用户名: 密码: 验证码:
EMS型低速磁浮列车/轨道系统的动力相互作用问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车轨耦合振动问题影响系统造价和车辆运行的舒适度,是EMS型低速磁浮车商业化进程中必须解决的问题。本文参考轨道交通领域的最新研究成果,将磁浮系统和轨道简化成不同的形式,按由简到繁的原则,从悬浮系统和磁浮轨道两方面着手,研究系统的稳定性和非线性动力学、结构动力学特性,目的在于从理论上探讨车轨耦合振动现象出现的原因,寻找抑制车轨耦合振动的方法,为悬浮控制器和轨道结构设计提供参考。
     本文首先研究了刚性轨道条件下位置和速度控制时滞对悬浮系统稳定性的影响,得到了控制参数与系统固有频率和时滞临界值间的关系,指出系统存在多个固有频率。基于特征根法给出了时滞系统的稳定性条件,得到系统在临界分岔点的Hopf分岔方向和稳定性。接着考虑轨道的几何不平顺,将其简化成已知简谐激励,基于中心流形约化和Poincaré规范型理论,运用多尺度法研究了扰动频率与系统固有频率比为1:1、1:3、3:1和不成整数比的情况下磁浮系统的非线性响应,研究了响应的奇异性、分岔、浑沌等动力学行为,研究表明控制时滞可以作为控制复杂动力学行为的开关。给出了控制参数的调节趋势,以抑制系统的动态响应。
     为了使理论模型进一步接近真实系统,将轨枕简化成均布的弹性支撑,将磁浮系统简化为移动的均布力,建立了平直双层砼梁轨道的解析模型,采用模态叠加法得到了轨道响应的闭环解。分析指出轨道系统的第一固有频率远小于第二固有频率,在车轨耦合振动中起主要作用。数值仿真得到了轨枕刚度和其它结构参数与固有频率的关系。讨论了轨道变形和负载运行速度的关系。
     文中还将磁浮列车简化成一列匀速通过轨道的均布力,在研究轨道响应闭环解的过程中发现了共振和消逝现象,推导出了共振和消逝速度。指出当列车运行于共振速度时,轨道变形会随着通过车辆数的增加而增加,这种情况应该极力避免。而当列车运行于消逝速度时,轨道变形较小。本文还给出了最佳的车长-桥跨长度之比,使得系统的结构共振现象最微弱。
     在文章的最后,我们基于前面的分析,建立了统一的磁浮车-弹性轨道的数学模型,运用数值仿真的方法分析了线性系统的特征根变化情况,讨论了控制时滞对车轨耦合振动的影响,最后通过试验验证了文中部分理论结论的正确性。
Vehicle-guideway interaction vibration greatly influences the system price and ride comfort. It is an important problem that must be settled in the commercial process of the EMS low speed maglev transportation system. From simplicity to complexity, this dissertation simplifies the maglev system and levitation guideway into different formats, studies system stability and response of nonlinear dynamics and structure dynamics by respectively analyzing maglev system and levitation guideway based on the recent results of the track transportation system. It aims at exploiting the rules of vehicle-guideway interaction theoretically and finding the methods to suppress the oscillation, and helps to design the levitation controller and guideway structure.
     The effect of the time delay in position and speed feedback signal to the stability of the maglev system with rigid guideway is considered. The relationship between control parameters and system natural frequency, critical time delay are obtained. It shows that the maglev system have several natural frequencies. The stability conditions of the system are obtained based on characteristic root method. The Hopf bifurcation direction and stability of the system at the critical point are also investigated. Then the elasticity of the guideway is considered, its deflection is simplified as known cosine wave.Center manifold reduction and Poincarénormal form theory are employed in this paper. The nonlinear oscillation with the proportion between disturbance and natural frequency to be of 1:1, 1:3, 3:1 and none of the above are investigated based on the method of Multiple Scale. Singularity, bifurcation and chaos etc. are found in the system response. It is shown that time delay can control the existence of the complicated dynamic behavior. The trend of the control parameters to weaken the dynamic response is given too.
     To approach the real system more, the sleeper is simplified as evenly distributed elastic foundation. The analytical model of smooth and straight concrete guideway is constructed. Simplifying the maglev vehicle to an evenly distributed force, the closed form solution of the guideway is deduced based on mode superposition method. It is pointed out that beacuse the first natural frequency is much smaller than the second one, it bears the primary function in vehicle guideway interaction. The relationship between natural frequency and structure parameters are acquired. Guideway deflection influenced by the running speed of the load is also discussed.
     The maglev train is simplified as a series of evenly distributed force. Resonant and cancellation phonomenon are found when we analyze the closed form solutions of the guideway. The resonant and cancellation speed are deduced. They indicate that the displacement of the guideway will increase when the maglev train runs at resonant speed and decrease when it runs at cancellation speed. The resonant speed should be avoided. The investigation about the ratio of span to the length of the vehicle shows that the smaller the ratio is, the larger the dynamic impact of the guideway will become. Properly selecting the ratio can suppress the vehicle-guideway structure interaction.
     At last, the vehicle-guideway dynamic model is built. We use numerical simulation method to analyze the variation of characteristic roots of the linearized system. The effect of the control delay to the vehicle-guideway interaction is also discussed. Finally, a few conclusions presented in the article are testified by the experiments.
引文
[1]Swartzwelter B.Faster than Jets:a solution to America's long-term transportation problems.Alder Press,2003.
    [2]魏晓东.城市轨道交通自动化系统与技术.北京:电子工业出版社,2004.
    [3]Michio Takahashi,Gerald Kwok,Koji Kubota.Marketing strategy of the HSST system.Maglev 2006:53-57.
    [4]桑瑞星等.跨越时空—高科技与现代交通.北京:科学普及出版社,2004.
    [5]朱卫国.城市轨道交通综述.城市车辆,2003(3):37-40
    [6]魏庆朝.磁悬浮铁路系统与技术.北京:中国科学出版社,2003.
    [7]吴祥明.磁浮列车.上海:上海科技出版社,2003.
    [8]卢乃宽,高速轮轨和磁悬浮技术在世界轨道交通运输系统中的发展,中国铁道科学,2003,24(6):105-110
    [9]Shinichi KUSAGWA,Jumpei BABA,Katsuhikob SHUTOH,Eisuke MASADA.Comparison of Total Performances for High-Speed EMS-type Magnettically Levitated Railway Vehicle.Maglev 2004:942-952.
    [10]Shinichi KUSAGWA.Weight reduction of EMS-type maglev vehicle with a novel hybrid control scheme of magnets,IEEE TRANSACTIONS ON MAGNETICS,2004.40(4):3066-3068.
    [11]Yuhong Liu,Guangsheng Sun,Rong Wei.The developmental status and furore prospects of maglev technology.Maglev 2006:59-64
    [12]P.K.Sinha.Electromagnetic Suspension Dynamics & Control.London,Peter Peregrinus Ltd.1987
    [13]D.M.Rote.Passive daming in EDS maglev systems.Maglev'2002,Int.Conf.Maglev,2002
    [14]洪华杰.EMS型低速磁浮车轨耦合振动研究.湖南长沙:国防科技大学博士论文,2005.10.
    [15]刘恒坤.常导高速磁浮列车双转向架搭接结构的悬浮控制问题研究.湖南长沙:国防科技大学博士论文,2005.10.
    [16]施晓红.常导高速磁浮列车车轨耦合非线性动力学问题研究.湖南长沙:国防科技大学博士论文,2005.10.
    [17]E.Gottzein.Status of high speed maglev train development in the F.R.G.Int.Conf.Maglev,1984:23-36
    [18]Dr.Rogg.The development of high-speed magnetic levitation system in the Federal Republic of Germany,objective and present state.Int.Conf.Maglev,1988:3-5
    [19]P.K.Sinha,B.V.Jayawant.Electromagnetic Wheels,Electronics and Power.1979:723-727
    [20]E.Gottzein,R.Meisinger,L.Miller.The "Magnetic Wheel" in the Suspension of High-Speed Ground Transportation Vehicles.IEEE Transactions on Vehicular Technology,1980,29(1):17-22
    [21]Wu Xiangming.Achievements of Shanghai maglev demonstration operation line and the maglev development strategy.Maglev 2004:13-16
    [22]Dipl.Ing.Dieter Hoffmann.Transrapid project Shanghai.Maglev 2004:129-138
    [23]S.Nakamum.Development of High Speed Shrfacf Transport System(HSST).IEEE Transactions on Magnetics,1979,15(6):1428-1433
    [24]Yoshio Hikasa,Yutaka Takeuchi.Detail and experimental results of ferromagnetic levitation system of Japan air lines HSST-01/-02 vehicles.IEEE Transactions on Vehicular Technology,1980,29(1):35-41
    [25]K.Fujisaki,E.Masada.Dynamic Behaviour of Magnet Wheel.IEEE Transactions on Magnetics,1984,20(5):1678-1680
    [26]H.Seino,K.Kato,M.Azakami,H.Yoshioka,H.Oshima.The maglev bogie system and its development.Maglev 1995:129-138
    [27]Y.Yasuda,M.Fujino,M.Tanaka,S.Ishimoto.The first HSST maglev commercial train in Japan.Maglev 2004:76-85
    [28]M.Morita,M.Fujino.State of levitation of linimo(HSST system) during EXPO2005.MAGLEV 2006:309-312
    [29]M.Takahashi,G.Kwok,K.Kubota.Marketing strategy of the HSST system.MAGLEV 2006:53-58
    [30]Cho Hung-je,Sun ho-kyung,Kim Bong-sup,Lee Jong-min,Yoo Munhwan.Maglev program in korea.MAGLEV 2000.
    [31]张志洲,张惠霞.韩国磁悬浮列车发展.国外铁道车辆,2006,43(4):8-12
    [32]Kim Tae-gyu.Magnetic levitation train to start in 2012.2006.10.26,http//www.hankooki.com
    [33]常文森,陈贵荣.磁悬浮列车.今日科技,2001(10):41-43
    [34]李小珍,强士中.列车-桥梁耦合振动研究的现状与发展趋势.铁道学报,2002,24(5):112-120
    [35]Masada E.Present status of maglev development in Japan and HSST-03 project.MAGLEV 1984:9-22
    [36]Suzuki S.Kawashima M.Hosoda Y.et al.HSST-03 system.IEEE Transactions on Magnetics,1984,20(5):1675-1677
    [37]H.H.Richardson,D.N.Wormley.Transportation vehicle/beam-elevated guideway dynamic nteractions:a state-of-the-art review.J.Dyn.Syst.Meas. Control, Trans. ASME, 1974,96(2):169-179
    [38] L. Fryba. A rough assessment of railway bridge for high speed trains. Eng. Struct.2001,23(5):548~556
    [39] Y.B. Yang, J.D. Yau, Y.S. Wu. Vehicle-Bridge Interaction Dynamics-with Applications to High-Speed Railways, World Scientific, 2004
    [40] Y.B. Yang, J.D. Yau, L.C. Hsu. Vibration of simple beams due to trains moving at high speeds. Engineering Structures, 1997(19): 936-944
    [41] Y.B. Yang, CM. Wu. Dynamic Stability of Trains Moving over Bridges Shaken by Earthquakes. J. Sound and Vibration, 2002, 258(1): 65-94
    [42] Y.B. Yang, C.L. Lin, J.D. Yau, D.W. Chang. Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings. J.Sound and Vibration, 2004(269): 345-360
    [43] J.D. Yau, Y.S. Wu, Y.B. Yang. Impact Response of Bridges with Elastic Bearings to Moving Loads. J. Sound and Vibration, 2001, 248(1): 9-30
    [44] Y.S. Wu, Y.B. Yang. Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Engineering Structures, 2003(19):251-265
    [45] J.D. Yau, Y.B. Yang. Vertical Accelerations of Simple Beams due to Successive Loads Traveling at Resonant Speeds. J. Sound and Vibration, 2006(289):210-228
    [46] J.D. Yau. Vibration of parabolic tied-arch beams due to moving loads. Int. J.Structural stability and Dynamics, 2006,6(2): 193-214
    [47] Y.B. Yang, CM. Wu, J.D. Yau. Dynamic Response of a Horizontally Curved Beam Subjected to Vertical and Horizontal Moving Loads. J. Sound and Vibration, 2001, 242(3): 519-537
    [48] Y.B. Yang, C.W. Lin, J.D. Yau. Extracting Bridge Frequencies from the Dynamic Response of a Passing Vehicle. J. Sound and Vibration, 2004(272):471-493
    [49] Y.B. Yang, C.W. Lin. Vehicle-bridge Interaction Dynamics and Potential Applications. J. Sound and Vibration, 2005(284): 205-226
    [50] C.W. Lin, Y.B. Yang. Use of a Passing Vehicle to Scan the Fundamental Bridge Frequencies: an Experimental Verification. Engineering Structures, 2005 (27):1865-1878
    [51] A. R.M. Wolfert, H.A. Dieterman, A.V. Metrikine. Stability of vibrations of two oscillators moving uniformaly along a beam on a viscoelastic foundation. J.Sound and Vibration, 1998(211): 829-842
    [52] A.V. Metrikine, H.A. Dieterman. Instability of vibrations of a mass moving uniformly along an axially compressed beam on a viscoelastic foundation. J.Sound and Vibration, 1997(201): 567-576
    [53]M.Shamalta,A.V.Metrikine.Analytical study of the dynamic response of an embedded railway track to a moving load.Archive of Applied Mechanics,2003(73):131-146
    [54]S.N.Verichev,A.V.Metrikine.Instability of a bogie moving on a flexibly supported timoshenko beam.J.Sound and Vibration,2002,253(3):653-668
    [55]A.V.Vostroukhov,A.V.Metrikine,A.C.W.M.Vrouwenvelder,V.I.Merkulov,V.N.Misevich,G.A.Utkin.Remote detection of derailment of a wagon of a freight train:theory and experiment.Archive of Applied Mechanics,2003(73):75-88
    [56]A.V.Metrikine,A.L.Bosch.Dynamic response of a two-level catenary to a moving load.J.Sound and Vibration,2006(292):676-693
    [57]L.Baeza,A.Roda,J.C.O.Nielsen.Railway Vehicle/Track Interaction Analysis using a modal Sub-structuring Approach.J.Sound and Vibration,2006(293):112-124
    [58]B.Biondi,G.Muscolino,A.Sofi.A Substructure approach for the dynamic analysis of train-track-bridge system.Computers and structures,2005(83):2271-2281
    [59]M.K.Song,C.K.Choi.Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model.Int.J.Struct.Eng.Mech.2002,13(5):505-532
    [60]M.K.Song,H.C.Noh,C.K.Choi.A new three-dimensional finite element analysis model of high-speed train bridge interactions.Engineering Structures,2003(25):1611-1626
    [61]L.Fryba.Vibration of solids and structures under moving loads.London:Thomas Telford,1999.
    [62]L.Fryba.Dynamics of railway bridges.London:Thomas Telford,1999.
    [63]夏禾,张楠.车辆与结构动力相互作用.北京:科学出版社,2005.
    [64]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠性.土木工程学报,1994,27(2):14-21
    [65]夏禾,阎贵平,陈英俊.列车-斜拉桥系统在风载作用下的动力响应.北方交通大学学报,1995,19(2):131-136
    [66]夏禾,徐幼麟,阎全胜.大跨度悬索桥在风与列车荷载同时作用下的动力响应分析.铁道学报,2002,24(4):83-91
    [67]夏禾,陈英俊,张煅,柯在田.列车提速情况下铁路双线简支钢桁梁动力响应分析.铁道学报,1996,18(5):75-82
    [68]夏禾,阎贵平,张鸿儒.支座位移对桥上高速列车运行安全的影响.工程力学增刊,1997:301-307
    [69]夏禾,张楠,张鸿儒.DE ROECK Guido.300km/h高速铁路PC槽型梁动力 试验研究.工程力学,2003,20(6):99-105
    [70]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用.北京:中国铁道出版社,1999.
    [71]曾庆元.弹性系统动力学总势能不变值原理.2000,28(1):1-3
    [72]曾庆元,向俊,娄平.车桥及车轨时变系统横向振动计算中的根本问题与列车脱轨能量随机分析理论.中国铁道科学,2002,23(1):1-10
    [73]曾庆元,向俊,娄平.突破列车脱轨难题的能量随机分析道路.中国工程科学,2002,4(12):9-20
    [74]曾庆元,向俊,娄平,周智辉.列车脱轨的力学机理与防脱轨理论.铁道科学与工程学报,2004,1(1):19-31
    [75]娄平,曾庆元.车辆.轨道.桥梁系统竖向运动方程的建立.铁道学报,2004,26(5):71-81
    [76]向俊,左一舟,赫单,杨军祥,曾庆元.关于列车.轨道(桥梁)时变系统空间振动方程的建立及其求解.铁道科学与工程学报,2005,2(1):34-38
    [77]Wilson J F,Biggers S V,Ravera R J,et al.Dynamic interactions between long,high speed trains of air cushion vehicles and their guideways.J.Dyn.Syst.Meas.Control,Trans.ASME,1971,93(1):16-24
    [78]S.B.Biggers,J.F.Wilson.Dynamic interactions of high speed tracked air cushion vehicles with their guideways:part Ⅰ of a parametric study.J.Dyn.Syst.Meas.Control,Trans.ASME,1973,95(1):76-85
    [79]S.B.Biggers.Guideway camber and three-stage passive suspension for improved tracked air cushion vehicle ride quality:part Ⅱ of a parametric study.J.Dyn.Syst.Meas.Control,Trans.ASME,1973,95(1):86-91
    [80]W.S.Chiu,R.G.Swith,D.N.Wormley.Influence of vehicle and distributed guideway parameters on high speed vehicle-guideway dynamic interactions.J.Dyn.Syst.Meas.Control,Trans.ASME,1971,93(1):25-34
    [81]R.M.Katz,V.D.Nene,R.J.Ravera,C.A.Skalski.Performance of Magnetic Suspensions for High Speed Vehicles Operating Over Flexible Guideways,J.Dyn.Syst.Meas.Control,Trans.ASME,1974,96(2):204-212
    [82]C.C.Swith,D.N.Wormley.Response of continuous periodically supported guideway beams to traveling vehicle loads.J.Dyn.Syst.Meas.Control,Trans.ASME,1975,97(1):21-29
    [83]J.K.Hedrick,R.J.Ravera,J.R.Anderes.The effect of elevated guideway construction tolerances on vehicle ride quality.J.Dyn.Syst.Meas.Control,Trans.ASME,1975,96(4):408-416
    [84]Y.Cai,S.S.Chen,D.M.Rote,et al.Vehicle/guideway interaction for high speed vehicles on a flexible guideway.Journal of Sound and Vibration.1994,175(5): 625-646
    [85]Y.Cai,Chen S S,Rote D M,et al.Vehicle/guideway dynamic interaction in maglev systems.J.Dyn.Syst.Meas.Control,Trans.ASME,1996,118(5):526-530
    [86]Y.Cai,Chen S S.Dynamic characteristics of magnetically levitated vehicle systems.Applied Mechanics Reviews,1997,50(11):647-670
    [87]谢云德,常文森,尹力明.磁悬浮列车系统轨道动力学分析与试验研究.国防科技大学学报,1997,19(5):58-63
    [88]李莉,孟光.磁浮车不能稳定悬停在钢轨道框架上的原因分析.城市轨道交通研究,2006(5):40-42
    [89]熊文,祝兵.磁悬浮轨道梁的动力响应分析.工程结构,2005,25(8):65-67
    [90]曾佑文,王少华,张昆仑.EMS磁浮列车.轨道垂向耦合动力学研究.铁道学报,1999,21(2):21-25
    [91]曾佑文,王少华,张昆仑.磁浮列车车辆.轨道耦合振动及悬挂参数研究.西南交通大学学报,1999,34(2):168-173
    [92]翟婉明,赵春发,蔡成标.磁浮列车与轮轨高速列车对线桥动力作用的比较研究.交通运输学报,2001,1(1):7-12
    [93]E.Gottzein,B.Lange.Magnetic Suspension Control Systems for the MBB High Speed Train.Automatica,1975,11(3):271-284
    [94]E.Gottzein,Brock K H,Schneider E,Pfefferl J.Control aspects of a tracked magnetic levitation high speed test vehicle.Automatica,1977,13(3):205-223
    [95]B.V.JAYAWANT,P.K.SINHA.Low-Speed Vehicle Dynamics and Ride Quality Using Controlled D.C.Electromagnets.Automatica,1977,13(6):605-610
    [96]P.K.SINHA,B.V.JAYAWANT.Analytical and Design Aspects of Magnetically Suspended Vehicles.Automatica,1979,15(5):539-552
    [97]李云钢,常文森.磁浮列车悬浮系统的串级控制.自动化学报,1999,25(2):247-251
    [98]P.K.Sinha,A.N.Pechev.Technical Notes and Correspondence-Nonlinear H_∞Controllers for Electromagnetic Suspension Systems.IEEE Transactions on Automatic Control,2004,49(4):563-569
    [99]D.S.Liu,J.Li,K.Zhang.Design of nonlinear decoupling controller for double-electromagnet suspension system.自动化学报,2006,32(3):322-328
    [100]谢云德,常文森.电磁型(EMS)磁悬浮列车系统铅垂方向的建模与仿真.铁道学报,1996,18(4):47-54
    [101]K.Popp.Mathematical modeling and control system design of maglev vehicle.In: Schiehlen Wed.Dynamics of high-speed vehicle,Wien-New York,Springer-Verlag,1982:333-364
    [102]武建军,郑晓静,周又和.弹性轨道上二自由度磁悬浮列车的动力特性分析.振动工程学报,1999,12(4):439-446
    [103]周又和,武建军,郑晓静.磁浮列车的动力稳定性分析与Liapunov指数.力学学报,2000,32(1):42-51
    [104]Xiao Jing Zheng,Jian Jun Wu,You-He Zhou.Numerical Analyses on Dynamic Control of Five-Degree-of Freedom MAGLEV Vehicle Moving on Flexible Guideways,J.Sound and Vibration,2000,235(1):43-61
    [105]柳贵东,佘龙华.Hopf分叉的劳斯判据及磁悬浮系统的振动分析,振动、测试与诊断,2003,23(4):276-278
    [106]施晓红,佘龙华.非线性磁悬浮控制系统的周期运动稳定性研究.动力学与控制学报,2005,3(3):52-55
    [107]施晓红,佘龙华,常文森.EMS磁浮列车车/轨耦合系统的分岔现象.力学学报,2004,36(5):634-640
    [108]洪华杰,李杰,张锰.磁浮车轨耦合系统稳定性分析.控制理论与应用,2006,23(3):421-424
    [109]李莉,孟光.电磁型磁悬浮列车动力学研究综述.铁道学报,2003,25(4):110-114
    [110]翟婉明,赵春发.磁浮车辆/轨道系统动力学(Ⅰ)——磁/轨相互作用及稳定性.机械工程学报,2005,41(7):1-10
    [111]赵春发,翟婉明.磁浮车辆/轨道系统动力学(Ⅱ)——建模与仿真.机械工程学报,2005,41(8):163-175
    [112]武建军,郑晓静,周又和,何丽红.两级悬浮EMS型磁悬浮控制系统的非线性动力学特性.固体力学学报,2003,24(1):68-74
    [113]Xiao Jing Zheng,Jian Jun Wu,You-He Zhou.Effect of Spring Non-linearity on Dynamic Stability of a Controlled Maglev Vehicle and Guideway System.J.Sound and Vibration,2005(279):201-215
    [114]王在华.高维时滞动力系统的稳定性.南京航空航天大学博士论文,2000.
    [115]Attilio Maccari.Vibration control for parametrically exicited Lineard systems.Int.J.Non-linear Mechanics,2006(41):146-155
    [116]Attilio Maccari.Vibration control for primary resonance of the van der pol oscillator by a time delay state feedback.Int.J.Non-linear Mechanics,2003(38):123-131
    [117]Attilio Maccari.Vibration control for the primary resonance of a cantilever by time delay state feedback.J.Sound and Vibration,2003(259):241-251
    [118] J. Xu, Qi-Shao Lu. Hopf Bifurcation of Time-Delay Lienard Equations. Int. J.Bifurcation and Chaos, 1999,9(5): 939-951
    [119] J. Xu, K. W. Chung. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 2003(180): 17-39
    [120] J. Xu, Pei Yu. Delay-Induced Bifurcations in a Nonautonomous System with Delayed Velocity Feedbacks. Int. J. Bifurcation and Chaos, 2004, 14(8):2777-2798
    [121] J. C. Ji. Stability and Hopf Bifurcation of a Magnetic Bearing System with Time Delays. J. Sound and Vibration, 2003,259(4):845-855
    [122] J.C.Ji, Colin H. Hansen, Xinye Li. Effect of External Excitations on a Nonlinear System with Time Delay. Nonlinear Dynamics, 2005( 41): 385-402
    [123] J.C.Ji, Colin H. Hansen. Hopf Bifurcation of a Magnetic Bearing System with Time Delay. ASME, J. of Vibration and Acousic, 2005(127):362~369
    [124] J.C.JI, Colin H. Hansen. Forced Phase-Locked Response of a Nonlinear System with Time Delay after Hopf Bifurcation. Chaos, Solitons and Fractals, 2005(25):461-473
    [125] Xinye Li, J.C. Ji, Colin H. Hansen, Chunxiao Tan. The response of a Duffmg-vanderpol oscillator under delayed feedback control. J. Sound and Vibration, 2006,291(2): 644-655
    [126] Haiyan Hu, Earl h. Dowell and Lawrence N. Virgin. Responses of a Harmonically Forced Duffing Oscillator with Time Delay State Feedback.Nonlinear Dynamics, 1998 (15):311-327
    [127] Zaihua Wang, Haiyan Hu. Hopf Bifurcation Control of Delayed Systems with weak Nonlinearity via Delayed State Feedback. Int. J. Bifurcation and Chaos,2005,15(5): 1787-1799
    [128] Zaihua Wang, Haiyan Hu,H. L. Wang. Robust Stibilization to Non-linear Delayed Systems via Delayed State Feedback: the Averaging Method. J. Sound and Vibration, 2005(279): 937-953
    [129] S.H. Zhu, P.Yu. Computation of the normal forms for general M-DOF systems using multiple time scales. Part II: non-autonomous systems. Communications in nonlinear Science and Numerical Simulation, 2006(11): 45-81
    [130] Ali Hasan Nayfeh, Dean T. Mook. Nonlinear Oscillations. USA: John Wiley & Sons, 1979.
    [131] A. H. Nayfeh. The Response of Single Degree of Freedom Systems with Quadratic and Cubic Non-linearities to a Subharmonic Excitation. J.Sound and Vibration, 1983,89(4):457-470
    [132] A.H. Nayfeh, A.E.S. Jebril. The Response of Two Degreee-of Freedom Systems with Quadratic and Cubic Non-Linearities to Multifrequency Parametric Excitations.J.Sound and Vibration,1989,115(1):83-101
    [133]L.D.Zavodney,A.H.Nayfeh.The Response of a Single-Degree-of Freedom System with Quadratic and Cubic Non-Linearities to a Fundamental Parametric Resonance.J.Sound and Vibration,1988,121(1):63-93
    [134]L.D.Zavodney,A.H.Nayfeh,N.E.Sanchez.The Response of a Single-Degree-of Freedom System with Quadratic and Cubic Non-Linearities to a Principal Parametric Resonance.J.Sound and Vibration,1989,129(3):417-442
    [135]A.M.Abu-arish,A.H.Nayfeh.The response of one degree-of freedom systems with cubic and quartic non-linearities to a harmonic excitation.J.Sound and Vibration,1985,103(2):253-272
    [136]J.J.Wu,L.-C.Chien.Solutions to a general forced non-linear oscillations problem.J.Sound and Vibration,1995,185(2):247-264
    [137]Gabor Stepan.Retarded Dynamical Systems:Stability and Characteristic Functions.England:Longman Scientific,1989.
    [138]B.D.Hassard.Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems.J.Differential Equations,1997(136):222-235
    [139]H.S.Y.Chan,K.W.Chung,Z.Xu.A perturbation-incremental method for strongly non-linear oscillators.Int.J.Non-linear Mechanics,1996,31(1):59-72
    [140]H.S.Y.Chan,K.W.Chung,Z.Xu.Stability and bifurcations of limit cycles by the perturbation- incremental method.J.Sound and Vibration,1997,206(4):589-604
    [141]P.Yu,S.H.Zhu.Computation of the normal forms for general M-DOF systems using multiple time scales.Part Ⅱ:autonomous systems.Communications in nonlinear Science and Numerical Simulation,2005(10):869-905
    [142]Ray W.Clough,Joseph Penzien.Dynamics of Structures.USA:McGraw-Hill,1993.
    [143]胡少伟,苗同臣.结构振动理论及其应用.北京:中国建筑工业出版社,2005.
    [144]胡海岩.机械振动基础.北京:北京航空航天大学出版社,2005.
    [145]盛宏玉.结构动力学.合肥市:合肥工业大学出版社,2005.
    [146]J.Guckenheimer,P.Holmes.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields.New York:Springer-Verlag;fifth Edition,1997.
    [147]刘三红.一类三阶时滞微分方程的稳定性及Hopf分叉.咸宁学院学报,2003,23(3):26-28
    [148]Gabor Stepan.GREAT DELAY IN A PREDATOR-PREY MODEL.Nonlinear Analysis,Theory,Methods & Applications,1986,10(9):913-929
    [149]Gabor Orosz,Gabor Stepan.Hopf bifurcation calculations in delayed systems with translational symmetry.Journal of Nonlinear Science,2004,14(6):505-528
    [150]Jack Hale.Theory of Functional Differential Equations.New York: Springer-Verlag,1977.
    [151]Martin Golubitsky,David G.Schaeffer.Singularities and Groups in Bifurcation Theory.New York:Springer,1985.
    [152]钱长照,唐驾时.一类非自治反馈系统的分叉控制.物理学报,2006,55(2):617-621
    [153]倪振华.振动力学.西安:西安交通大学出版社,1989.
    [154]S.Timoshenko,D.H.Young,W.Weaver.Vibration Problems in Engineering.USA:wiley,1974.
    [155]郑大钟.线性系统理论.北京:清华大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700