 密码: 验证码:
益消复瘫汤治疗糖尿病并脑梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨糖尿病并脑梗死的病机治法,提出“气虚血瘀-瘀热生毒-毒损脑络”为糖尿病并脑梗死的主要病机,清热解毒益气活血法为其有效治疗方法,并应用临床确有疗效的导师经验方益消复瘫汤为治疗药物。研究糖尿病合并脑梗死的可能机制,观察糖尿病并脑梗死后神经损伤的影响,探讨益消复瘫汤治疗糖尿病并脑梗死的作用及机制。
     方法:应用SD大鼠高脂高糖饲料喂养4周联合小剂量STZ(30mg/kg)腹腔注射方法建立糖尿病模型,1周后筛选血糖合格(血糖≥16.7mmol/L)大鼠进行线栓法建立局灶性大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)脑梗死模型。应用益消复瘫汤高、低剂量为治疗组,并设假手术对照、单纯脑梗死组、单纯糖尿病组为对照,观察比较各组大鼠死亡率并分析死亡原因,行为学观察进行神经功能评分,脑组织TTC染色法计算梗死容积,干湿法计算脑组织含水量,应用尼氏染色观察海马CA1区神经元损伤,比色法计算脑组织匀浆髓过氧化物酶(myeloperoxidase,MPO)活性观察炎性细胞浸润情况,western blot方法检测脑组织炎症信号通路TLR4及其下游肿瘤坏死因子α(tumor necrosis factorα,TNF-α)、白细胞介素-1β(interleukin-1β,IL-1β)蛋白表达。
     结果:糖尿病脑梗死组大鼠表现了更重的神经损伤,神经行为学评分、脑梗死容积、脑水肿程度、脑组织炎性浸润程度,TLR4、TNF-α、IL-1β表达均重于各对照组,益消复瘫汤能抑制糖尿病脑梗死大鼠TLR4信号通路,减少TLR4蛋白表达,降低TNF-α、IL-1β等炎症因子表达,降低脑组织MPO活性,减少梗死面积,发挥神经保护作用。
     结论:利用高脂高糖膳食联合小剂量STZ注射基础上进行线栓可成功建立糖尿病脑梗死模型,益消复瘫汤能抑制糖尿病脑梗死后的TLR4炎性信号通路,减少TLR4、TNF-α、IL-1β表达,降低脑组织MPO活性,减轻神经损伤,发挥脑保护作用。
Objective: Study the pathology mechanism and treatment method of cerebralinfarction with diabetic,we put forward the main pathology mechanism "qi deficiency andblood stasis,stasis heat reducing toxicant,toxicant damaging brain collaterals". So thetreatment methods of clearing away heat and toxic materials and supplementing qi andactivating blood circulation maybe a valid therapy,and Yi-Xiao-Fu-tan decoction(YXFTT)maybe valid treatment drug. We investigated the changes and the molecular mechanisms ofcerebral vascular damage and tested the therapeutic effects of YXFTT in diabetic rats afterstroke.
     Methods: Male Sprague-Dawley rats were fed with high fat and high sugar diet for4weeks,then injected intraperitoneally with low dose of streptozotocin (STZ)(30mg/kg)serves as an alternative animal model for type2diabetes,the diabetes rats (blood glucose≥16.7mmol/L)then underwent permanent middle cerebral artery occlusiont.we treated thestroke rats in diabetic with YXFTT for a week, at the same time,we set sham group,MCAOwithout diabetic group,diabete group with sham operation group to control. Neurologicfunction,cerebral infarct volume, brain water content,myeloperoxidase (MPO) activity andhippocampal CA1neurons injury were measured24h after MCAO. Expression ofTLR4,and the downstream effector molecules tumor necrosis factor-alpha (TNF-α) andinterleukin-1beta (IL-1β) were determined by western blot.
     Results: The stroke rats with diabetes showed significantly higher mortality, biggerinfarcts, increased cerebral edema, worsened neurological status compared to rats withoutdiabtes. The diabetes rats also showed significantly higher post-ischemic inflammatorymarkers MPO activity, exacerbated proinflammatory gene expression compared to rats without diabetes. In addition, the post-ischemic neuroprotective YXFTT reduced cerebralinfarct area and infarct volume. YXFTT reduced the expression of TLR4and TNF-α andIL-1β. Our results suggest that YXFTT inhibits the TLR4signaling pathway in cerebralischemia with diabetes, which may be a mechanism underlying the YXFTT'sneuroprotection.
     Conclusions: With high fat and high sugar diet combined with small dose injection ofSTZ,then underwent permanent middle cerebral artery occlusion can be successfullyestablished based on diabetic cerebral infarction model, YXFTT in experiments withdiabetic cerebral infarction can reduce nerve damage, reduce the expression of TLR4signaling pathway, play a protective role.
引文
[1] V. L. Roger, A. S. Go, D. M. Lloyd-Joneset al. Heart disease and strokestatistics--2012update: a report from the american heart association. Circulation,2012,125(1):e2-e220.
    [2] A. Durukan, T. Tatlisumak. Acute ischemic stroke: overview of major experimentalrodent models, pathophysiology, and therapy of focal cerebral ischemia. PharmacolBiochem Behav,2007,87(1):179-197.
    [3] T. Almdal, H. Scharling, J. S. Jensenet al. The independent effect of type2diabetesmellitus on ischemic heart disease, stroke, and death: a population-based study of13,000men and women with20years of follow-up. Arch Intern Med,2004,164(13):1422-1426.
    [4] K. K. Andersen, T. S. Olsen. One-month to10-year survival in the Copenhagenstroke study: interactions between stroke severity and other prognostic indicators. JStroke Cerebrovasc Dis,2011,20(2):117-123.
    [5] A. Ergul, W. Li, M. M. Elgebalyet al. Hyperglycemia, diabetes and stroke: focus onthe cerebrovasculature. Vascul Pharmacol,2009,51(1):44-49.
    [6] M. Janghorbani, F. B. Hu, W. C. Willettet al. Prospective study of type1and type2diabetes and risk of stroke subtypes: the Nurses' Health Study. Diabetes Care,2007,30(7):1730-1735.
    [7] Q. Jia, X. Zhao, C. Wanget al. Diabetes and poor outcomes within6months afteracute ischemic stroke: the China National Stroke Registry. Stroke,2011,42(10):2758-2762.
    [8] W. Yang, J. Lu, J. Wenget al. Prevalence of diabetes among men and women inChina. N Engl J Med,2010,362(12):1090-1101.
    [9] J. P. Boyle, T. J. Thompson, E. W. Gregget al. Projection of the year2050burden ofdiabetes in the US adult population: dynamic modeling of incidence, mortality, andprediabetes prevalence. Popul Health Metr,2010,8:29.
    [10] B. Fuentes, M. A. Ortega-Casarrubios, B. Sanjoseet al. Persistent hyperglycemia>155mg/dL in acute ischemic stroke patients: how well are we correcting it?: implicationsfor outcome. Stroke,2010,41(10):2362-2365.
    [11] C. S. Gray, A. J. Hildreth, P. A. Sandercocket al. Glucose-potassium-insulin infusionsin the management of post-stroke hyperglycaemia: the UK Glucose Insulin in StrokeTrial (GIST-UK). Lancet Neurol,2007,6(5):397-406.
    [12] N. J. MacDougall, K. W. Muir. Hyperglycaemia and infarct size in animal models ofmiddle cerebral artery occlusion: systematic review and meta-analysis. J Cereb BloodFlow Metab,2011,31(3):807-818.
    [13] K. Tureyen, R. Kapadia, K. K. Bowenet al. Peroxisome proliferator-activatedreceptor-gamma agonists induce neuroprotection following transient focal ischemiain normotensive, normoglycemic as well as hypertensive and type-2diabetic rodents.J Neurochem,2007,101(1):41-56.
    [14] R. Kumari, L. B. Willing, S. D. Patelet al. The PPAR-gamma agonist, darglitazone,restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabeticob/ob mouse. J Cereb Blood Flow Metab,2010,30(2):352-360.
    [15] M. Okada, S. F. Yan, D. J. Pinsky. Peroxisome proliferator-activated receptor-gamma(PPAR-gamma) activation suppresses ischemic induction of Egr-1and itsinflammatory gene targets. FASEB J,2002,16(14):1861-1868.
    [16] S. Sundararajan, J. L. Gamboa, N. A. Victoret al. Peroxisome proliferator-activatedreceptor-gamma ligands reduce inflammation and infarction size in transient focalischemia. Neuroscience,2005,130(3):685-696.
    [17] Y. Zhao, A. Patzer, T. Herdegenet al. Activation of cerebral peroxisomeproliferator-activated receptors gamma promotes neuroprotection by attenuation ofneuronal cyclooxygenase-2overexpression after focal cerebral ischemia in rats.FASEB J,2006,20(8):1162-1175.
    [18] S. W. Park, J. H. Yi, G. Miranpuriet al. Thiazolidinedione class of peroxisomeproliferator-activated receptor gamma agonists prevents neuronal damage, motordysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injuryin adult rats. J Pharmacol Exp Ther,2007,320(3):1002-1012.
    [19] K. Tureyen, R. Kapadia, K. K. Bowenet al. Peroxisome proliferator-activatedreceptor-gamma agonists induce neuroprotection following transient focal ischemiain normotensive, normoglycemic as well as hypertensive and type-2diabetic rodents.J Neurochem,2007,101(1):41-56.
    [20] J. H. Yi, S. W. Park, N. Brookset al. PPARgamma agonist rosiglitazone isneuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidativemechanisms. Brain Res,2008,1244:164-172.
    [21] M. Y. Donath, S. E. Shoelson. Type2diabetes as an inflammatory disease. Nat RevImmunol,2011,11(2):98-107.
    [22] A. Guilherme, J. V. Virbasius, V. Puriet al. Adipocyte dysfunctions linking obesity toinsulin resistance and type2diabetes. Nat Rev Mol Cell Biol,2008,9(5):367-377.
    [23] P. Dandona, A. Aljada, A. Bandyopadhyay. Inflammation: the link between insulinresistance, obesity and diabetes. Trends Immunol,2004,25(1):4-7.
    [24] P. Dandona, A. Aljada, A. Chaudhuriet al. Metabolic syndrome: a comprehensiveperspective based on interactions between obesity, diabetes, and inflammation.Circulation,2005,111(11):1448-1454.
    [25] S. C. Fagan, D. C. Hess, E. J. Hohnadelet al. Targets for vascular protection afteracute ischemic stroke. Stroke,2004,35(9):2220-2225.
    [26] G. H. Danton, W. D. Dietrich. Inflammatory mechanisms after ischemia and stroke. JNeuropathol Exp Neurol,2003,62(2):127-136.
    [27] J. Huang, U. M. Upadhyay, R. J. Tamargo. Inflammation in stroke and focal cerebralischemia. Surg Neurol,2006,66(3):232-245.
    [28] G. Yilmaz, D. N. Granger. Cell adhesion molecules and ischemic stroke. Neurol Res,2008,30(8):783-793.
    [29] C. Kaur, E. A. Ling. Blood brain barrier in hypoxic-ischemic conditions. CurrNeurovasc Res,2008,5(1):71-81.
    [30] W. H. Hoffman, S. M. Stamatovic, A. V. Andjelkovic. Inflammatory mediators andblood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. BrainRes,2009,1254:138-148.
    [31] Y. Matsuo, T. Kihara, M. Ikedaet al. Role of neutrophils in radical production duringischemia and reperfusion of the rat brain: effect of neutrophil depletion onextracellular ascorbyl radical formation. J Cereb Blood Flow Metab,1995,15(6):941-947.
    [32] L. S. Ritter, J. A. Orozco, B. M. Coullet al. Leukocyte accumulation andhemodynamic changes in the cerebral microcirculation during early reperfusion afterstroke. Stroke,2000,31(5):1153-1161.
    [33] M. L. Ruehl, J. A. Orozco, M. B. Stokeret al. Protective effects of inhibiting bothblood and vascular selectins after stroke and reperfusion. Neurol Res,2002,24(3):226-232.
    [34] G. W. Schmid-Schonbein. The damaging potential of leukocyte activation in themicrocirculation. Angiology,1993,44(1):45-56.
    [35] M. Suematsu, G. W. Schmid-Schonbein, R. H. Chavez-Chavezet al. In vivovisualization of oxidative changes in microvessels during neutrophil activation. Am JPhysiol,1993,264(3Pt2):H881-H891.
    [36] J. Jordan, T. Segura, D. Breaet al. Inflammation as therapeutic objective in stroke.Curr Pharm Des,2008,14(33):3549-3564.
    [37] X. K. Tu, W. Z. Yang, S. S. Shiet al.5-lipoxygenase inhibitor zileuton attenuatesischemic brain damage: involvement of matrix metalloproteinase9. Neurol Res,2009,31(8):848-852.
    [38] S. M. Lucas, N. J. Rothwell, R. M. Gibson. The role of inflammation in CNS injuryand disease. Br J Pharmacol,2006,147Suppl1:S232-S240.
    [39] A. Aderem, R. J. Ulevitch. Toll-like receptors in the induction of the innate immuneresponse. Nature,2000,406(6797):782-787.
    [40] O. Hoffmann, J. S. Braun, D. Beckeret al. TLR2mediates neuroinflammation andneuronal damage. J Immunol,2007,178(10):6476-6481.
    [41] N. Zwagerman, C. Plumlee, M. Guthikondaet al. Toll-like receptor-4and cytokinecascade in stroke after exercise. Neurol Res,2010,32(2):123-126.
    [42] T. V. Arumugam, E. Okun, S. C. Tanget al. Toll-like receptors inischemia-reperfusion injury. Shock,2009,32(1):4-16.
    [43] J. R. Caso, J. M. Pradillo, O. Hurtadoet al. Toll-like receptor4is involved in braindamage and inflammation after experimental stroke. Circulation,2007,115(12):1599-1608.
    [44] S. C. Tang, T. V. Arumugam, X. Xuet al. Pivotal role for neuronal Toll-like receptorsin ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A,2007,104(34):13798-13803.
    [45] S. Lehnardt, S. Lehmann, D. Kaulet al. Toll-like receptor2mediates CNS injury infocal cerebral ischemia. J Neuroimmunol,2007,190(1-2):28-33.
    [46]付莹坤,倪青,林兰.清润方对糖尿病大鼠炎症反应及氧化应激的影响.中国实验方剂学杂志,2012,18(7):202-205.
    [47] L. Ritter, L. Davidson, M. Henryet al. Exaggerated neutrophil-mediated reperfusioninjury after ischemic stroke in a rodent model of type2diabetes. Microcirculation,2011,18(7):552-561.
    [48] K. Tureyen, K. Bowen, J. Lianget al. Exacerbated brain damage, edema andinflammation in type-2diabetic mice subjected to focal ischemia. J Neurochem,2011,116(4):499-507.
    [49]吴岚,周素娴,刘开祥等.青藤碱对糖尿病大鼠脑缺血再灌注损伤后Bcl-2和caspase-3表达的影响.中国老年学杂志,2010(11)
    [50]王守运,韩辉,鲍远程等.糖尿病合并脑梗死的中医药治疗研究进展.北京中医药,2011(1):67-69.
    [51]孙志升.清热解毒益气活血法治疗2型糖尿病并脑梗塞的理论与临床研究.山东中医药大学;,2008.
    [52].黄帝内经素问.北京:人民卫生出版社,1994:178.
    [53]李东垣.兰室秘藏.北京:人民卫生出版社,2005:33.
    [54]耿贇,方邦江,周爽等.中医药治疗糖尿病并发脑梗死的历史源流及研究现状.辽宁中医杂志,2011(8):1681-1682.
    [55]张宁.糖尿病合并急性脑血管病的中医诊疗方案第八次全国中医糖尿病学术大会.中国北京.2005.
    [56]张慧,何屹,王瑞等.清脑通脉胶囊对糖尿病合并脑梗死大鼠血糖、糖尿病症状及神经功能缺失的影响.陕西中医学院学报,2009(1):40-44.
    [57]王履.医经溯洄集.北京:人民卫生出版社,1993:55.
    [58]梅海云,时良玺,尚文斌.糖尿病合并脑梗死的中医药防治研究进展.现代中西医结合杂志,2010(34):4506-4508.
    [59]韩辉,田金洲,韩明向等.糖尿病脑梗死的中医证候特征.中医药临床杂志,2010(11):1002-1005.
    [60]王永炎,栗德林.今日中医内科(下卷).北京:人民卫生出版社,1999.
    [61]杨晓晖.消渴病与中风——附84例临床分析.中国中医急症,1996(1):25-26.
    [62]郑欣,喇万英,王啸.中医药治疗糖尿病并脑梗死临床研究进展.河北中医,2008(1):100-102.
    [63]邓屹琪.糖尿病合并缺血性中风基本病机及治法研究概述.中国中医急症,2004(4):245.
    [64]邓奕辉,陈大舜.糖尿病合并缺血性中风基本病机及治法探讨.中国中医药信息杂志,2002(4):49.
    [65]伊文琪,田效信,冯向英.补阴法在中风合并糖尿病治疗中的运用举隅.时珍国医国药,2004(2):110.
    [66]高颜华,王改仙,周铭.王敏淑治疗糖尿病合并脑梗死经验.中国中医药现代远程教育,2011(4):162-163.
    [67]鞠凤芝.从痰瘀论治2型糖尿病浅探.实用中医内科杂志,2005(1):22.
    [68]李佳川,孟宪丽,崔蓉等.不同黄连炮制品“止消渴”药效学比较研究.中成药,2010(11):1922-1925.
    [69]张雪侠,曹珊,苗明三.黄芪在糖尿病及其并发症中的应用.中医学报,2011(11):1323-1325.
    [70]张晓晨.地龙药理与临床研究进展.中成药,2011(9):1574-1578.
    [71]禛恒.活洞宾的地龙方.养生月刊,2010,31(7):658-659.
    [72]李明,武继彪,刘聪聪.水蛭的临床应用综述.中医研究,2006(8):62-64.
    [73]付起凤,吕邵娃,李馨.马齿苋的药理活性及其保健功能.中医药信息,2011(6):130-132.
    [74]解思友,逄美芳,孙艳等.马齿苋的化学成分与药理作用最新研究进展.现代药物与临床,2011(3):212-215.
    [75]肖凤英,陆付耳,徐丽君.马齿苋不同部位提取物改善2型糖尿病大鼠糖脂代谢紊乱的比较研究.中国实验动物学报,2006(2):100-103.
    [76]马燕,袁月新,张俊梅等.黄连相关中药复方治疗糖尿病及其并发症的研究概况.中国实验方剂学杂志,2011(12):272-275.
    [77]李海东,秦刚,徐苏洋等.黄连及其活性成分对缺血-再灌注损伤保护机制.国际骨科学杂志,2011(5):321-323.
    [78]吕琳.黄芪甲苷对高脂加链脲佐菌素诱导的糖尿病小鼠的降血糖作用及其作用机制.南方医科大学,2010.
    [79]李楠.黄芪有效部位干预糖尿病模型大鼠药效机制研究.辽宁中医药大学,2011.
    [80]张霞.黄芪多糖对2型糖尿病胰岛素抵抗作用机制的研究.山西医科大学,2011.
    [81]刁勇,梁振生,李玉东等.黄芪防治脑缺血损伤的研究进展.中国药学杂志,2010(3):161-165.
    [82]段晓慧,潘晓明,赖真.黄芪对脑缺血及缺血再灌注保护机制的研究进展.深圳中西医结合杂志,2009(4):252-254.
    [83]蒋犁,贾瑞,乔立兴等.黄芪对新生鼠乏氧缺血脑损伤后海马区神经的保护及学习记忆能力的干预(英文).中国临床康复,2006(7)
    [84]邱勇波,刘锦,武飞.黄芪化学成分及药理作用研究进展.中国疗养医学,2011(5):435-436.
    [85]田永明,杨洪涛.中药鬼箭羽的现代研究进展.吉林中医药,2010(10):906-908.
    [86]赵蒙蒙,谢梦洲,李路丹等.鬼箭羽对2型糖尿病大鼠胰岛β细胞形态学的影响.湖南中医药大学学报,2010(3)
    [87]李路丹,谢梦洲,赵蒙蒙等.鬼箭羽对2型糖尿病血瘀证大鼠血糖及血液流变学的影响.中南大学学报(医学版),2011(2)
    [88]陈锡强,何秋霞,严守生等.鬼箭羽提取物抑制血管生成的实验研究.中南药学,2010(11):820-823.
    [89]刘玉梅,相翠玉.鬼箭羽临床应用.中国医药导报,2007(21):3-4.
    [90]姚祖培,陈建新,李福如.鬼箭羽化学、药理及临床应用概况.中国中医药信息杂志,2000(12):31-33.
    [91]张丽芬,赵进喜.中药鬼箭羽研究近况.中国中药杂志,2005(24):1895-1898.
    [92]孙秀英,王富珍,王福星.中药地龙研究进展.中国中医药信息杂志,2009(S1):102-105.
    [93]刘秀艳.地龙的药理研究.辽宁中医杂志,2008(1):106-107.
    [94]刘玉梅,章军,匙峰等.水蛭化学成分研究进展.中国中医药信息杂志,2011(12):108-110.
    [95]张广美,姜梅.水蛭抗肿瘤作用探讨.中华中医药学刊,2009(11):2257-2258.
    [96]韩进庭,邢晓娟.水蛭的药理研究概况.长春中医学院学报,2006(1):89.
    [97]于敏,黄一农,莫炜.水蛭素及其衍生物研究进展及展望.药物生物技术,2011(4):351-354.
    [98]莫可元,张桂英,莫志江.水蛭的药理研究进展.中成药,2003(5):64-66.
    [99]周端球.水蛭粉治疗急性缺血性脑卒中临床研究.中国中西医结合急救杂志,2000(3)
    [100]瞿新艳.水蛭的抗凝血作用研究.现代中西医结合杂志,2010(13):1582-1583.
    [101]李艳玲,黄荣清,崔玉芳等.水蛭的研究概况及展望.科学技术与工程,2004(3):239-243.
    [102]费曜,朱丹平.桑类药材治疗糖尿病研究进展.今日药学,2009(5):11-14.
    [103]任贻军,高逢喜.桑枝的研究概况.安徽农业科学,2008(28):12315-12316.
    [104]邢冬杰,李广元,孙永庆等.桑枝提取物对糖尿病大鼠的作用研究.中国实用医药,2010(9)
    [105]李勇,孙波,胡兴明等.桑枝综合利用研究与开发进展.北方蚕业,2009(3):12-15.
    [106]W. T. Cefalu. Animal models of type2diabetes: clinical presentation andpathophysiological relevance to the human condition. ILAR J,2006,47(3):186-198.
    [107]魏文石,吕传真,任惠民.慢性实验性糖尿病大鼠脑梗死的严重性研究.中国临床神经科学,2001(2):128-129.
    [108]杨红英,王娴默,王卓等.2型糖尿病鼠脑梗死模型的建立及相关指标分析.临床神经电生理学杂志,2009,18(5):270-274.
    [109]尤卫平,严丽英,王江南等.糖尿病性脑梗死大鼠模型的建立.实用糖尿病杂志,2007(4):24-26.
    [110]贾影,宋月佳,昝丽坤等.2型糖尿病对鼠缺血性卒中的影响.中华神经科杂志,2011,44(4):238-241.
    [111]K. Srinivasan, B. Viswanad, L. Asratet al. Combination of high-fat diet-fed andlow-dose streptozotocin-treated rat: a model for type2diabetes and pharmacologicalscreening. Pharmacol Res,2005,52(4):313-320.
    [112]张艳,闵连秋.原花青素对2型糖尿病局灶性脑缺血大鼠脑组织含水量和脑梗死面积的影响.辽宁医学院学报,2009(6):506-507.
    [113]E. Z. Longa, P. R. Weinstein, S. Carlsonet al. Reversible middle cerebral arteryocclusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    [114]R. Kapadia, K. Tureyen, K. K. Bowenet al. Decreased brain damage and curtailedinflammation in transcription factor CCAAT/enhancer binding protein beta knockoutmice following transient focal cerebral ischemia. J Neurochem,2006,98(6):1718-1731.
    [115]K. Tureyen, N. Brooks, K. Bowenet al. Transcription factor early growth response-1induction mediates inflammatory gene expression and brain damage followingtransient focal ischemia. J Neurochem,2008,105(4):1313-1324.
    [116]J. B. Bederson, L. H. Pitts, M. Tsujiet al. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination. Stroke,1986,17(3):472-476.
    [117]T. N. Lin, Y. Y. He, G. Wuet al. Effect of brain edema on infarct volume in a focalcerebral ischemia model in rats. Stroke,1993,24(1):117-121.
    [118]魏荣锐,苗明三.糖尿病动物模型及特点分析.中医研究,2010,23(2):6-11.
    [119]Y. Goto, M. Kakizaki, N. Masaki. Production of spontaneous diabetic rats byrepetition of selective breeding. Tohoku J Exp Med,1976,119(1):85-90.
    [120]李娟娥,王磊,秦灵灵等.自发性2型糖尿病啮齿类动物模型研究概况.中国实验方剂学杂志,2010,16(6):267-271.
    [121]李爱卿,王志慧,赵跃斌.高糖高脂饲料诱导2型糖尿病大鼠模型.临床医药实践,2005,14(2):130-131.
    [122]储正达,吴颢昕,戴圆圆等.脑梗塞动物模型探讨.辽宁中医药大学学报,2011(5):46-48.
    [123]C. G. Markgraf, S. Kraydieh, R. Pradoet al. Comparative histopathologicconsequences of photothrombotic occlusion of the distal middle cerebral artery inSprague-Dawley and Wistar rats. Stroke,1993,24(2):286-292,292-293.
    [124]杨金晶,杨秋萍.链脲佐菌素诱导糖尿病动物模型的体会.昆明医学院学报,2008,29(z1):164-166.
    [125]P. Appelros, B. Stegmayr, A. Terent. Sex differences in stroke epidemiology: asystematic review. Stroke,2009,40(4):1082-1090.
    [126]A. Sakata, M. Mogi, J. Iwanamiet al. Female type2diabetes mellitus mice exhibitsevere ischemic brain damage. J Am Soc Hypertens,2011,5(1):7-11.
    [127]S. J. Vannucci, L. B. Willing, S. Gotoet al. Experimental stroke in the female diabetic,db/db, mouse. J Cereb Blood Flow Metab,2001,21(1):52-60.
    [128]T. K. Toung, P. D. Hurn, R. J. Traystmanet al. Estrogen decreases infarct size aftertemporary focal ischemia in a genetic model of type1diabetes mellitus. Stroke,2000,31(11):2701-2706.
    [129]奚苗苗,文爱东,梁欣等.2型糖尿病大鼠模型的建立及其氧化应激特征分析.中国药物与临床,2010,10(1):8-12.
    [130]A. Bruno, S. R. Levine, M. R. Frankelet al. Admission glucose level and clinicaloutcomes in the NINDS rt-PA Stroke Trial. Neurology,2002,59(5):669-674.
    [131]N. D. Kruyt, G. J. Biessels, J. H. Devrieset al. Hyperglycemia in acute ischemicstroke: pathophysiology and clinical management. Nat Rev Neurol,2010,6(3):145-155.
    [132]施新酞.现代医学实验动物学:人民军医出版社,2000:332-335.
    [133]E. Titova, R. P. Ostrowski, C. G. Kevilet al. Reduced brain injury in CD18-deficientmice after experimental intracerebral hemorrhage. J Neurosci Res,2008,86(14):3240-3245.
    [134]李颖,于锋,戴德哉等.糖尿病加重中风的可能机制及相关药物作用靶点.药学进展,2010,34(10):433-438.
    [135]T. A. Baird, M. W. Parsons, T. Phanhet al. Persistent poststroke hyperglycemia isindependently associated with infarct expansion and worse clinical outcome. Stroke,2003,34(9):2208-2214.
    [136]C. S. Gray, J. F. Scott, J. M. Frenchet al. Prevalence and prediction of unrecogniseddiabetes mellitus and impaired glucose tolerance following acute stroke. AgeAgeing,2004,33(1):71-77.
    [137]W. N. Kernan, C. M. Viscoli, S. E. Inzucchiet al. Prevalence of abnormal glucosetolerance following a transient ischemic attack or ischemic stroke. Arch Intern Med,2005,165(2):227-233.
    [138]杨慧茹,张雪君,张淑萍等.糖尿病合并脑梗死血糖水平与梗死灶部位、体积的相关性分析.天津医科大学学报,2011,17(2):162-165,176.
    [139]姚汉玲,李竞.糖尿病合并脑梗死患者急性期血糖控制水平与神经功能缺损评分的相关分析.疑难病杂志,2011,10(2):99-100.
    [140]I. A. Simpson, N. M. Appel, M. Hokariet al. Blood-brain barrier glucose transporter:effects of hypo-and hyperglycemia revisited. J Neurochem,1999,72(1):238-247.
    [141]朱凌云,孙侃,李晓军.糖尿病合并脑梗死的临床特点与机制研究进展.医学综述,2008(7):1075-1077.
    [142]邢影. AGEs及受体在糖尿病大鼠局灶脑缺血损伤中的作用机制.吉林大学;,2009.
    [143]L. Ma, R. J. Carter, A. J. Mortonet al. RAGE is expressed in pyramidal cells of thehippocampus following moderate hypoxic-ischemic brain injury in rats. Brain Res,2003,966(2):167-174.
    [144]M. Paciaroni, G. Agnelli, F. Coreaet al. Early hemorrhagic transformation of braininfarction: rate, predictive factors, and influence on clinical outcome: results of aprospective multicenter study. Stroke,2008,39(8):2249-2256.
    [145]Y. Ko, J. H. Park, M. H. Yanget al. The significance of blood pressure variability forthe development of hemorrhagic transformation in acute ischemic stroke. Stroke,2010,41(11):2512-2518.
    [146]郭志强.缺血性卒中出血性转化36例临床分析.中国实用神经疾病杂志,2011(9):64-65.
    [147]宋道远.脑梗死后出血性转化的危险因素和预后相关性分析.昆明医学院,2011.
    [148]M. M. Elgebaly, S. Ogbi, W. Liet al. Neurovascular injury in acute hyperglycemiaand diabetes: A comparative analysis in experimental stroke. Transl Stroke Res,2011,2(3):391-398.
    [149]A. Ergul, M. M. Elgebaly, M. L. Middlemoreet al. Increased hemorrhagictransformation and altered infarct size and localization after experimental stroke in arat model type2diabetes. BMC Neurol,2007,7:33.
    [150]A. K. Harris, J. R. Hutchinson, K. Sachidanandamet al. Type2diabetes causesremodeling of cerebrovasculature via differential regulation of matrixmetalloproteinases and collagen synthesis: role of endothelin-1. Diabetes,2005,54(9):2638-2644.
    [151]I. Kusaka, G. Kusaka, C. Zhouet al. Role of AT1receptors and NAD(P)H oxidase indiabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol,2004,286(6):H2442-H2451.
    [152]H. F. Elewa, A. Kozak, A. B. El-Remessyet al. Early atorvastatin reduces hemorrhageafter acute cerebral ischemia in diabetic rats. J Pharmacol Exp Ther,2009,330(2):532-540.
    [153]H. Kamada, F. Yu, C. Nitoet al. Influence of hyperglycemia on oxidative stress andmatrix metalloproteinase-9activation after focal cerebral ischemia/reperfusion in rats:relation to blood-brain barrier dysfunction. Stroke,2007,38(3):1044-1049.
    [154]B. Shen, F. Vetri, L. Maoet al. Aldose reductase inhibition ameliorates thedetrimental effect of estrogen replacement therapy on neuropathology in diabetic ratssubjected to transient forebrain ischemia. Brain Res,2010,1342:118-126.
    [155]R. M. Weston, N. M. Jones, B. Jarrottet al. Inflammatory cell infiltration afterendothelin-1-induced cerebral ischemia: histochemical and myeloperoxidasecorrelation with temporal changes in brain injury. J Cereb Blood Flow Metab,2007,27(1):100-114.
    [156]G. Guo, N. R. Bhat. p38alpha MAP kinase mediates hypoxia-induced motor neuroncell death: a potential target of minocycline's neuroprotective action. NeurochemRes,2007,32(12):2160-2166.
    [157]Zoppo GJ Del. Inflammation and the neurovascular unit in the setting of focalcerebral ischemia. Neuroscience,2009,158(3):972-982.
    [158]W. C. Jean, S. R. Spellman, E. S. Nussbaumet al. Reperfusion injury after focalcerebral ischemia: the role of inflammation and the therapeutic horizon.Neurosurgery,1998,43(6):1382-1396,1396-1397.
    [159]F. W. Asselbergs, J. W. Tervaert, R. A. Tio. Prognostic value of myeloperoxidase inpatients with chest pain. N Engl J Med,2004,350(5):516-518,516-518.
    [160]唐伦先,张华. Toll样受体2/4在心脏疾病中的作用研究进展.中华临床医师杂志(电子版),2012(12):3341-3343.
    [161]T. Kaisho, S. Akira. Toll-like receptor function and signaling. J Allergy ClinImmunol,2006,117(5):979-987,988.
    [162]E. Meylan, J. Tschopp, M. Karin. Intracellular pattern recognition receptors in thehost response. Nature,2006,442(7098):39-44.
    [163]M. Yu, H. Wang, A. Dinget al. HMGB1signals through toll-like receptor (TLR)4and TLR2. Shock,2006,26(2):174-179.
    [164]K. Ohashi, V. Burkart, S. Floheet al. Cutting edge: heat shock protein60is a putativeendogenous ligand of the toll-like receptor-4complex. J Immunol,2000,164(2):558-561.
    [165]L. Sironi, C. Banfi, M. Brioschiet al. Activation of NF-kB and ERK1/2afterpermanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis,2006,22(2):445-451.
    [166]A. A. Beg. Endogenous ligands of Toll-like receptors: implications for regulatinginflammatory and immune responses. Trends Immunol,2002,23(11):509-512.
    [167]E. Meylan, J. Tschopp, M. Karin. Intracellular pattern recognition receptors in thehost response. Nature,2006,442(7098):39-44.
    [168]B. J. Marsh, R. L. Williams-Karnesky, M. P. Stenzel-Poore. Toll-like receptorsignaling in endogenous neuroprotection and stroke. Neuroscience,2009,158(3):1007-1020.
    [169]S. Pai, R. Thomas. Immune deficiency or hyperactivity-Nf-kappab illuminatesautoimmunity. J Autoimmun,2008,31(3):245-251.
    [170]毛诗贤,楚兰,陈红群.糖尿病大鼠局灶性脑缺血再灌注对NF-κBp65表达的影响.贵阳医学院学报,2010(3):243-246.
    [171]K. Hoshino, O. Takeuchi, T. Kawaiet al. Cutting edge: Toll-like receptor4(TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4as the Lps gene product. J Immunol,1999,162(7):3749-3752.
    [172]H. Tsujimoto, S. Ono, P. A. Efronet al. Role of Toll-like receptors in the developmentof sepsis. Shock,2008,29(3):315-321.
    [173]S. Akira. Mammalian Toll-like receptors. Curr Opin Immunol,2003,15(1):5-11.
    [174]S. Akira. Pathogen recognition by innate immunity and its signaling. Proc Jpn AcadSer B Phys Biol Sci,2009,85(4):143-156.
    [175]K. P. Mollen, R. J. Anand, A. Tsunget al. Emerging paradigm: toll-like receptor4-sentinel for the detection of tissue damage. Shock,2006,26(5):430-437.
    [176]M. Frink, Y. C. Hsieh, B. M. Thobeet al. TLR4regulates Kupffer cell chemokineproduction, systemic inflammation and lung neutrophil infiltration followingtrauma-hemorrhage. Mol Immunol,2007,44(10):2625-2630.
    [177]C. X. Cao, Q. W. Yang, F. L. Lvet al. Reduced cerebral ischemia-reperfusion injuryin Toll-like receptor4deficient mice. Biochem Biophys Res Commun,2007,353(2):509-514.
    [178]S. C. Tang, T. V. Arumugam, X. Xuet al. Pivotal role for neuronal Toll-like receptorsin ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A,2007,104(34):13798-13803.
    [179]T. Kawai, S. Akira. Signaling to NF-kappaB by Toll-like receptors. Trends MolMed,2007,13(11):460-469.
    [180]S. Janssens, R. Beyaert. A universal role for MyD88in TLR/IL-1R-mediatedsignaling. Trends Biochem Sci,2002,27(9):474-482.
    [181]M. S. Hayden, S. Ghosh. Shared principles in NF-kappaB signaling. Cell,2008,132(3):344-362.
    [182]H. Seegers, E. Grillon, Y. Trioullieret al. Nuclear factor-kappa B activation inpermanent intraluminal focal cerebral ischemia in the rat. Neurosci Lett,2000,288(3):241-245.
    [183]C. H. Nijboer, C. J. Heijnen, F. Groenendaalet al. Strong neuroprotection byinhibition of NF-kappaB after neonatal hypoxia-ischemia involves apoptoticmechanisms but is independent of cytokines. Stroke,2008,39(7):2129-2137.
    [184]F. C. Barone, B. Arvin, R. F. Whiteet al. Tumor necrosis factor-alpha. A mediator offocal ischemic brain injury. Stroke,1997,28(6):1233-1244.
    [185]J. Oto, A. Suzue, D. Inuiet al. Plasma proinflammatory and anti-inflammatorycytokine and catecholamine concentrations as predictors of neurological outcome inacute stroke patients. J Anesth,2008,22(3):207-212.
    [186]X. K. Tu, W. Z. Yang, C. H. Wanget al. Zileuton reduces inflammatory reaction andbrain damage following permanent cerebral ischemia in rats. Inflammation,2010,33(5):344-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700