用户名: 密码: 验证码:
FRP约束混凝土柱快速荷载下力学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纤维增强复合材料(简称FRP)优良的力学性能日益得到人们的关注,被广泛用于混凝土结构及其他结构的加固中,并寄期望应用于普通结构的抗震加固与防护结构的抗爆加固,而目前对其快速荷载下的力学性能研究较少。为此,本文共通过64根(25组)圆柱体试件分别对FRP约束混凝土的单调静力(0.00001/s)加载、单调快速(0.0149/s~0.357/s)加载和等幅多循环快速(0.0149/s)加载进行了试验研究和理论分析,并采用有限元分析软件ABAQUS对GFRP约束混凝土进行了静力建模分析,模拟值和试验值吻合较好,从而对FRP约束混凝土静力和快速荷载下力学性能有了较为深入地了解。
     FRP约束混凝土静载下极限强度较素混凝土显著提高,且随包裹层数的增多而基本呈线性增长,但随混凝土强度提高,极限强度提高幅度没有呈现逐渐增高的趋势,虽然各种强度下极限强度有不同程度的提高。且静载情况下,约束混凝土相对素混凝土极限应变有很大程度的提高,即延性有所改善,更有利于抗震加固。FRP约束混凝土在单调静力加载下强度提高其原因在于:FRP套箍对混凝土进行约束,迫使混凝土处于三向受压状态,从而达到提高混凝土强度的目的。
     FRP约束混凝土快速加载下的极限强度随应变速率的增加而提高,与对数应变速率呈线性关系,其斜率α(极限强度的应变速率敏感性系数)与约束比ξ不呈线性关系,逐渐变缓。快速荷载下的极限应变随应变速率的增加而增大,亦大致与对数应变速率呈线性关系,其斜率β(极限应变的应变速率敏感性系数)大致与约束比ξ呈线性关系。FRP强约束混凝土在快速荷载作用下,其初始弹性模量与静载下基本相同,全过程应力应变曲线与静载下的双线性关系有较大区别,表现为明显的曲线特征。
     FRP约束混凝土在较高应变幅值的等幅有限次快速重复加载作用下,其“抗力”与环线刚度衰减不大并有收敛趋势。经重复加载后的静力试验表明,应力应变曲线与静力单调加载有较大差别,尤其是强约束状态,初始弹性模量较大幅度的降低,存在线性化的趋势,但不影响其最终的静载强度,且极限应变有一定的提高。这些性能表明,将FRP约束混凝土应用于普通结构的抗震加固与防护结构的抗爆加固是完全可行的。
     运用损伤理论分析了FRP约束混凝土快速单调加载和等幅多循环加载作用下的损伤过程及FRP约束混凝土的损伤机理,认为对FRP约束混凝土的分析应采用弹塑性损伤模型,该模型才能较好的描述其损伤演变过程。
     运用ABAQUS有限元软件对FRP约束混凝土进行静力加载分析,试验值和模拟值吻合较好。
In recent years, the fiber-reinforced polymer (FRP) has been attracting people’s attention due to its excellent mechanics properties, It is widely used for the reinforcement of concrete structure and other structures. And it is expected to be used for blast-resistance retrofit of protective structure and seismic retrofit of the ordinary structure. However there are few researches about mechanical performance of FRP confined concrete under rapid loading. This paper aims to make people further understand the static performance and mechanical performance of FRP confined concrete under rapid loading. This paper mainly deals with the experiment research and theoretical analysis through 64 (25 sets) cylinderical columns testing under monotony quasi-static (0.00001/s) loading, monotony rapid (0.0149/s~0.357/s) loading, rapid (0.0149/s) repeated loading with equal strain amplitude. Also it adopts finite element software ABAQUS to conduct the static analysis of GFRP confined concrete. The simulation is as similar as the experiment ones.
     Compared with plain concrete column, the ultimate strength of FRP confined concrete under quasi-static loading has improved significantly. And with increasing of packages, it presents a linear growth. with the improvement of the concrete strength, the ultimate strength did not show a trend to gradual increase, although under various intensities ultimate strength has improved to some extent. And under quasic-static conditions, ultimate strain of confined concrete has a considerable degree of increase comparing with plain concrete, that is the ductility have an improvement and be advantageous to an anti-earthquake. The reason of FRP confined concrete’s strength improvement lies in: FRP hoops restraint concrete and force concrete in three-dimensional compression conditions so as to improve the strength of concrete.
     Ultimate strength of FRP confined concrete under rapid loading increases along with increasing of strain rate and has linear relationship with logarithmic strain rate, but the slopeα(which is defined strain rate susceptive coeffcient of ultimate strength on FRP confined concrete under rapid loading)has no linear relationship with constraint ratioξ, gradually converges. Ultimate strain of FRP confined concrete under rapid loading increases along with strain rate increasing and has linear relationship with logarithmic strain rate. The slopeβ(which is strain rate susceptive coefficient of ultimate strain on FRP confined under rapid loading)has linear relationship with constraint ratioξ. The original elastic modulus of FRP confined concrete under rapid loading is basically as same as the one under the condition of static loading.Stress-strain curve of FRP confined concrete under rapid loading shows clearly smooth curve character, and has obvious difference in comparison to coupled linear characteristic under quasi-static loading.
     Under rapid repeated loading with lager amplitude,“Resistance”and round stiffness of FRP confined concrete reduces a little and gradually converges. After repeated loading quasi-static test of FRP confined concrete shows that the stress-strain curve is different from the one under monotony loading, its elastic modulus decreases much, especially for the FRP confined concrete,however this doesn’t influence on the ultimate strength, the ultimate strain increases. All this performance show that it is feasible to apply FRP confined concrete to the retrofit of blast-resistance protective structure and seismic retrofit of building structure.
     Based on damage theory, this paper theoretically analyses the damage process and damage mechanism of FRP confined concrete under rapid and rapid repeated loading with lager amplitude. Through analysis we find that plasticity damage model should be used to the FRP confined concrete analysis, this model can be better used to describe the evolution of damage.
     Using finite element software ABAQUS for FRP confined concrete for static loading analysis, the experimental value matches well with the simulation value.
引文
1黄羽立. FRP约束混凝土的分析与本构模型[D].清华大学硕士学位论文. 2005:1~2
    2颜子涵,王伟军,卢卫煌. CFRP板加固混凝土梁桥的工程实践[C].中国纤维增强材料(FRP)混凝土结构学术交流会首届学术会议论文. 2000:789~793
    3施宇红,李学勤.碳纤维布在混凝土梁、板加固中的应用[C].第六界全国建筑物坚定与加固改造论文集. 2002:804~807
    4尚仁杰,混凝土动态本构行为研究[D].大连理工大学博士学位论文. 1994
    5中国人民解放军工程兵司令部国防工程设计规范. 1976
    6段世昌.复合材料-混凝土组合结构的力学性能研究[D].清华大学工学硕士学位论文.北京:清华大学图书馆, 2004
    7卢亦焱,黄银燊,张号军,刘兰. FRP加固技术研究新进展[J].中国铁道科学. 2006
    8陆新征,叶列平,陈建飞,李天虹.混凝土梁外贴FRP抗剪承载力计算[J].建筑结构, 2006, 36(9):31~36
    9张嘉琪,黄鼎业,王溥. FRP加固混凝土短柱的抗压强度[J].建筑学报, 2000, 3(4):323~327
    10于清. FRP约束混凝土柱强度承载力计算[J].工业建筑, 2002, 30(10):31~34
    11肖岩,吴徽,陈保春.碳纤维套箍约束混凝土应力-应变关系曲线[J].工程力学, 2002, 19(2):154~158
    12欧阳煜,黄毅辉,钱在兹,顾祥林. GFRP片材加固混凝土及方柱的轴压试验研究[J].工业建筑, 2002(6):54~56
    13陆洲导,王李果,李明.钢筋混凝土轴心受压柱在两种玻璃钢材料加固下的性能试验研究[J].四川建筑科学研究院,2002, 26(2)
    14潘景龙,王雨光,来文汇.混凝土柱界面形状对纤维包裹加固效果的影响[J].工业建筑, 2001,31(6):17~19
    15金熙男,潘景龙,来文汇,王雨光.外包纤维加固混凝土短柱轴压力学性能[J].低温建筑技术, 2002(2):24~26
    16陈春,钱春香.纤维增强树脂基复合材料包覆高强混凝土的轴压性能研究[J].工业建筑, 2001, 31(4):23~25
    17贾明瑛,程华,陈小冰,赵红梅.不同FRP约束混凝土圆柱轴心受压性能试验研究[J].工业建筑, 2002,32(5):65~67
    18陆新征,冯鹏,叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J].土木工程学报, 2002(2):46~51
    19杨建中,熊光晶,蒋小青等.用混杂纤维复合材料预制圆套筒加固混凝土方柱的性能研究[J].混凝土与水泥制品, 2002(1):33~35
    20代兵,侯景军.外包纤维布加固混凝土轴心受压柱力学性能分析[J].工业建筑, 2006(36):1028~1031
    21张传爱.碳纤维布加固钢筋混凝土结构的抗爆能力[J].高科技纤维与应用. 2003, 28(4):19~20
    22鲍育明,赵艳秋.碳纤维加固钢筋混凝土构件抗爆性能研究综述[J].建筑技术, 2006, 37(6):428~430
    23 Charles W. Dolan. FRP Presstressing in U.S.A[J]. Concrete International. 1999, (10):21~24
    24 Sami Rizakalla, Pieree Labossiers. Structural Engineering with FRP in Canada[J]. Concrete International. 1999, (10):25~28
    25 Hiroshi Fukuyama. FRP Composites in Japan[J]. Concrete Intemational.1999, (10):29-32.
    26 Luc R. Taerwe, Stijn Watthys. FRP for Concrete Consturcion: Activities in Europe[J]. Concrete International. 1999, (10):33~36
    27 Hamid Saadatamanesh. Fiber Coposites for New and Existing Structures[J]. ACI Structrure Journal. 1994,(5-6):346~354
    28 Viciki L.Brown, L.Bartholomew. FRP Reinforced Concrete Members[J].ACI Structural Journal.1993,(1-2):34~38
    29 H. Saadatmanesh, M. R. Ehsani. Fiber Composite Plates Can Strengthing Beams[J].Concrete International.1990,(3):66~70
    30 Thanasis C. Triantafillou. Shear Strengthing of Reinforced Concrete Beams Using Expo-Bonded Composites[J]. ACI Strucural Journal.1998,(3-4):107~114
    31 Laura De Lorenzisand Antonio Nanni. Shear Strengthening of Reinforced Concrete Beams with Near Surface Mounted Fiber-Reinforced PolymerRods[J]. ACI Structural Journal.2001,( 3-4):202~206
    32 Neven Krstulcric-Opan, Antoine E. Naaman. Self-StressingFiber Composites [J]. ACI Strucrual Journal. 2000,(3-4):335~344
    33 D.A. Abmars. Effect of Rate of Application of Load on the Compressive Strength of Concrete[J].ASTM Journal(PartⅡ).1917: 364~377
    34 J.Gran,A. Florence and J.Colton Dynamic Triaxial Tests of High-Strength Concrete[J].ASME J Engineering Mechanic.1989,115(5): 73~83
    35 H. Shraddhakar, Shen Zhenjia, D. Darwin. Strain-Rate Sensitive Behavior of Cement Past and Mortar in Compressive[J]. ACI Material Journal.
    36 P.G.Jones, F.E. Richart. The Effect of Testing Speed on Strength and Elastic Properties of Concrete. ASTM Journal.1936,36: 268~274
    37 W.H. Dilger, R.Koch, R. Kowalaczyk. Ductility of Plain and Confined Concrete Under Different Strain Rates[J]. ACI JOURNEY..1982,81:73~81
    38 P.H. Bischoff, S. H. Perry. Compressive Behavior of Concrete at high Strain Rates[J]. Material Structure. 1991, 24:425~450
    39 P.Rossi. Influence of Cracking in the Presence of Free Water on the Mechanic Behavior of Concrete[J]. Magazine Concrete Results.1991,43: 53~60
    40 M.D. Kotsovos. Effect on Testing Techniques on the Post-Ultimate Behavior of Concrete in Compression. Material Construction. 1983:16~31
    41 F.Ragueneau,Ch.Borderie,J.Marzars.Damage Model for Concrete like Mater-ials Cracking and Friction Contribution Towards Structural Damping:First Uniaxial Application.Mechanics Cohesive Friction Material.2000,5: 607~625
    42陈肇元,阚永奎.高标号混凝土用于抗爆结构的若干问题.钢筋混凝土结构构件在冲击荷载下的性能[C].清华大学科研报告集,第四集.北京:清华大学出版社, 1986:73~83
    43陈大年, Hassani,尹志华.混凝土冲击特性描述[J].爆炸与冲击. 2001, 21(2):89~97
    44王哲,林帛逮,逮静洲.混凝土单轴率型本构模型[J].大连理工大学学报. 2000,40(3):597~601
    45邓宗才.单轴状态下混凝土的静力、动力损伤本构模型[J].山东建材学院学报. 1999, 13(4):334~337
    46董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型[J].水利学报.1997, 7:72~77
    47胡时胜,王道荣.冲击荷载下混凝土材料的动态本构关系[J].爆炸与冲击. 2002,22(3):242~246
    48 F.E.Richart, A.Brandtzaeg, R.L.Brown. The Failure of Plain and Spirally Rein-Forced Concrete in Compression[J]. University of Illinois Engineering Experimental Station, Bulletin No.190,1929
    49钟善桐,苗若愚.钢管混凝土轴心受压构件承载力计算的研究[J].建筑结构学报. 1984,(6):38~48
    50蔡绍坏,焦占栓.钢管混凝土锻铸的基本性能和强度计算[J].建筑结构学报. 1984,(6):13~27
    51钟善桐,钢管混凝土结构[M].黑龙江科学技术出版社, 1994
    52王玉银.圆钢管高强混凝土轴压短柱基本力学性能研究[D].哈尔滨工业大学博士学位论文. 2003
    53 Soroushian P, choi K, Alhamad A, Dynamic Constitutive Behavior of concrete,ACI[J]. 1986,83:251~258
    54陈肇元,罗家谦,潘学雯.钢管混凝土短柱作为防护结构构件的性能.钢筋混凝土结构构件在冲击荷载下性能[C].清华大学科研报告集,第四集.北京:清华大学出版社. 1986:45~52
    55夏源明,袁建明,杨报昌.纤维率相关的统计本构模型的理论与实验研究[J].复合材料学报. 1993,10(2):17~24
    56 Glucklich J.J.Eng[J]. Mech. Div. ASCE, 109,1983:127
    57 Xiao.Y.and Wu, H.Compressive Behavior Of Concrete Confined by Carbon Fiber Composite Jackets [J]. Journal of Materials in Civil Engineering, ASCE 2000,12(2):139~146
    58 Samaan, M., and Mirmiran, A Model of Concrete Confined by Fiber Composite [J]. Journal of Engneering ASCE, 1998, 124(9):1025~1031
    59吴刚,吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J].建筑结构学报, 2003, 24(5):1~9
    60金熙男.轴对称约束混凝土力学性能实验研究[D].哈尔滨工业大学博士论文. 2002
    61张宝超. FRP约束混凝土快速荷载下力学性能研究[D].哈尔滨工业大学博士论文. 2004
    62吕培印,宋玉普,侯景鹏.一向侧压下混凝土在不同加载速率下的受压试验及其破坏准则[J].工程力学. 2002, 19(5):67~71
    63熊先仁.损伤力学的最新发展[J].江西电力职业技术学院学报. 2006, 1(19):1~2
    64李兆霞.损伤力学及其应用[M].科学出版社, 2002:64~68
    65 Supartono F, Sidoroff F. Anisotropic damage modeling for brittle elastic materials [C]. Symposium of Franc-Poland,1984
    66余天庆,钱济成.损伤理论及其应用[M].国防工业出版社, 1993
    67 Sauris W, Shah S P. J.Eng[J]. Mech. Div, ASCE,1984(10):985
    68 Bui H O, Ehrlacher A. ICF-5[C], Cannes,1983(1):86
    69 Brooks J J., Al-Samaraie N. V. Fracture of concrete and Rock. S. P. Shah Ed[M], Elsevier Applied Science,1989:397~408
    70欧进萍,林燕清.混凝土损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报, 1998,31(4):1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700