用户名: 密码: 验证码:
基于能力谱法的FRP加固混凝土结构抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pushover分析方法是一种评估结构抗震能力的方法,主要用于对现有结构或者设计方案进行抗侧移能力验算,它有效地避免了非线性动力分析方法的复杂计算,是一种简单有效的结构抗震能力评价工具。FRP抗震加固混凝土结构具有施工方便、质量易于控制且不会影响原有结构体系的正常使用和加固后钢筋混凝土柱的刚度等优点,但现阶段研究主要集中在FRP抗震约束混凝土构件方面,针对结构性能的研究尚显不足。将Pushover分析方法与FRP抗震加固结合起来的加固设计方法能有效地分析出原结构的薄弱环节及加固后结构性能提高的具体信息。
     本文主要针对与Pushover分析结合的FRP抗震约束加固设计方法的具体计算过程及其对加固结构性能的影响进行研究。
     一方面,通过与60个地震动记录统计分析得出的平均强度折减系数谱的比较,对能力谱方法的核心内容之一强度折减系数模型进行分析,结果表明,各种场地条件下,Fajfar模型综合表现最优。
     另一方面,从FRP约束混凝土柱构件的试验和理论研究两方面对三类FRP抗震加固设计方法:直接加固设计法、等效配箍法和FRP约束混凝土截面分析法进行研究比较,结果表明,FRP约束混凝土截面分析法能分析FRP约束混凝土构件所有重要性能特征段(弹性段、屈服段和破坏段)且结果准确,是现阶段研究FRP约束混凝土构件性能的理想方法。
     最后,通过对梁、柱构件截面分析的方法,对一个6层的混凝土框架结构进行FRP抗震加固设计,阐述与Pushover分析结合的FRP抗震加固设计方法的具体计算过程,并对加固前后结构的性能进行比较,结果表明,FRP抗震加固有效提高了结构的延性,大大增强了结构的抗震性能,与能力谱方法的结合使用,能清楚显示出原结构的薄弱环节及加固后结构提高的具体信息,是一种理想的FRP抗震加固设计方法。
The pushover analysis method is a good means to evaluate the earthquake-resistance of building structures, which has been widely used in the reassessment of lateral force resistant system of as-built structures or newly-designed structures. This simple and effective method does not contain the complex solution process as included in commonly-used nonlinear dynamic analysis method. The application of fiber reinforced polymer (FRP) to the seismic retrofit of concrete structures can lead to more efficient construction process and easier quality control. Unfortunately, the technologies of retrofitting with FRP are now focusing on capabilities of the elements but the structures. The technologies of retrofitting with FRP could find the weakness of the original structure and particular enhancement of the retrofitted structure if it was used with the pushover analysis method.
     Here, the researches are mostly on the particular process of the technologies retrofitting with FRP used with pushover analysis method besides the discussion of the capability of the retrofitted structures.
     One side, the strength reduction factor models are compared which is the core of the Capacity spectrum method with the average strength reduction factor spectrum got through the statistical analysis of 60 earthquakes, the result shows that Fajfar model is mostly the best in all kinds of sites.
     On the other side, 3 retrofit methods based on experiments and theories are been compared, they are direct retrofit method, equivalent hoop method and the analysis of the section of the element retrofitted with FRP. At last, the result shows that the analysis of the section of the element retrofitting with FRP can compute the most important character points like elastic point, yield point and ultimate point, besides, it gives us the best result, it is the ideal method to research the capability of the elements retrofitted with FRP today.
     At last, the particular compute progress of the technologies retrofitted with FRP used with pushover analysis method is showed through a 6 stories structure which elements is defined by the analysis of the section. After the compare of the capabilities of the original structure and the retrofitted structure, the result shows that the structure’s ductility after retrofitted effetely enhanced and the capacity of resisting earthquakes is much better. The technologies retrofitting with FRP used with capacity pectrum method can show the weakness of the origin structure and the enhancement of retrofitted structure clearly, is an ideal design method using FRP.
引文
1中华人民共和国标准.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001
    2 SEAOC Vision 2000 Committee. Performance-based Seismic Engineering[R]. Report Prepared by Structural Engineering Association of California, Sacramento, California, USA, 1995
    3 ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council. Redwood City, California, 1996
    4 FEMA 273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA Publication 273, Washington, D. C. October, 1997
    5 FEMA 274. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA Publication 274, Washington, D. C. October, 1997
    6 Building Seismic Safety Council. NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings[S]. 1991 and 1994 Editions.
    7 Eurocode 8: Design of Structures for Earthquake Resistance part 1: General Rules, Seismic Actions and Rules for Buildings[S]. European Committee for Standardization, 2003
    8 FEMA 440. Improvement of Nonlinear Static Seismic Analysis Procedures[R]. Applied Technology Council. Redwood City, California, 2005
    9 ACI Committee 440. State-of-the-Art-Report on Fiber Reinforced Plastic for Concrete Structures[R]. Detroit, Michigan: American Concrete Institute. 1996
    10 P. Fajfar, M. Fischinger. N2-A Method for Nonlinear Seismic Analysis of Regular Buildings[A]. Proceedings of 9th World conference Earthquake Engineering. 1987, 5
    11 P. Fajfar, P. Gaspersic. The N2 Method for the Seismic Damage Analysis of RC Buildings[J]. Earthquake Engineering and Structural Dynamics. 1996, 25(1):31~46
    12 M. Saiidi, M. A. Sozen. Simple and Complex Models for Nonlinear SeismicResponse of Reinforced Concrete Structure[R]. Structural Research Series No. 465. University of Illinois Urbana, IL, August 1979
    13 A. K. Chopra. R. K. Goel. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems[A]. PEER 1999/02, University of California, Berkeley, April, 1999
    14李崚,叶燎原. Push-over分析法及其与非线性动力分析法的对比[J].世界地震工程. 1999, 15(2):34~39
    15叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报. 2000, 21(1):37~43
    16钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具[J].建筑结构. 2000, 30(6):24~27
    17 ZHANG Lingxin, JIANG Jinren. Simplified Method for Estimating the Elastio-plastic Deformations of RC Structures[A]. 13th World Conference on Earthquake Engineering. Vancouver, B. C. Canada, 2004, No. 2865
    18杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析( pushover )方法的改进[J].建筑结构学报. 2000, 21(1):44~51
    19 Sun Jingjiang, Tetsuro Ono, Zhao Yangang and Wang Wei. Lateral Load Pattern in Pushover Analysis[J]. Earthquake Engineering and Engineering Vibration. 2003, 2(1):99~107
    20李刚,刘永.不同加载模式下不对称结构静力弹塑性分析[J].大连理工大学学报. 2004, 44(3):350~355
    21刘清山,梁兴文,黄雅捷.对结构静力弹塑性分析方法的几点改进[J].建筑科学. 2005, 21(4):28~33
    22 ACI Committee 440. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures[R]. Farmington Hills, Michigan. American Concrete Institute. 2003
    23 Aramid纤维薄板补强钢筋混凝土桥墩的工法设计要领(方案)[R](日文).日本: Aramid补强研究会, 1999
    24铁道高架桥柱芳纶纤维薄板抗震补强设计?施工方案[S](日文).日本:铁道综合技术研究所, 1996
    25 Seismic Retrofit Design and Construction Guidelines for Existing Reinforced Concrete Buildings and Steel Encased Reinforced Concrete Buildings Using Continuous Fiber Reinforced Materials[S]. Japan Building DisasterPrevention Association, 1999
    26 Recommendation for Upgrading of Concrete Structures with Use of Continuous Fiber Sheets[S]. Japanese Society of Civil Engineering, 2001
    27中国工程建设标准化协会标准.碳纤维片材加固混凝土结构技术规程[S]. CECS 146: 2003.北京:中国计划出版社, 2003
    28 M. J. N. Priestley, F. Seible and E. Fyfe. Column Seismic Retrofit Using Fibreglass/Epoxy Jackets[A]. Advanced Composite Materials in Bridges and Structures[C]. (Neale K. W. and Labossiere P. Ed.), 1992.
    29 H. Saadatmanesh, M. R. Ehsani and M. W. Li. Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps[J]. ACI Structural Journal. 1994, 91(4): 434~447
    30 H. Saadatmanesh, M. R. Ehsani and L. Jin. Seismic Strengthening of Circular Bridge Pier Models with Fiber Composites[J]. ACI Stuctural Journal. 1996, 93(6):639~647
    31 J. Masukawa, H. Akiyama, and H. Saito. Retrofit of Existing Reinforced Concrete Piersby Using Carbon Fiber Sheet and Aramid Fiber Sheet[A]. Proceedings of the Third International Symposium on Non-Metallic FRP for Concrete Structures[C]. Sapporo, Japan, 1997.411~418
    32 A. Nanni, M. S. Norris. FRP Jacketed Concrete under Flexure and Combined Flexure-Compression[J]. Construction and Building Materials. 1995, 9(5):273~281.
    33 S. A Sheikh, G. Yau. Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers[J]. ACI Structural Journal. 2002, 99(1):72~80
    34 R. D. Lacobucci, S. A. Sheikh and O. Bayrak. Retrofit of Square Concrete Columns with Carbon Fiber-Reinforced Polymer for Seismic Resistance[J]. ACI Structural Journal. 2003, 100(6):785~794
    35 M. H. Harajli, A. A. Reteil. Effect of Confinement Using Fiber-Reinforced Polymer or Fiber-Reinforced Concrete on Seismic Performance of Gravity Load-Designed Columns[J]. ACI Structural Journal. 2004, 101(1):47~56
    36 Y. L. Mo, Y. K. Yeh and D. M. Hsieh. Seismic Retrofit of Hollow Rectangular Bridge Columns[J]. Journal of Composites for Construction. 2004, 8(1):43-51
    37 K. Galal, A. Arafa and A. Ghobarah. Retrofit of RC square short columns[J]. Engineering Structures. 2005, 55(27): 801–813
    38 M. S. Memon, S. A. Sheikh. Seismic Resistance of Square Concrete Columns Retrofitted with Glass Fiber-Reinforced Polymer[J]. ACI Structural Journal. 2005, 102(5):774~783
    39 M. S. Saiidi, D. H. Sanders, F. Gordaninejad, F. M. Martinovic. B. A. Mcelhaney. Seismic Retrofit of Non-Prismatic RC Bridge Columns with Fibrous Composite[A]. Proc. of 12th WCEE[C]. Paper No. 0143, Auckland, NewZealand, Jan. 2000
    40 M. ISO, Y. Matsuzaki, Y. Sonobe, H. Nakamura and M. Watanabe. Experimental Study on Reinforced Concrete Having Wing Walls Retrofitted With Continuous Fiber Sheets[A]. Proc. of 12th WCEE[C]. Paper No. 1865, Auckland, NewZealand, Jan. 2000
    41 J. Lombard, D. T. Lau, J. L. Humar, and S. Foo and M. S. Cheung. Seismic Strengthening and Repair of Reinforced Concrete Shear Walls[A]. Proc. of 12th WCEE[C]. Paper No.2032, Auckland, New Zealand, Jan., 2000.
    42 C. P. Pantelides, C. Clyde and L. D. Reaveley. Rehabilitation of R/C Building Joints with FRP Composites[A]. Proc. of 12th WCEE[C]. Paper No.2306, Auckland, New Zealand, Jan., 2000.
    43 K. C. Womack, M. W. Halling and R. M. Moyle. Full Scale Testing of Concrete Beam-Column Joints Using Advanced Carbon-Fiber Composites[A]. Proc. of 12th WCEE[C]. Paper No.1478, Auckland, New Zealand, Jan.,2000.
    44 C. P. Pantelides, J. Gergely, L. D. Reaveley and V. A Volnyy. Seismic Strengthening of Reinforced Concrete Bridge Pier with FRP Composites[A]. Proc. of 12th WCEE[C]. Paper No.0127, Auckland, New Zealand, Jan., 2000.
    45 A. Castellani, P. Negro, A. Colombo and M. Castellani. Experimental Response of a Non-ductile R/C Building Rehabilitated by Means of Fiber Reinforced Polymers[A]. Proc. of 12th WCEE[C]. Paper No.1605, Auckland, New Zealand, Jan., 2000.
    46 Y. Matsuzaki, K. Nakano, S. Fujii and H. Fukuyama. Seismic Retrofit Using Continuous Fiber Sheets[A]. Proc. of 12th WCEE[C], Paper No.2524, Auckland, New Zealand, Jan.,2000.
    47 H. Ohuchi, S. Ohno, H. Katsumata, Y. Kobatake, T. Meta, K. Yamagata, Y.Inokuma and N. Ogata. Seismic Strengthening Design Technology for Existing Bridge Columns with CFRP[A]. Proc. of the 43rd Inter. SAMPE Symposium and Exhibition[C]. Vol. 43, Book 2 of 2, Anaheim, USA, 1998, 495~514.
    48 M.A.Ciupala, K.pilakoutas and N.Taranu. Frp Seismic Strengthening of Columns in Frames[A]. FRPRCS-6 [C]. 2003, 7, 1117-1125
    49 M. S. Saiidi, Z. Cheng. Effectiveness of Composites in Earthquake Damage Repair of Reinforced Concrete Flared Columns[J]. Journal of Composites for Construction. 2004, 8(4):306~314
    50 X. Yan, W. Hui and M. Rui. Seismic Retrofit of Existing RC Columns Using Multi-Layer Fiber-Reinforced Composite Jackets[A]. The Severth Chinese Steel-Concrete Composite Structures Conference[C]. Shenzheng, China.
    51范立础,卓卫东,薛元德. FRP筒套箍RC墩柱抗震性能的初步研究[A].中国首届纤维增强塑料(FRP)混凝土结构学术交流会论文集[C].北京, 2000, 113~117.
    52张柯,岳清瑞,赵树红,叶列平.碳纤维布加固混凝土柱改善延性的试验研究[J].工业建筑. 2000, 30(2):237~241.
    53 R. Ma, Y. Xiao, K. N. Li. Full-scale Testing of a Parking Structure Column Retrofitted with Carbon Fiber Reinforced Composites[J]. Construction and Building Materials. 2000, 14(2):63~71
    54张柯,岳清瑞,叶列平.碳纤维布加固钢筋混凝土柱抗震性能分析及目标延性系数确定[A].中国首届纤维增强塑料(FRP)混凝土结构学术交流会论文集[C].北京, 2000, 227~232.
    55赵彤,刘明国,谢剑,张晨军.碳纤维布改善高强混凝土柱延性的试验研究[J].地震工程与工程震动. 2001, 21(4):46-52
    56赵彤,刘明国,谢剑.碳纤维布抗震加固斜向受力钢筋混凝土柱的非线性分析[J].世界地震工程. 2001, 17(4):53-59
    57赵彤,刘明国,谢剑.碳纤维布用于改善斜向受力高强混凝土柱抗震性能的研究[J].土木工程学报. 2002, 35(3):13-19
    58赵彤,刘明学,谢剑.碳纤维布增强钢筋混凝土柱延性性能的评估与分析[J].地震工程与工程振动. 2003, 23(4):117-123
    59赵彤,周晓洁,谢剑.碳纤维布改善钢筋混凝土短柱(λ=1.5)抗震性能的试验研究[J].建筑技术开发. 2002, 29(12):10-13
    60吴刚,吕志涛,张继文. CFRP布加固钢筋混凝土柱抗震性能的试验研究.[A]第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会.[C] 2002.7中国·昆明, 137-143
    61李忠献,许成祥,景萌,蔡卫东,郝永昶.碳纤维布加固钢筋混凝土短柱的抗震性能试验研究[J].建筑结构学报. 2002, 23(6):41-48
    62 L. P. Ye, K. Zhang, S. H. Zhao, P. Feng. Experimental Study on Seismic Strengthening of RC Columns with Wrapped CFRP Sheets[J]. Construction and Building Materials. 2003, 17(6-7):499~506
    63肖建庄,龙海燕,石雪飞.纤维布加固高轴压混凝土柱抗震性能[J].同济大学学报(自然科学版). 2004, 32(8):990~995
    64黄奕辉,王全凤,林建华,杨勇新,岳清瑞.玻璃纤维布包裹加固RC柱抗震性能试验[J].工业建筑. 2004,增刊, 213~216
    65刘英磊,黄羽立,叶列平. GFRP加固高强混凝土方柱抗震性能的试验研究[J].工业建筑. 2004,增刊, 217~222
    66胡伟红,黄羽立,叶列平. CFRP加固高强混凝土圆柱抗震性能的试验研究[J].工业建筑. 2004,增刊, 223~229
    67王苏岩,韩克双,曲秀华. CFRP加固高强混凝土柱改善延性的试验研究[J].世界地震工程. 2005, 21(3):7~10
    68单波,肖岩,黄政宇.钢筋混凝土柱考虑地震及使用损伤的性能和加固[J].工业建筑. 2004,增刊, 207~212
    69谢剑,刘明学,赵彤.碳纤维布提高高强混凝土柱抗震能力评估方法[J].天津大学学报. 2005, 38(2):109~113
    70高献,陶忠,杨有福,于清.大轴压比下FRP约束混凝土柱滞回性能试验研究[J].工业建筑. 2005, 35(9):11~14
    71于清,陶忠,高献. FRP约束混凝土柱抗震性能若干问题的探讨[J].地震工程与工程振动. 2006, 26(4):75~82
    72 Jing-Long Pan, Jian-Ping Gao, Chen-Yuan Wang. Experimental Study on the Seismic Behavior of Short Reinforced Concrete Columns Strengthened with Fiber Reinforced Plastic Sheet[A]. The Ninth International Symposium on Structural Engineering for Young Experts [C]. 2006, 8, 1682~1687
    73 S. A. Freeman, J. P. Nicoletti and J. V. Tyrell. Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard[C]. Proc. 1st U. S. National Conference on Earthquake Engineering, EarthquakeEngineering Reasearch Institute, Berkeley, Calif. 1975:113~122
    74 New Zealand Standards. General Structural Design and Design Loadings for Buildings[S]. NZS 4203: 1992, Standard New Zealand, Wellington, 1992:352~397
    75 IAEE. Earthquake Resistant Regulations, A World List[C]. International Association for Earthquake Engineering, Tokyo, Japan, 1996:987~1024
    76 N. M. Newmark, W. J. Hall. Seismic Design Criteria and Nuclear Reactor Facilities[R]. Report No. 46, Building Practices for Disaster Mitigation, National Bureau of Standards, U. S. Department of Commerce, Washington DC, 1973, 1:209~236
    77 A. S. Veletsos, N. M. Newmark. Effects of Inelastic Behavior on the Response of Simple System to Earthquake Motions[C]. Proc. of the 2nd World Conference on Earthquake Engineering, 1960, Japan 2:895~912
    78 R. Riddel, N. M. Newmark. Statistical Analysis of The Response of Nonlinear System Subjected to Earthquake[R]. Structural Research Series No.468 Dept. of Civ. Engrg. University of Illinois. Urban, 1979:54~65
    79 F. E. Elghadamsi, B. Mohraz. Inelastic Earthquake Spectra. Earthquake Engineering and Structural Dynamics[J]. 1987, 15(11):91~104
    80 M. H. Peng, F. Elghadamsi, B. Mohraz. A Stochastic Procedure for Nonlinear Response Spectra[A]. Proceeding of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan. 1988:1069~1074
    81 E. Miranda. Site-dependent Strength Reduction Factors[J]. Journal of Structural Engineering. 1993, 119(12):3503-3519
    82 R. Riddell. Inelastic Design Spectra Accounting for Soil Conditions[J]. Earthquake Engineering and Structural Dynamics. 1995, 24:1491-1510
    83 H. Krawinkler, M. Rahnama. Effects of Soil on Design Spectra[C]. Proceeding of the 9th World Conference on Earthquake Engineering, Madrid, Spain. 1992, 10:5841~5846
    84 S. P. Lai, J. M. Biggs. Inelastic Response Spectra for Aseismic Building Design. Journal of The Structure Division[J]. 1980, 106(ST6):1295~1310
    85 N. M. Newmark, W. J. Hall. Earthquake Spectra and Design[R]. EERI. Berkley, Monogragh Series. Oakland, California, 1982
    86 G. J. Al-Sulaimani and J. M. Roessett. Spectra for Degrading Systems[J].Journal of Structural Engineering[J]. 1984, 111(12): 2611~2623
    87 R. Riddel, P. Hidalgo, F. Cruz. Response Modification Factors for Earthquake Resistant Design of Short Period structures[J]. Earthquake Spectra. 1989, 5 (3):571-590
    88 Hidalgo, A. Arias. New Chilean Code for Earthquake-Resistant Design of Buildings[C]. Pro. 4th U. S. Nat. Conf. Earthquake Engineering, Palm Springs California, 1990: 927~936
    89 J. D. Osteraas, H. Krawinkler. Strength and Ductility Considerations in Seismic Design[R]. John A. Blume Earthquake Engineering Center Report No. 90 Stanford Univ., CA, 1990
    90 W. K. Tso, N. Naumoski. Period-Dependent Seismic Force Reduction Factors for Short-Period Structures[J]. Canadian Journal of Civil Engineering, 1991, 18(4):568~574
    91 A. A. Nassar, H. Krawinkler. Seismic Demands for SDOF and MDOF Systems[R]. Report No. 95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, California, 1991:12~45
    92 T. Vidic, P. Fajfar, M. Fischinger. A Procedure for determining Consistent Inelastic Design Spectra[C]. Proceeding of Workshop on Nonlinear Seismic Analysis of RC Structures, Beld, Slovenia, 1992:10-25
    93 M. J. N. Priestley. Displacement-Based Seismic Assessment of Existing Reinforced Concrete Buildings[C]. Proc. Pacific Conf. on Earthquake Engineering , University of Melbourne, Victoria, Australia, 1995:225~244
    94 T. Vidic, P. Fajfar, M. Fischinger. Consistent Inelastic Design Spectra: Strength and Displacement[J]. Earthquake Engineering and Structural Dynamic. 1994, 23(3):507~521
    95 Y. H. Chai, P. Fajfar. Formulation of Duration-Dependent Inelastic Seismic Design Spectrum[J]. Journal of Structure Engineering. 1998, 124(8): 492~532
    96 N. Lam, J. Wilson, C. Hutchinson. The Ductility Reduction Factor in The Seismic Design of Buildings[J]. Earthquake Engineering and Structural dynamics. 1998, 27(7):749~769
    97 L. H. Lee, S. W. Han, Y. H. Oh. Determination of Ductility Factor Considering Different Hysteric Models[J]. Earthquake Engineering andStructure Dynamics. 1999, 28(9):957~977
    98 A. J. Kappos. Evaluation of Behavior Factors on the Basis of Ductility and Overstrength Studies[J]. Engineering Structures. 1999, 21(8):823~835
    99 B. Borzi, A. S. Elnashai. Refined Force Reduction Factors for Seismic Design[J]. Engineering Structures. 2000, 22 (10):1244~1260
    100 Robert Tremblay, Gail M. Atkinson. Comparative Study of the Inelastic Seismic Demand of Eastern and Western Canadian Sites[J]. Earthquake Spectra. 2001, 17(2):334~358
    101 Gakuho Watanabe and Kazuhiko Kawashima. Force Reduction Factors for Seismic Design of Bridges. http://Seismic. cv. titech. ac. jp/publication/2002
    102 A. S. Elnashai and B. M. Broderick. Seismic Response of Composite Frame-II: Calculation of Behavior Factors[J]. Engineering Structures. 1996, 18(9):707~723
    103 B. Palazzo, L. Petti. Reduction Factors for Base Isolated Structures[J]. Computers & Structures. 1996, 60(6):945~956
    104 Arun K. Tiwari, Vinay K. Gupta. Scaling of ductility and damage-based strength reduction factors horizontal motions[J]. Earthquake Engineering and Structural Dynamics. 2000, 29(7):969~987
    105 Sang Whan Han, Oh-Sung Kwon and Li-Hyung Lee. Investigation of Dynamics P-ΔEffect on Ductility Factor[J]. Structural Engineering and Mechanics. 2001, 12(3): 249~266
    106 Isabel Cuesta, Mark A. Aschheim. Isoductile Strength and Strength Reduction Factors of Elasto-plastic SDOF Systems Subjected to Simple Waveforms[J]. Earthquake Engineering and Structural Dynamics. 2001, 30(7): 1043~1059
    107 Isabel Cuesta, Mark A. Aschhheim. Inelastic Response Spectra Using Conventional and Pulse R-factors[J]. Journal of Structural Engineering. 2001, 127(9):1013~1020
    108 I. Cuesta, M. A. Aschheim, P. Fajfar. Simplified R-factor Relationships for Strong Ground Motions[J]. Earthquake Spectra. 2003, 19(1): 25~45
    109 M. Oradaz, L. E. Perez-Rocha. Estimation of Strength-Reduction Factors for Elastoplastic Systems: A New Approach[J]. Earthquake Engineering and Structural dynamics. 1998, 27(9):889~901
    110 Luis D. Decanini, Silvia Bruno, and Fabrizio Mollaioli. Role of Damage Function of Response Modification Factors[J]. Journal of Structural Engineering. 2004, 130(9):1298~1308
    111 Matjaz Dolsek, Peter Fajfar. Inelastic Spectra for Infilled Reinforced Concrete Frames[J]. Earthquake Engineering and Structural Dynamics. 2004, 33:1395~1416
    112 Arindam Chakraborti, Vinay K. Gupta. Scaling of strength reduction factors for degrading elasto-plastic oscillators[J]. Earthquake Engineering and Structural Dynamics. 2005, 34(2):189~206
    113 Andrew Whittakeer, Michael Constantinous and Panos Tsopelas. Displacement Estimates for Performance-Based Seismic Design[J]. Journal of Structure Engineering. 1998, 10(8):905~912
    114 B. Borzi, G. M. Calvi, A. S. Elanshai and J. J. Bommer. Inelastic Spectra for Displacement-Based Seismic Design[J]. Soil Dynamic and Earthquake Engineering. 2001, 26(1):47~61
    115 E. Miranda, V. Bertero. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design[J]. Earthquake Spectra. 1994, 10(2):123~131
    116 A. M. Mwafy, A. S. Elnashai. Calibration of Force Reduction Factors of RC Buildings[J] Journal of Earthquake Engineering. 2002, 6(22):239~273
    117高小旺,鲍霭斌.用概率方法确定抗震设防标准[J].建筑结构学报. 1986, (2):55~63
    118周锡元,曾德民,高晓安.估计不同服役期结构的抗震设计设防水准的简单方法[J].建筑结构. 2002, 32(1):37~40
    119马玉宏,谢礼立.考虑地震环境的设计常遇地震和罕遇地震的确定[J].建筑结构学报. 2002, 23(1):43~47
    120沈建文,蔡长青.地震危险性分析与抗震设防标准的确定[J].地震工程与工程振动. 1997, 17(2):27~36
    121洪峰,谢礼立.工程结构抗震设计中小震、中震和大震的确定方法[J].地震工程与工程振动. 2000, 20(2):1~6
    122杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆建筑大学学报. 2000, 22(sup.):192~200
    123王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值-主要国家抗震规范比较[J].建筑科学. 1999, 15(5):36~39
    124 Xi Zhu, Yongjun Ni. Strength Reduction Factor Spectra Based on Structural Damage Performance[A]. Symposium on Earthquake Engineering, Published in Earthquake Engineering Frontiers in the New Millennium(Proceedings of the China-U.S.A. Millennium Symposium on Earthquake Engineering[C]. 2000, Beijing, China, Edited by Spencer & Hu, 2001
    125卓卫东.桥梁结构延性抗震设计研究[D].同济大学博士论文. 2000
    126翟长海.最不利设计地震动及强度折减系数研究[J].哈尔滨工业大学博士论文. 2004
    127 H. Sucuoglu, M. Dicleli and A. Nurtug. An Analytical Assessment of Elastic and Inelastic Response Spectra[J]. Can. J. Civil Eng. 1994, 21(3):386~395
    128 P. Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra[J]. Earthquake Engineering and Structural Dynamics. 1999, 28(9):979~993
    129 J. B. Berrill, M. J. N. Priestley and H. E. Chapman. Design Earthquake Loading and Ductility Demand[J]. Bulletin of the New Zealand National Society for Earthquake Engineering. 1989, 13(3):232~241
    130 E. Miranda. Seismic Evaluation and Upgrading of Existing Buildings[D]. PhD Thesis, University of California at Berkeley, Berkeley, California, 1991
    131 I. Cuesta, M. A. Aschheim and P. Fajfar. Simplified R-factor Relationships for Strong Groud Motions. Earthquake Spectra. 2003, 19(1):25~45
    132李宏男.结构多维抗震理论[R].北京:科学出版社, 2006
    133 Pacific Earthquake Engineering Research Center. PEER Strong Motion Database. http://peer.berkeley.edu/smcat.
    134 A. Charney Finley, Brian Barngrover. NONLIN: Software for Earthquake Engineering Education. ASCE Conference Proceedings. 2004, 137(177): 1~12
    135 CSA-S806-02. Design and Construction of Building Components with Extenally Bonded Fiber Reinforced Polymers[R]. Canadian Standards Association International. Toronto, Canada, 2002
    136 CECS 160: 2004.建筑工程抗震形态设计通则(试用)[S].北京,中国计划出版社. 2004
    137 Yimin Li. Design of retrofitting FRP for concrete columns[D]. Master Thesis of University of Toronto. 2003
    138 S. A. Sheikh and S. S. Khoury. A Performance-Based Appoach for the Designof Confining Steel in Tied Columns[J]. ACI Structural Journal. 1997, 94(4):421~431
    139 S. A. Sheikh, S. S. Khoury. Confined Concrete Columns with Stubs[J]. ACI Structural Journal. 1993, 90(4):414~431
    140周长东,黄承逵.玻璃纤维聚合物加固混凝土柱抗震性能研究[J].哈尔滨工业大学学报. 2006, 38(3):427~431
    141赵树红,叶列平,张珂.碳纤维布对混凝土柱抗震加固的试验分析[J].建筑结构. 2001, 31(12):17~19
    142翁义军,沈聚敏,马宝民.复合箍对钢筋混凝土柱延性的改善[J].建筑结构学报. 1985, (1):41-47
    143上海市工程建设规范.纤维增强复合材料加固混凝土结构技术规程[S].上海市建筑科学研究院. 2002
    144中国人民共和国国家标准.纤维增强复合材料工程应用技术规范(征求意见稿)[S]. 2006
    145胡伟红,黄羽立,叶列平,陈小兵,楼宇. CFRP加固高强混凝土圆柱抗震性能的试验研究[J].工业建筑. 2004,增刊, 223~229
    146周长东.玻璃纤维聚合物加固混凝土柱的力学性能研究[D].大连:大连理工大学, 2003
    147中国人民共和国国家标准.混凝土结构加固设计规范[S].GB 50367-2006.北京:中国建筑工业出版社, 2006
    148梁书亭,丁大钧,陆勤.钢筋混凝土复合配箍柱铰的延性和抗震耗能试验研究[J].工业建筑. 1994, 5(11):16~20
    149姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋砼短柱的抗震性能及抗震设计[J].建筑结构学报. 1994, 15(1):2~16
    150刘庆华,范立础.钢筋混凝土桥墩的延性分析[J].同济大学学报. 1998, 26(3):245~249
    151 Emrah Erduran, Ahmet Yakut. Drift Based Damage Functions for Reinforced Concrete Columns[J]. Computers and Structures. 2004, 121~130
    152 A. Azizinamini, W. G. Corley, L. S. P. Johal. Effects of Transverse Reinforcement on Seismic Performance of Columns[J]. ACI Structual Journal. 1992, 89: 442~450
    153 L. Lam, J. G. Teng. Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Retangular Columns[J]. Journal of Reinforced Plastics andComposites. 2003, 22(13):1149~1184
    154 X. K. Zou, J. G. Teng, L. De Lorenzis, S. H. Xia. Optimal Performance-Based Design of FRP Jackets for Seismic Retrofit of Reinforced Concrete Frames. Composites. Part B: Engineering[J]. 2007, (in press).
    155陶忠,于清.新型组合结构柱:试验、理论与方法[R].北京,科学出版社, 2006
    156 J. C. Anderson, V. V. Bertero. Seismic Performance of a Six Story Reinforced Concrete Building[R]. Report No. UCB/EERC-93/01. Earthquake Engineering Research Center. College of Engineering University of Califronia at Berkeley. July, 1997
    157 R. E. Valles, A. M. Reinhorn, S. K. Kunnath, C. Li and Madan. IDARC 2D Version 4.0: A Program for the Inelastic Damage Analysis of Buildings[R]. National Center for Eathquake Engineering Research. State University of New York at Buffalo. Jannuary 8, 1996
    158 H. Krawinkler. Static Pushover Analysis[R]. SEAONC 1994 Fall Seminar on the Developing Art of Seismic Engineering. Stanford University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700