用户名: 密码: 验证码:
卫星适配器结构振动主被动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代以来,随着航空航天、机械、建筑、船舶等众多领域的飞速发展,结构的大型化、柔性化趋势日益显著,由之而来的结构振动破坏、失效以及干扰等问题已经成为工程设计过程中不可忽视的客观因素之一。结构的振动控制研究是国内外工程界和学术界所面临的一项重要而又充满挑战的课题。
     目前国内外航天工程中的卫星适配器多采用金属锥壳结构,该结构本身的阻尼特性较差,无法有效控制发射过程中的振动载荷对卫星结构的影响。此外,截顶锥壳结构也是其他工程领域应用非常广泛的一种薄壁承载结构,发动机喷嘴、连接单元、各种适配器以及整流罩外壳等都可以看作锥壳结构。对这一类结构的振动动控制问题进行研究具有重要的现实意义,因此,本文以某卫星适配器锥壳模型为研究对象,以结构的振动控制为目标进行了理论推导、数值仿真和实验验证工作。
     首先,从控制器是否需要外界能量输入角度,振动控制可以分为主动控制、被动控制两类。本文中的结构振动的被动控制研究主要包括三个部分:1、通过两自由度简化模型分析了各个系统参数对结构隔振效能的影响;2、采用复合材料蜂窝结构对卫星适配器截顶锥壳模型进行结构改进,并用等效法进行了建模计算;3、应用模态应变能法对附加约束阻尼层的铝制适配器截顶锥壳模型进行了数值模拟研究。将后面两部分计算所得到的动力学特性与未改进的铝制卫星适配器锥壳模型的相关数据进行对比分析,可以证明文中卫星适配器结构改进方案的优越性。
     其次,本文中的振动主动控制研究主要围绕压电智能结构的应用展开。在系统建模方面,通过利用四节点Mindlin层合板单元进行有限元建模过程的推导,对目前所普遍采用的压电结构的建模方法进行了分析,并针对这一类方法难以对复杂压电结构进行建模的问题,提出了一种基于通用有限元软件的等效建模方法:即利用通用有限元软件(Patran/Nastran)导出结构的动力学方程;然后根据弹性力学和压电方程,得到压电结构的作动方程;最后将压电元件的作动力等效为载荷边界条件加入动力学方程中完成建模。该方法是一种基于通用有限元软件的计算机辅助建模(Computer Aided Modeling)方法,是进行复杂结构动力学分析与主动控制研究最为可靠和快捷的手段。仿真结果对比证明了等效法建模的正确性与有效性。
     第三,基于结构的有限元模型和动力学方程,利用独立模态空间控制对卫星适配器模型结构振动的主动控制进行了仿真研究。该方法是目前结构振动控制当中应用较为广泛的一种方法,能够使复杂结构的控制器设计得到简化。在控制律方面则主要针对比例反馈控制和LQR最优控制进行了控制器设计。从结构振动控制效果及对比分析可以看出,主动控制能够有效抑制结构的振动,而LQR控制具有更高的控制效率。
     本文还对卫星适配器模型振动主动控制中压电作动器的位置优化设计进行了研究,提出了一种基于结构模态阻尼比最大化的优化准则。优化过程中采用了累积法进行优化计算。数值仿真结果证明优化后的作动器布置能够获得最佳的阻尼特性,从而更加有效地控制结构的振动。
     最后,根据相关研究内容设计了不同的测试实验来验证理论分析和数值仿真结果:利用LMS系统对复合材料蜂窝结构卫星适配器模型进行了模态测试,实验结果与前文中的相关仿真结果吻合较好;应用振动台实验对上述模型的振动传递特性进行了测试,从结果中可以看出改进后的卫星适配器结构具有良好的隔振效能;基于MATLAB软件中的xPC实时控制平台,利用压电作动器对锥壳结构的低频振动进行了控制,控制前后的结果对比证明了主动控制方法的有效性和可行性。
Since 1990’s, the structures had become larger and more flexible with the development of aeronautic, aerospace, mechanical, architecture and marine. Then, the problems which caused by the vibration and resonance such as destroy, disable and disturb can’t be neglected during engineering design process. Investigation on vibration control of structures becomes an important and challenge issue for academia and engineering.
     At present, many satellite adapter used in aerospace engineering over the world were made up with the metal truncated conical shell structures with small damping ratios. So, it can not control the vibration effect during the launch by the adapte itself. In addition, the truncated conical shell structures, as a special thin walled braced structure, are wildly used in some other engineering fields. Nozzles, joint elements, adapters and fairings can be seen as conical shell structures. Then, the investigations on vibration control of this structure have important practical significance. Then, the investigation subject of this paper is a conical shell satellite adapter model in aerospace application. Theoretical derivations and experiment on active and passive vibration control for the conical shell model have been performed.
     There are two types of structures vibration control method: active control and passive control. The passive control needs no control energy input and has a simply form with good stability. The inefficient for low frequencies vibration control is the main shortage of passive control method. The active control method can supply the gap of the passive control. Low frequencies vibration can be controlled effective by using active control method and the controller design becomes more flexible.
     The main contents of the paper are as follows:
     The passive control of structure vibration research in this paper includes three aspects. Firstly, the parameter variations affect for vibration isolation system is analyzed by a simplified model with two degree of freedoms. Secondly, composite honeycomb structures were applied for structural modifications of the truncated conical shell satellite adapter model. The mathematical modeling of the structure above is based on equivalence method. Thirdly, an aluminum conical shell model with constrained damping layer was simulated by using modal strain energy method. The calculation results of the second and third part above were compared with the relevant data of untreated aluminum conical shell model. Comparison results proved that the adoption of composite and honeycomb structure could improve the effect of vibration isolations and reductions.
     Based on the piezoelectric equations and Hamilton principle, four nodes Mindlin plate element is applied for finite element modeling. But it is difficult for the modeling of complex piezoelectric structures by the method above. Then, in this paper, an equivalent modeling method based on the universal finite element software is present. Commercial softwares Patran/Nastran are used for derivations of structural dynamic equations. The control force of piezoelectric actuator is considered as boundary conditions in dynamic equations. The actuating equations are derived from piezoelectric equations and electrodynamics. Numerical examples show that this method is efficient and accurate.
     Active control of vibration for the truncated conical shell satellite adapter model is simulated with the independent modal space control method base on the finite element model and dynamic equations. The method has an extensive application in structure vibration control and the controller design is simplified with it. Two control laws are used for the simulations and comparisons. One is the proportional feedback control and the other is LQR optimal control. Vibration control results prove the availability of actice control method and the LQR control has a high performance.
     Optimal placement of actuators is investigated with the optimization criterion of modal damping ratios maximization. Accumulation method is used for optimization calculations. Numerical results show that actuators located at the optimal place can control the vibtaion effectively.
     Several relevant experiments were performed to validate the results of theoretical analysis and simulations. Firstly, modal test was accomplished for the composite honeycomb conical shell adapter model by using LMS system. The experiment results were in good agreement with the calculations. Secondly, vibration table experiment was conducted to test the vibration transmissibility of the model above. The results show that the model has favorable vibration isolation effect. Finally, based on the xPC real-time control platform in MATLAB, active vibration control experiment for conical shell adapter model was developed by using piezoelectric actuators. Feasibility and effectiveness of the active method were verified by control results comparisions.
引文
1黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展.力学进展. 1997, 27(1):5~18.
    2马兴瑞,于登云,韩增尧,邹元杰.星箭力学环境分析与实验技术研究进展.宇航学报.2006,27(3):323~331
    3张军,谌勇,骆剑,华宏星.整星隔振技术的研究现状和发展.航空学报. 2005,26(2):179~183
    4 Lee Glauser Gina, Ahmadi Goodarz. Vibration Isolation of a Launch Vehicle Payload and Its Subsystem. Collection of Technical Papers-AIAA/ASME Structures, Structural Dynamics and Materials Conference. 1993, 5: 2557~2565
    5 Wilke Paul S, Johnson Conor D, Fosness Eugene R. Payload Isolation System for Launch Vehicles. Proceedings of SPIE. 1997, 3045:20~30
    6 Edberg Donald L, Johnson Conor D, Davis L Porter, Fosness Eugene R. Development of a Launch Vibration Isolation System. Proceedings of SPIE. 1997, 3045:31~37
    7 Bagley R L, Torvik P J. Fractional Calculus a Different Approach to The Analysis of Viscoelastically Damped Structures. AIAA Journal. 1983, 21(5): 741~748
    8 Laurent Hazard, Philippe Bouillard. Structural Dynamics of Viscoelastic Sandwich Plates by the Partition of Unity Finite Element Method. Computer Methods in Applied Mechanics and Engineering. 2007, 196(41): 4101–4116
    9 M. Moshrefi-Torbati, A.J. Keane, S.J. Elliott, M.J. Brennan, E. Rogers. Passive Vibration Control of a Satellite Boom Structure by Geometric Optimization Using Genetic Algorithm. Journal of Sound and Vibration 2003, 267(4): 879~892
    10 C M Harison, A O Sykes, M Martin. Wave Effects in Isolation Mounts. Journal of Acoustical Society of America. 1952, 24:62~70
    11 R.Plunkett. Interaction between a Vibratory Machine and Its Foundation. Noise Control. 1958, 4:234~245
    12 Soliman J I, Ismailzadeh E. Optimization of Unidirectional Viscous DampedVibration Isolation System. Journal of Sound and Vibration,1974,36(4): 527~539
    13 Junchuan Niua, Kongjie Songa, C.W. Limb. On Active Vibration Isolation Of Floating Raft System. Journal of Sound and Vibration 2005, 285(2): 391~406
    14 Chen X. Optimal Design of a Two-Stage Mounting Isolation System By the Maximum Entropy Approach. Journal of Sound and Vibration, 2001,243(4): 591~599
    15 J C Snowdon. Representation of the Mechanical Damping Possessed by Rubber Materials and Structures. Journal of the Acousticical Society of American, 1963, 35(6): 821~821
    16 J C Snowdon. Transverse Vibration of Simply Clamped Beams. Journal of the Acousticical Society of American, 1963, 35(8): 1152~1161
    17 J.P.DenHartog.机械振动学.科学出版社.1961
    18 Sciulli D and D J Inman. Isolation Design for a Flexible System. Journal of Sound and Vibration, 1998, 216(2): 251~267
    19 C. Yilmaz, N. Kikuchi. Analysis and Design of Passive Low-Pass Filter-Type Vibration Isolators Considering Stiffness and Mass Limitations. Journal of Sound and Vibration 2006, 293(2): 171~195
    20 Shilin Xiea, Siu Wing Ora, Helen Lai Wa Chana, etc. Analysis of Vibration Power Flow from a Vibrating Machinery to a Floating Elastic Panel. Mechanical Systems and Signal Processing. 2007, 21(1) 389–404
    21 Kerwin, Jr E M. Damping of Flexural Waves by a Constrained Viscoelastic Layer. Journal of Acoustical Society of America. 1959, 31(7): 952~962
    22 Eric Michael Austin. Influences of Higher Order Modeling Techniques on the Analysis of Layered Viscoelastic Damping Treatments. Doctor Dissertation of Virginia Polytechnic Institute and State University. 1998:1~5
    23杜华军.基于约束阻尼的蜂窝锥壳卫星适配器振动抑制研究.哈尔滨工业大学博士学位论文. 2003: 3~5
    24 Tso-Liang Teng, Ning-Kang Hu. Analysis of Damping Characteristics for Viscoelastic Laminated Beams. Computer Methods in Applied Mechanics and Engineering. 2001,190(29): 3881~3892
    25 Wang Gang, Wereley N M. Spectral Finite Element Analysis of SandwichBeams with Passive Constrained Layer Damping. Journal of Vibration and Acoustics. 2002, 124(3): 376~386
    26 Shao Hui Zhang, Hua Ling Chen. A Study on the Damping Characteristics of Laminated Composites with Integral Viscoelastic Layers. Composite Structures. 2006, 74(1): 63~69
    27陈前.粘弹性复合结构的动力分析.南京航空学院博士学位论文. 1987: 18~25
    28 Silvio Sorrentinoa, Alessandro Fasana. Finite Element Analysis of Vibrating Linear Systems with Fractional Derivative Viscoelastic Models. Journal of Sound and Vibration, 2007, 299(4): 839~853
    29 Johnson C D, Kienholz D A. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers. AIAA Journal. 1982, 20(9): 1284~1290
    30 Golla D F, Hughes P C. Dynamics of Viscoelatic Structure-A Time Domain, Finite Element Formulation, Journal of Applied Mechanics. 1985, 52: 897~906
    31 Kiehl M Z, Jerzak C P. Modeling of Passive Constrained Layer Damping as Applied to a Gun Tube.Shock and Vibration. 2001, 8(3): 123~129
    32石银明,华宏星,李中付,傅志方.主动约束层阻尼梁的数值模型.计算力学学报. 2002, 19(3): 99~104
    33 Shi-Jian Zhu, Xue-Tao Weng, Gang Chen. Modelling of the Stiffness of Elastic Body. Journal of Sound and Vibration. 2003, 262(1): 1~9
    34 Tae-Woo Kim, Ji-Hwan Kim. Eigensensitivity Based Optimal Distribution of A Viscoelastic Damping Layer for a Flexible Beam. Journal of Sound and Vibration. 2004,273(1-2):201~218
    35 Lesieutre G A, Mingori D L. Finite Element Modeling of Frequency-dependent Material Damping Using Augmenting Thermodynamic Fields. Journal of Guidance and Control. 1990, 13(6): 1040~1050
    36 Horng-Jou Wang, Lien-Wen Chen. Axisymmetric Vibration and Damping Analysis of Rotating Annular Plates with Constrained Damping Layer Treatments. Journal of Sound and Vibration. 2004, 271(1): 25~45
    37 Yuh-Chun Hu, Shyh-Chin Huang. The Frequency Response and Damping Effect of Three-Layer Thin Shell with Viscoelastic Core. Computers andStructures. 2000,76(5): 577~591
    38胡选利,戴宗妙.阻尼夹层筋板结构有限元动力分析.应用力学学报. 1998,15(1):10~16
    39桂洪斌.敷设粘弹性阻尼的板和加筋板的振动机理研究.大连理工大学博士论文.2001:1~4
    40 M.G. Sainsbury, Ravish S. Masti. Vibration Damping of Cylindrical Shells Using Strain-Energy-Based Distribution of an Add-On Viscoelastic Treatment. Finite Elements in Analysis and Design. 2007, 43(3): 175~192
    41 Choon Chiang Foo, Gin Boay Chai, Leong Keey Seah. Mechanical Properties of NOMEX Material and NOMEX Honeycomb Structure. Composite Structures. 2007, 80(4): 588~594
    42张广平,戴干策.复合材料蜂窝夹芯板及其应用.纤维复合材料. 2000, (2):25~27
    43华云龙,余同希.多胞材料的力学行为.力学进展. 1991, 21(4): 457~469
    44 Yao Zhenhan, Qu Shisheng. Identification of Equivalent Stiffness Paramet-ers of Honeycomb Sandwich Shell Using Detailed Cell Structure Analysis. Tsing Hua Science and Technology. 1997, 2(2): 564~567
    45 Holt P J, Webber J P H. Finite Element for Honeycomb Sandwich Plates and Shells. Aeronautical Journal, 1980, 113~123
    46 M. Yamashita, M. Gotoh. Impact Behavior of Honeycomb Structures with Various Cell Specifications: Numerical Simulation and Experiment. International Journal of Impact Engineering 2005 32(4): 618~630
    47徐胜今,孔宪仁,王本利,马兴瑞,张晓超.正交异性蜂窝夹层板动、静力学问题的等效分析方法.复合材料学报. 2000,17(3): 92~95
    48 Allen H G.. Analysis and Design of Structural Panels. Oxford: Pergamon Press, 1969:152~168
    49徐胜今,宋宇,王本利,马兴瑞.正交异性蜂窝夹层板的动力学分析.复合材料学报. 1998, 15(4): 74~80
    50权渭锋,毛剑琴,李超,李帆.智能结构与智能控制在振动主动控制中的应用.信息与电子工程. 2004,2(3):232~237
    51张景绘,李宁,李新民,李智明.一体化振动控制-若干理论、技术问题引论.科学出版社,2005: 200~201
    52 R.Stanway. Application of Electro-Rheological Fluids in Vibration Control:A Survey. Smart Material Structure. 1996, 5:464~482
    53 A. Srikantha Phani, K. Venkatraman Vibration Controlof Sandwich Beams using Electro-Rheological Fluids. Mechanical Systems and Signal Processing. 2003, 17(5): 1083~1095
    54 Tao Sun, Zhenyu Huang, Dayue Chen. Signal Frequency-Based Semi-Active Fuzzy Control for Two-Stage Vibration Isolation System. Journal of Sound and Vibration. 2005, 280(4): 965~981
    55胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(I).稀有金属材料与工程. 2000, 29(6):366~369
    56 Jang-Ik Park, SangGap Lee, Insuk Yu, Yongho Seo. Inductive Detection of Magnetostrictive Resonance. Sensors and Actuators A: Physical. 2007, 140(1): 84~88
    57 A.G. Olabi, A. Grunwald. Design and Application of Magnetostrictive Materials. Materials and Design. 2008, 29(2): 469~483
    58 N.H. Duc, D.T. Huong Giang. Magnetic Sensors Based On Piezoelectric–Magnetostrictive Composites. Journal of Alloys and Compounds. 2008, 449(2): 214~218
    59 F. Martínez, I. Santiago, F. Sanchez, etc. Magnetostrictive Delay Line Improvement for Long Range Position Detection. Sensors and Actuators A: Physical. 2006, 129(1): 138~141
    60 Zhitong Cao, Jiongjiong Cai. Design of a Giant Magnetostrictive Motor Driven By Elliptical Motion. Sensors and Actuators A: Physical. 2005, 118(2): 332~337
    61 Renshiro Ishino, Mutsumi Sunahata and Shiro Takada. The Effect of Shot Peening Process on Improvement of a Magnetostrictive Torque Sensor with Helical Knurls. Journal of Magnetism and Magnetic Materials. 2004, 274: 1697~1699
    62 Viktor Berbyuk, Jayesh Sodhani. Towards Modelling and Design of Magnetostrictive Electric Generators. Computers and Structures. 2008, 86(3): 307–313
    63邓年春.结构的主被动一体化振动控制研究.哈尔滨工业大学博士论文. 2004: 1~15
    64 Lam M J, Inman D J, Saunders W R.Vibration Control through PassiveConstrained Layer Damping and Active Control. Journal of Intelligent Material Systems and Structures. 1997, 8(8): 663~677
    65姚军.压电结构的主动振动控制.南京航空航天大学博士学位论文. 1999: 1~10
    66 Crawley E F, Luis J de. Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA Journal. 1988, 25(10): 1373~1385
    67 Lee C K. Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators - part I. Governing Equations and Reciprocal Relationships. Journal of Acoustical Society of American. 1990, 87(3): 1144~1158
    68 Tzou H S, Tseng C L. Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: a Piezo-electric Finite Element Approach. Journal of Sound and Vibration. 1990, 138(1): 17~34
    69 Wang B T, Rogers C A. Laminated Plate Theory for Spatially Distributed Induced Strain Actuators. Journal of Composite Material. 1991, 25(3): 433~452
    70 Liang F P, Rogers C A. Dynamic Output Characteristics of Piezoelectric Actuators, SPIE Smart Structures and Materials’93, Albuquerque, 1992, 4: 3618~3624
    71 Tzou H S. A New Distributed Sensation and Control Theory for Intelligent Shells. Journal of Sound and Vibration. 1992, 152(1): 176~184
    72 Li Y Y, Cheng L A, Li P A. Modeling and Vibration Control of a Plate Coupled with Piezoelectric Material. Composite Structures. 2003, 62(2): 155~162
    73 I.F. Pinto Correia, P.G. Martins, etc. Modelling and Optimization of Laminated Adaptive Shells of Revolution. Composite Structures. 2006,75(1): 49~59
    74 M. Kogl, M.L. Bucalem. A Family of Piezoelectric Mitc Plate Elements. Computers and Structures. 2005, 83(16): 1277~1297
    75 Chul Ki Song, Jin Kwon Hwang, Jang Moo Lee, J. Karl Hedrick. Active Vibration Control for Structural-Acoustic Coupling System of A 3-D Vehicle Cabin Model. Journal of Sound and Vibration. 2003, 267(4): 851~865
    76 Balamurugan V, Narayanan S. Finite Element Modelling Of Piezolaminated Smart Structures For Active Vibration Control With Distributed Sensors And Actuators. Journal of Sound and Vibration. 2003, 262(3): 529~562
    77 Mostafa Sekouri El, Hu Yan-Ru, Ngo Anh Dung. Modeling of a Circular Plate with Piezoelectric Actuators. Mechatronics. 2004, 14(9): 1007~1020
    78李传兵,廖昌荣,张玉,陈伟民,黄尚廉.压电智能结构的研究进展.压电与声光. 2002, 24(1): 42~46
    79路小波,陶云刚,周洁敏,等.柔性智能结构实验建模方法.压电与声光. 2000, 22(1):29~31
    80 Kai Cai, Juntao Xia, Longtu Li, Zhilun Gui. Analysis of the Electrical Properties of PZT by a BP Artificial Neural Network. Computational Materials Science. 2005, 34(2): 166~172
    81 A.L. Araújo, H.M.R. Lopes, etc. Parameter Estimation in Active Plate Structures. Computers and Structures. 2006, 84(22): 1471~1479
    82路小波,陶云刚,何延伟.基于极点配置的柔性智能结构主动振动控制.压电与声光. 1997,19(4): 282~284
    83 A. Preumont, B. de Marneffe, A. Deraemaeker, F. Bossens. The Damping of a Truss Structure with a Piezoelectric Transducer. Computers and Structures, 2008, 86(3): 227~239
    84 C.M.A. Vasques, J. Dias Rodrigues. Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies. Computers and Structures. 2006, 84(22): 1402~1414
    85 Jin-Chein Lin, M.H. Nien. Adaptive Control of a Composite Cantilever Beam with Piezoelectric Damping-Modal Actuators/Sensors. Composite Structures. 2005, 70(2): 170~176
    86 L. Gaudiller, S. Bochard. Adaptive Active Control Of Flexible Structures Subjected To Rigid Body Displacements. Journal of Sound and Vibration. 2005, 283(2): 311~339
    87 J. Lin. A Vibration Absorber of Smart Structures Using Adaptive Networks in Hierarchical Fuzzy Control. Journal of Sound and Vibration. 2005, 287(4): 683~705
    88 Meirovitch L, van Landingham H F, Oz H. Control of Spinning Flexible Spacecraft by Modal Synthesis. Acta Astronautica. 1977,4(9~10): 985~1010
    89 Meirovitch L, Baruh H. Effect of Damping on Observation Spillover Instability. Journal of Optimization Theory Application. 1981, 35(1): 31~44
    90 Meirovitch L. Baruh H.The Implementation of the Modal Filters for Control of Structures. Journal of Guidance, Control, and Dynamics. 1985, 8(6): 707~716
    91 Y H Lin, C L Chu. A New Design for Independent Modal Space Control of General Dynamic Systems. Journal of Sound and Vibration. 1995, 180(2): 351~361
    92 Kim S.J, Jones J D. Optimal Design of Piezoactuators for Active Noise and Vibration Control. AIAA Journal. 1991, 29(12): 2047~2053
    93 Masters A R, Jones James D. Optimal Design of Piezo-Actuators in a Layered Composite Structure for Active Noise and Vibration Control. Smart Structures and Materials. 1991, 24: 123~129
    94 Kermani M R, Moallem M, Patel R V. Optimizing the Performance of Piezoelectric Actuators for Active Vibration Control. Proceedings IEEE International Conference on Robotics and Automation, 2002, 3: 2375~2380
    95刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展. 2000, 30(4): 506~516
    96 M. R. Kermani, M. Moallem, R. V. Patel. Parameter Selection and Control Design for Vibration Suppression Using Piezoelectric Transducers. Control Engineering Practice. 2004, 12(8): 1005~1015
    97 Halim Dunant, Reza Moheimani. An Optimization Approach to Optimal Placement of Collocated Piezoelectric Actuators and Sensors on a Thin Plate. Mechatronics. 2003, 13(1): 27~47
    98 Sylvaine Leleu, Hisham Abou Kandil, Yvan Bonnassieux. Piezoelectric Actuators and Sensors Location for Active Control of Flexible Structures. IEEE Transactions on Instrumentation and Measurement. 2001, 5(6): 1577~1582
    99 Zhi-cheng Qiu, Xian-min Zhang, Hong-xin Wu, Hong-hua Zhang. Optimal Placement and Active Vibration Control for Piezoelectric Smart Flexible Cantilever Plate. Journal of Sound and Vibration. 2007, 301(3): 521~543
    100 Schuiz G, Heinnbold G. Dislocated Actuator/Sensor Positioning and Feedback Design for Flexible Structures. Journal of Guidance, Control andDynamics. 1982, 5(6): 361~367
    101 Jha Akhilesh K, Inman, Daniel J. Optimal Sizes and Placements of Piezoelectric Actuators and Sensors for an Inflated Torus. Journal of Intelligent Material Systems and Structures. 2003, 14(9): 563~576
    102 B. Xu, J.S. Jiang, J.P. Ou. Integrated Optimization Of Structural Topology And Control For Piezoelectric Smart Trusses Using Genetic Algorithm. Journal of Sound and Vibration. 2007, 307(3): 393~427
    103 Ryou J K, Park K Y, Kim S J. Electrode Pattern Design of Piezoelectric Sensors and Actuators Using Genetic Algorithms. AIAA Journal. 1998, 36(2): 227~233
    104 Hakim S, Fuches M B. Optimal Actuator Placement with Minimum Worst Case Distortion Criterion. Proceedings of AIAA SDM Conference. 1995. 3506~3514
    105 Tolson R H, Huang J K. Integrated Control of Thermally Distorted Large Space Antennas. Journal of Guidance, Control and Dynamics. 1992, 15(3): 605~614
    106 DeLorenzo M L. Sensor and Actuator Selection for Large Space Structure Control. Journal of Guidance, Control and Dynamics. 1990, 13(2): 249~257
    107 Jose M. Simoes Moita, Victor M. Franco Correia, etc. Optimal Design in Vibration Control of Adaptive Structures Using a Simulated Annealing Algorithm. Composite Structures. 2006, 75(1): 79~87
    108 Menon R G, Browder A M, Kurdila A J, Junkins J L. Concurrent Optimization of Piezoelectric Actuator Locations for Disturbance Attenuation. Proceedings of SDM Conference. 1993, 3269~3278
    109 Salama M, Rose T, Garba J. Optimal Placement of Exciters and Sensors for Verification of Large Dynamical Systems. Proceedings of AIAA SDM Conference. 1987. 1024~1031
    110马治国,闻邦椿,颜云辉.智能结构的若干问题与进展.东北大学学报. 1998, 19(5): 513~516
    111 Tzou H S. A New Distributed Sensation and Control Theory for Intelligent Shells. Journal of Sound and Vibration. 1992, 152(1): 176~184
    112 M. Moshrefi-Torbati, A.J. Keane, etc. Active Vibration Control (AVC) of A Satellite Boom Structure Using Optimally Positioned Stacked PiezoelectricActuators. Journal of Sound and Vibration. 2006, 292(1): 203~220
    113 Lee C K, Sullivan T C, Chiang W W. Piezoelectric Strain Ratesensor and Actuator Designs for Active Vibration Control. Haward R V. Proceeding of AIAA/ASME/ASCE/ASCS/ASC 32nd Structure, Structural Dynamics, and Materials Conference. Baltinore, John & Wiley, 1991: 2197~2207
    114 Carneal J P, Fuller C R. Active Structural Acoustic Control of Noise Transmission through Double Panel System. AIAA Journal. 1995, 33(4): 618~623
    115刘棣华.粘弹阻尼减振降噪应用技术.宇航出版社,1990
    116 Fronk T H, Womack K C, Ellis K D, Finlinson LW. Finite Element Modeling of Damping in Constrained Layer Composite Structures Induced by Inplane Loads Using ADINA. Computers and Structures. 1995, 56(2): 357~363
    117杨大智.智能材料与结构.上海交通大学出版社,2001:57~84
    118 Balamurugan V, Narayanan S. Shell Finite Element for Smart Piezoelectric Composite Plate/Shell Structures and Its Application of Active Vibration Control. Finite Elements in Analysis and Design. 2001, 37(9):713~718
    119 D T Detwiler, M H H Shen, V B Venkayya. Finite Element Analysis of Laminated Composite Structures Containing Distributed Piezoelectric Actuators and Sensors. Finite Elements in Analysis and Design. 1995, 20(2):87~100
    120钱振东,黄卫,朱德懋.主动减振板的数值分析.工程力学. 2000,4:58~65
    121周克敏.鲁棒与最优控制.国防工业出版社. 2002: 556~582
    122 H. S. Tzou, D. W. Wang, W. K. Chai. Dynamics and Distributed Control of Conical Shells Laminated with Full and Diagonal Actuators. Journal of Sound and vibration, 2002, 256(1):65~79
    123杨涤,李立涛,杨旭,朱承元.系统实时仿真开发环境与应用.清华大学出版社. 2002. 261~336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700