用户名: 密码: 验证码:
基于状态监测的复杂电子系统故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂电子系统故障诊断是一项十分复杂、困难的工作。与一般的系统不同,复杂电子系统的故障有层次性、传播性、相关性和不确定性等独有的特征。因此,单一地利用目前常见的基于信号处理的方法、基于解析模型的方法或基于知识的诊断方法都不足以对复杂电子系统进行及时有效的故障诊断,给出全面合理的结论。本文针对复杂电子系统的特点,提出了一种基于状态监测的复杂电子系统故障诊断方法,将复杂电子系统故障诊断过程划分为“故障检测”、“故障定位”、“故障辨识”三步进行的策略,实现复杂电子系统由表及里,由粗到精的故障诊断。论文主要的研究工作有:
     1、基于小波变换奇异性分析的故障检测技术研究。故障检测是故障诊断的基础,故障的产生往往表现为检测信号中奇异信号的出现。信号奇异点的位置和奇异值的大小包含着丰富的故障信息,对故障检测至关重要。本文对基于小波变换模极大值的信号奇异性检测方法进行了深入研究,在此基础上对Mallat等人经典的Lipschitz指数估计算法进行了改进,提出了一种新的估计算法。仿真结果表明,本文提出的新算法比经典算法具有更高的估计精度和鲁棒性。
     2、基于贝叶斯最大后验概率准则的故障定位推理算法研究。本文研究了一种基于贝叶斯最大后验概率准则的故障定位推理算法,该算法以系统多信号流图模型为基础,结合系统先验故障概率计算系统各组件的后验故障概率,以后验故障概率最大为故障定位的准则。将此问题归纳为集合覆盖问题(Set Cover Problem,SCP),利用拉格朗日松弛算法进行求解,避免了复杂系统故障字典的组合爆炸,实现了复杂系统的故障定位推理。
     3、针对复杂电子系统整机故障先验分布概率难以获得的情况,本文提出了以复杂电子系统各组件故障随时间的分布函数代替整机故障分布函数确定系统组件当前时刻故障先验概率的思路,对基于贝叶斯最大后验概率准则的故障定位推理算法进行了改进。由于组件故障随时间的分布函数包含了时间信息,因此以此为依据得到的故障定位结论更切合系统运行实际。
     4、对于系统组件故障随时间的分布函数也无法获得的情况,本文提出采用故障检测传感器检测概率和虚警概率作为故障诊断依据的模糊故障诊断方法。首先将N个故障观测传感器张成N维故障观测空间,然后在故障观测空间设计了模糊函数以描述实际观测向量与故障特征向量的相似度,将故障诊断问题归纳为实际观测向量在故障观测空间中的归类问题,设计了一种模糊多故障诊断算法。
     5、基于支持向量机(Support Vector Machine,SVM)的故障模式辨识。故障模式辨识本质上是一个多类别模式识别问题。本文针对复杂电子系统完备故障样本集获取困难,需要进行小子样学习的特点采用支持向量机进行模式识别。在研究标准支持向量机算法、分析常见多类分类支持向量机存在不足的基础之上提出了一种基于遗传算法(Genetic Algorithm,GA)的多分类支持向量机决策树优化方法。该方法可以根据具体问题自适应地生成最优或近优SVM决策树。实验结果表明,新方法在提高分类效率、保证分类精度的同时可以大大降低SVM决策树“误差积累”的影响。
     6、基于状态监测的复杂电子系统诊断方法应用研究。将本文提出的复杂电子系统故障诊断方法应用到某型雷达接收机故障诊断实例中,设计了诊断演示平台,验证了本文提出的相关理论方法的有效性,为开发实用的复杂电子系统故障诊断平台打下了基础。
Fault diagnosis of complicated electronic system is an intricate and difficult work. Different from usual fault diagnosis, the faults of complicated electronic systems are hierarchical, propagable, correlative and uncertain. Because of those particular characteristics, any single accustomed diagnosis method such as signal processing based method, analytic model based method or knowledge based method is not good enough to diagnose effectively and get comprehensive and logical fault conclusions. According to the characteristics of complicated electronic systems, this paper presents a state detecting based fault diagnosis method, which disassembles the whole fault diagnosis process into three phases: fault detecting, fault locating and fault recognizing. The main works of this paper include:
     1. Study on fault detection technology based on wavelet transform singularities analysis. Fault detection is the base of fault diagnosis. Faults of systems can be detected by observing different signals such as voltage, current, temperature, image, et al.. If fault occurs, it will make singularities in those signals. The locations and Lipschitz exponents of singularities contain abundant information about faults, and are important for faults diagnosis. In this paper, the method of measuring singularities based on wavelet transform modulus maxima is studied. Then, we improve the classical method of estimating Lipschitz exponents invented by Mallat, and present a novel algorithm. The result of experiment demonstrates that the method of this paper is more precise and robust than that of classical methods.
     2. Study on fault locating algorithm based on Bayes maximal posteriori probability principle. In this paper, a fault location algorithm based on Bayes maximal posteriori probability principle is studied. First, the multi-signal model of complicated electronic system is built. Based on the model, the algorithm utilizes the information of apriori probabilitys of faults to compute the maximal posteriori probabilitys according to Bayes theory. This is induced as set cover problem (SCP), and solved by Lagrange relax algorithm. The component that has the maximal posteriori probability is diagnosed as the fault component. This fault location algorithm has ratiocinative ability and can avoid combination blast.
     3. The apriori fault probabilities of Components are important for the fault locating algorithm based on Bayes maximal posteriori probability principle. In this paper, an idea that uses faults apriori probabilities distributing functions of components to replace that of system is presented to improve the original fault locating algorithm. Because the probabilities distributing functions of components include time information, the results of fault location are more suitable to actual running state of systems.
     4. For the case that can not get faults distributing functions of components, a fuzzy fault locating algorithm based on false alarm probabilities and detection probabilities of sensors is presented. First, N sensors can create N dimensions fault observation space, in which a fuzzy function is designed to describe the comparability between actual observation vectors and fault character vectors. Finally, a fuzzy multi-fault diagnosis algorithm is presented which induces the problem of fault diagnosis as classification problem of fault observation vectors in fault observation space.
     5. SVM based fault recognition. The essence of fault recognition is pattern recognition. It is difficult for complicated electronic systems to get sufficient fault samples. In this paper, SVM is used to do fault recognition because of its excellent little samples study ability. First, the standard SVM is studied, and the disadvantages of usual SVM multi-classification methods are analysed. Then, a genetic algorithm (GA) based SVM multi-classification decision-tree optimization algorithm is presented. This algorithm can create optimal or near-optimal decision-tree self-adaptively according to actual instances. Experiment results show that the proposed algorithm can improve recognition efficiency, control error accumulation and at the same time ensure recognition precision.
     6. Application of the state detecting based fault diagnosis method. The methods proposed in this paper are applied in a fault diagnosis instance of radar receiver. A radar receiver fault diagnosis experiment system is designed, which demonstrates how the theories and methods studied in this paper work in actual fault diagnosis of complicated electronic systems.
引文
[1]Muid M, George V. Automated fault detection and identification using a fuzzy-wavelet analysis technique. IEEE proc of Autotestcon, 1995,Vol.1:169-175
    [2]Zhao Z, Gu X. Fault detection based on wavelet neural network. Proc of 14~(th) IFAC World Congress, 1999:145-150
    [3]叶昊,王桂增.小波变换在故障检测中的应用.自动化学报,1997, 23 (6): 736-741
    [4]Rotem Y, Wachs A, Lewin D. R. Ethylene compressor monitoring using model-based PCA.Computer Chemical Engineering, 2000,46(9):1825-1836
    [5]Bakshi B. R. Multi-scale PCA with application to multivariate statistical process monitoring.Computer Chemical Engineering, 1998,44(7):1569-1610
    [6]Dong D, Mcavoy T. J. Nonlinear principal component analysis-based on principal curves and neural network. Computer Chemical Engineering, 1996,20(1):65-78
    [7]Statish L. Short-time Fourier and wavelet transforms for fault detection in power transformers during impulse tests. IEEE proc Sci Meas Technol, 1998,145(2):77-84
    [8]李谓华,萧德云.基于6算子的格形故障检测滤波器.自动化学报,1994, 20 (4) :413-419
    [9]Kumamaru K. Robust fault detection using index of Kullback discrimination information. Proc of 13~(th) IFAC World Congress. San Francisco, 1996:205-210
    [10]Akhmetov D. F, Dote Y. Fuzzy neural network with general parameter adaptation for modeling of nonlinear time-series. IEEE Trans. On Neural Networks. 2001,12(1):148-152
    [11]Patton R. J, Chen J. Review of parity space approaches to fault diagnosis for aerospace system.Jounrnal of Guidance, Control and Dynamics, 1994,17(2):278-285
    [12]Frank P. M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica, 1990,26(3):459-474
    [13]Randal K, Douglas, Jason L. H_∞ bounded fault detection filter. Jounrnal of Guidance, Control and Dynamics, 1999,22(1):129-138
    [14]Chung W. H, Speyer J. A. A game theoretic fault detection filter. IEEE Trans on Automatic Control, 1998,43(2):143-161
    [15]Bolivar A. R, Garcia G, Szigeti F, et al. A fault detection and isolation filter for linear systems with perturbations. Proceedings of the IFAC 14~(th) IFAC World Congress. Beijing, 1999:563-568
    [16]Edwards C, Spurgeon S. K, Patton R. J. Sliding model observers for fault detection and isolation. Automatica, 2000,36(5):541-553
    [17]Patton R. J, Hou M. On sensitivity of robust fault detection observers. Proc of 14~(th) IFAC World Congress. Beijing, 1999:67-72
    [18]Patton R. J, Hou M. Design of fault detection and isolation observers: a matrix pencil approach. Automatica, 1998,34(9):1135-1140
    [19]Isermann R. Fault diagnosis of machines via parameter estimation and knowledge processingtutorial paper. Automatica, 1993,29(4):815-835
    [20]Isermann R. Process fault diagnosis based on modeling and estmation methods-a survey.Automatica, 1984,20(3):387-404
    [21]Wang H, Daley S. Actuator fault diagnosis: an adaptive observer-based technique. IEEE Trans on Automatic Control, 1996,41(7):1073-1078
    [22]Polycarpou M. M, Helmicki A. J. Automated fault detection and accommodation: a learning systems approach. IEEE Trans on Systems, Man and Cybernetics, 1995,25(11):1447-1458
    [23]吴今培.智能故障诊断与专家系统.北京:科学出版社,1999
    [24]张雪江.机械设备故障诊断系统知识自动获取及更新的研究:[博士学位论文].南京:东南大学,1997
    [25]于刚,高正平,徐治皋,等.基于神经网络与专家系统的气轮机发电机组故障诊断系统.电力系统自动化,2004, 28 (4): 67-70
    [26]杨兵,丁辉,罗为民,等.基于知识库的变压器故障诊断专家系统.中国电机工程学报,2002, 22(10):121-124
    [27]李霁红,康锐,贾颖.复杂系统的模糊故障诊断方法研究.系统工程与电子技术,2005,27(7): 1322-1324
    [28]范圣平,曹顺安,张晋.模糊数学在凝汽器故障诊断中的应用研究.气轮机技术,2003,45 (2):113-115
    [29]Tsukamto Y, Terano T. Failure diagnosis by using fuzzy logic. IEEE conf decision & control. New Orleans, 1987:1390-1395
    [30]宋华,张洪钺.模糊非线性奇偶方程故障诊断方法.自动化学报,2003, 29 (6): 965-970
    [31]Zhao Z. Y. Introduction to fuzzy theory and neural networks and their application. Tsingbua University Press, 1996:165-169
    [32]朱大奇.航空电子设备故障诊断新技术研究:[博士学位论文].南京:南京航空航天大学,2002
    [33]Juan A. C. An algorithm to find minimal cuts of coherent fault-trees with event-classes. IEEE Trans. on reliability. 1999,48(1):31-41
    [34]朱大奇,于盛林.基于故障树最小割集的故障诊断方法研究.数据采集与处理,2002, 17(3):341-344
    [35]王巍,崔海英,黄文虎.基于故障树最小割集和最小路集的诊断方法研究.数据采集与处理,1999, 14 (1): 26-29
    [36]朱大奇,刘文波,于盛林.基于虚拟仪器的光电雷达电子部件性能检测及故障诊断系统.航空学报,2001, 22 (5): 468-471
    [37]朱大奇,于盛林,陈小平.基于故障树分析及虚拟仪器的电子部件故障诊断技术研究.仪器仪表学报,2002, 23 (1): 16-19
    [38]Kiran K. V, Joanne B. D. Automatic synthesis of fault trees for computer-based systems. IEEE Trans. on reliability. 1999,48(4):394-401
    [39]虞和济,陈长征,张省.基于神经网络的智能诊断.北京:冶金工业出版社,2000
    [40]Li B, Chow M. Y, Tipsuwan Y, et al. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. on Industrial Electronics, 2000, 47(5):1060-1069
    [41]Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans. on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 2000, 47(2):151-156
    [42]Rodriquez C, Rementeria S, Martin J. J, et al. A modular neural network approach to fault diagnosis. IEEE Tran. on Neural Networks, 1996,7(2):326-340
    [43]Vemuri A. T, Polycarpou M. M. Neural-network-based robust fault diagnosis in robotic systems. IEEE Trans. on Neural Networks, 1997,8(6):1410-1420
    [44]Khomfoi S, Tolbert L. M. Fault Diagnosis System for a Multilevel Inverter Using a Principal Component Neural Network. 37~(th) IEEE Power Electronics Specialists Conference. Jeju, Korea,2006, 1-7
    [45]Zhi Y. L, Zhong K. S. Wavelet neural network method for fault diagnosis of push-pull circuits.Machine Learning and Cybemetics, 2005. Proceedings of 2005 International Conference on.Guangzhou, 2005,6(6):3327-3332
    [46]Feng D. C, Pereira J. M. Study on Information Fusion Based on Wavelet Neural Network and Evidence Theory in Fault Diagnosis. Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International Conference on, Xi'an, 2007, 522-526
    [47]Zhao X, Xiao D. Y. Fault diagnosis of nonlinear systems using multistep prediction of time series based on neural network. Control Theory and Application. 2000, 17(6):803-808
    [48]马良玉,王兵树,佟振声,等.对分式凝汽器故障诊断的模糊模式识别及神经网络方法.中国电机工程学报,2001, 21 (8): 68-73
    [49]陈真勇,何永勇,褚福磊,等.递阶结构进化神经网络在故障诊断中的应用.清华大学学报(自然科学版),2002, 42 (6): 750-753
    [50]李尔国,俞金寿.一种基于输入训练神经网络的非线性PCA故障诊断方法.控制与决策,2003, 18 (2):229-232
    [51]马立玲,常玉清,王福利.两级神经网络的故障诊断方法及其在生化过程中的应用.仪器仪表学报,2004, 25 (3): 294-297
    [52]桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用.中国电机工程学报,2005, 25 (4): 99-102
    [53]彭斌,刘振全.谐小波模糊神经网络应用于旋转机械的故障诊断.动力工程,2005,25(5):702-706
    [54]林京.FUZZY ART及其在故障诊断中的应用.西安交通大学学报,1999, 33 (5): 88-92
    [55]张义忠,冯振声.基于神经网络的复杂电子装备故障诊断系统的仿真研究.计算机仿真,2000, 17 (4): 39-42
    [56]Gros X. E, Lowden D. W. Bayesian approach to not data fusion. Non-Destuctive Testing and Condition Monitoring, 1995,37(5):462-468
    [57]Luo R. C, Key M. G. Multi-sensor integration and fusion in intelligent systems. IEEE Trans. on Systems, Man and cybernetics. 1989,19(5):901-931
    [58]Bogler P. L. Shafer-dempster reasoning with application to multi-sensor target indentification system. IEEE Trans. on Systems, Man and cybernetics. 1987,11(17):968-977
    [59]韩静,陶云刚.基于D-S证据理论和模糊数学的多传感器数据融合方法.仪器仪表学报,2000, 21 (6):644-647
    [60]朱大奇,于盛林.基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用.电子学报,2002, 30 (2): 221-224
    [61]Luo R. C, Scherp R. S. Dynamic multi-sensor data fusion system for intelligent robots. IEEE J. Robotics and Automation, 1998,4(4):386-396
    [62]杨士元.数字系统的故障诊断与可靠性设计.北京:清华大学出版社,2000
    [63]Armstrong D. B. A deductive method for simulation faults in logic circuits. IEEE Trans.Comput., 1974, C-21(5): 878-826
    [64]Yau S. S, Tang Y. S. An efficient algorithm for generation complete tests for combinational logic circuits. IEEE Trans. Comput. 1971,20(11): 475-488
    [65]Thayse A, Davia M. Boolean difference calculus and its application to switching theory. IEEE Trans. Comput. 1973,22(4): 522-539
    [66]Roth J. P, Bouricius W. G. Programmed algorithms to computer tests to detect and to distinguish between failures in logic circuits. Addison-Wesley, 1984,395-427
    [67]Archambeau E. C, Mccluskey E. G Fault coverage of pseudo-exhaustive testing. FTCS-14,1984,709-735
    [68]李伟.复杂系统的智能故障诊断技术现状及其发展趋势.计算机仿真,2004, 21 (10) : 4-7
    [69]何岭松,熊鹰.用双窗法减小FFT谱分析误差.振动与冲击,2001, 20 (2): 49-51, 58
    [70]张贤达.现代信号处理.北京:清华大学出版社,2002, 451-452
    [71]Mallat S. G. A theory of multirsolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11:674-693
    [72]Mallat S. G., Hwang W. L..Singularity detection and processing with wavelets. IEEE Trans. on Information Theory, 1992, 38(2):617-643
    [73]Jaffard S. Exposants de holder en des points donnes et coefficients d'ondelettes. Notes au Compte-Rendu de 1'Academie Des Sciences, France, 1989, 208(1):79-81
    [74]Zhang J, Zheng C. X.. Extracting evoked potentials with the singularity detection technique.IEEE Trans. Biomed Eng, 1997, 16(5): 155-161
    [75]Berkner K, Wells R. A New Hierarchical Scheme for Approximating the Continuous Wavelet Transform with Applications to Edge Detection. IEEE Signal Processing Letters, 1999, 6(8):109-195
    [76]Khamene A, Negahdaripour S.A New Method for the Extraction of Fetal ECG from the Composite Abdominal Signal. IEEE Trans. Biomed Eng, 2000, 47(4): 507-516
    [77]陈祥训.对几个小波基本概念的理解.电力系统自动化,2004, 28(1): 1-6
    [78]Hsung T. C., Lun D. P., Siu W. C.. Denoising by singularity detection. IEEE Trans. on Signal Processing, 1999, 47(11): 3139-3144
    [79]Tu C. L., Hwang W. L.. Analysis of singularities from modulus maxima of complex wavelets. IEEE Trans on Inf Theory, 2005, 51(3): 1049-1062
    [80]Zhong J., Ning R.. Image denoising based on wavelets and multifractals for singularity detection. IEEE Trans. on Image Processing, 2002, 14(10):1435-1447
    [81]Abel E. W., Meng H. Y., Forster.A, et al.. Singularity characteristics of needle EMG IP signals. IEEE Trans Biomed Eng, 2006, 53(2): 319-225
    [82]连可,王厚军,龙兵.一种基于小波变换模极大值的估计Lipschitz指数新方法.电子学报,2008, 36(1): 106-110
    [83]Isermann R.. Process fault detection based on modeling and estimation methods-A survey.Automatica, 1984, 20(2):387-404
    [84]Kuipers B.. Qualitative simulation: Then and now. Artificial Intelligence, 1993, 59(3):133-140
    [85]Kuipers B..Qualitative reasoning:modeling and simulation with incomplete knowledge.International Federation of Automatic Control, 1989, 571-585
    [86]Deb S., Pattipati K. R., Raghavan V., et al. Multi-signal flow graphs: A novel approach for system testability analysis and fault diagnosis. IEEE AES System Magazine, 1995:14-25
    [87]Rao N. S. V. Expected-value analysis of two single fault diagnosis algorithms. IEEE Trans. on Computers, 1993, 42(3):272-280
    [88]Rao N. S. V. Computational complexity issues in operative diagnosis of graph-based systems. IEEE Trans. on Computers, 1993, 42(4):447-457
    [89]Chessa S., Santi P.. Operative diagnosis of graph-based systems in multiple faults. IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2001, 31(2):112-119
    [90]Dahbura A. T., Masson G. M.. An O(n~(2.5))fault identification algorithm for diagnosable systems. IEEE Trans. on Computers, 1984, 33(6):486-492
    [91]Sullivan G. F.. An O(t~3+|E|)fault identification algorithm for diagnosable systems. IEEE Trans. on Computers, 1988, 37(4):486-492
    [92]Fedi G., Giomi R., Luchetta A., et al. On the application of symbolic techniques to the multiple fault location in low testability analog circuits. IEEE Trans. on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing, 1998, 45(10):1383-1388
    [93]邢文训,谢金星.现代优化计算方法.北京:清华大学出版社,2005,7-35,210-235
    [94]Cook S. A.. The complexity of theorem proving procedures. In: 3~(rd) ACM Symp on the Theory of Computing ACM. 1971:151-158
    [95]Shakeri M, Pattipati K, Raghavan V, et al. Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests[J]. IEEE Trans on Systems, Man and Cybernetics,1998,28(3): 431-440
    [96]Garey M. R, Johnson D. S.. Computers and intractability: a guide to the theory of np-completeness .New York: W H Freeman, 1993:107-156
    [97]Fisher M. L. The Lagrangian relaxation method for solving inerger programming problems. Management Science, 1981, 27(1):1-18
    [98]连可,龙兵,王厚军.基于贝叶斯最大后验概率准则的大型复杂系统故障诊断方法研究.兵工学报,2008, 29(3): 352-356
    [99]Wohl. J.G,.Information automation and the Apollo program: a retrospective. IEEE. Trans on systems, man and cybernetics, 1982, 12(4):469-478
    [100]连可,黄建国,龙兵.一种基于有向图模型的模糊多故障诊断算法研究.系统工程与电子技术,2008, 30(3): 568-571
    [101]连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究.仪器仪表学报,2007,28(6):1029-1034
    [102]边肇祺,张学工.模式识别.北京:清华大学出版社,2000, 296-301
    [103]Hsu C. W., Lin C. J.. A comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2):415-425
    [104]Bottou L., Cortes C., Denker J., et al. Comparison of classifier methods: a case study in handwritten digit recognition. In Proc. Of the International Conference on Pattern Recognition.1994:77-87
    [105]Knerr S., Personnaz L., Dreyfus G.. Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing: Algorithm, Architectures and Applications. J. Fogelman, Ed. New York: Springer-Verlag, 1990
    [106]Fridman J. Another approach to polychotomous classification. Dept. Statistic, Stanford Univ., Stanford, CA. 1996
    [107]Platt J., Cristianini N., Shawe-Taylor J.. Large margin DAG's for multiclass classification. In Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000,1(12):547-553
    [108]Weston J., Watkins C.. Multi-class support vector machines. Technical Report CSD-TR-98-04, Dept. of Computer Science, University of London, 1998, 1-10
    [109]Bredensteiner E. J., Bennet K. P.. Multicategory classification by support vector machines. Computational Optimizations and Applications, 1999:53-79
    [110]Cheong S., Sang H. H., Lee S. Y.. Support vector machines with binary tree architecture for multi-class classification. Neural Information Processing Letters and Reviews, 2004, 2(3):47-51
    [111]马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用.控制与决策,2003, 18 (3): 272-276
    [112]唐发明.基于统计学习理论的支持向量机算法研究:[博士学位论文].武汉:华中科技大学,2002
    [113]孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法.计算机应用,2005,25(11):2653~2657
    [114]郑春红,焦李成,郑贵文.基于GA的遥感图像目标SVM自动识别.控制与决策,2005,20(11):1212~1215,1220
    [115]杨宏辉,孙进才,袁骏.基于支持向量机和遗传算法的水下目标特征选择算法.西北工业大学学报,2005, 23(4): 512~515
    [116]李杰,楚恒,朱维乐,彭静.基于支持向量机和遗传算法的纹理识别.四川大学学报(工程科学版),2005, 37(4): 104~108
    [117]Platt J C. Fast training of support vector machines using sequential minimal optimization. In:Advances in Kernel Methods Support Vector Learning, Cambridge MIT Press, 1999: 185~208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700