用户名: 密码: 验证码:
WLAN射频接收机集成电路设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线本地局域网(Wireless Local Area Networks, WLAN)是计算机网络与无线通信技术相结合的产物,通过利用射频(Radio Frequency, RF)技术构成局域网络,不仅能够提供传统有线局域网的所有功能,而且可以使用无线信道来接入网络,为通信的移动化,个人化和多媒体应用提供了方便快捷的渠道,并成为宽带接入的有效手段之一。WLAN技术可以在空中传输数据、语音和视频信号,使得原先的有线网络所遇到的难题迎刃而解。现今,无线局域网室内数据传输可以达到数十米到几百米范围,而在室外也可以传输几十公里的距离。从WLAN的应用价值和前景来看,应用于无线局域网物理层中的射频接收集成电路也具有巨大的应用前景。如何实现低成本、高性能的无线射频接收机终端是一项具有挑战意义的工作。现今的无线通信射频接收机系统要求在保证极高灵敏度的前提下,尽可能提高接收机的线性度,以使系统的输出信号失真最小,误码率(Bit Error Rate, BER)最低。另外,接收机系统还要求尽可能的展宽射频输入、输出动态范围,使接收机的适应性更强,抗干扰能力更出色。以往,通常使用GaAs工艺制作射频接收集成电路,主要原因是这种工艺具有工作频率高、噪声低等优点。随着近年来CMOS工艺的不断进步,CMOS的频率特性和噪声特性逐步得到改善,采用CMOS工艺设计射频前端接收电路已成为可能。CMOS工艺还具有成本低、面积小、性能高等优势。CMOS工艺制作的射频电路易于和数字信号处理基带电路相兼容,符合片上系统(System on Chip, SOC)的发展的趋势。
     本文基于TSMC0.18μm CMOS工艺设计了符合IEEE802.11a标准的射频前端接收机电路,并设计了版图。论文从系统级设计出发,首先讨论了零中频(直接变频)结构、超外差式结构和两次变频结构的工作原理以及各种结构对于结构中各电路模块性能要求的高低。在以上结构中,存在着各种各样的非理想特性,例如噪声,镜像频率(直接变频不存在镜像频率),非线性,失真,阻抗失配等,文章都进行了系统地分析。同时,列出了系统架构的重要参数指标,诸如噪声系数、镜频抑制比、增益、增益压缩点、3阶交调点以及输入输出阻抗匹配等。文章针对IEEE802.11a标准,对系统参数进行了认真分析后,确定了射频接收机的整体框架。随后,论文进行了各个电路模块的设计,包括低噪声放大器(Low Noise Amplifier, LNA),混频器(Mixer),自动增益控制(Automatic Gain Controller, AGC),跨导—电容中频滤波器(Gm-C filter)和sigma-delta ADC。有源CMOS LNA作为第一级,其噪声性能、增益和线性度是整个链路中影响最大的。因此,合理的设计LNA是至关重要的。文章还对LNA中的螺旋电感进行了优化设计,采用低电阻系数的Si衬底、Cu/SiO2互连工艺技术,并设计了适于WLAN的电感版图结构。混频器作为第二级电路,线性度、增益和噪声对整体电路的影响也是研究的重点。采用吉尔伯特单元为核心的混频器,前级增加输入缓冲级对本振信号进行放大,使得工作在开关状态的晶体管具有更好的开关特性,优化了混频器的线性度。中频滤波器采用跨导—电容滤波器,以满足系统大带宽的需求。自动增益控制模块AGC又称为可变增益放大器(Variable Gain Amplifier, VGA),实现整体链路总增益的调节功能,调节的主要依据是数字信号处理基带反馈的数字信号。VGA的主要参数是增益变化动态范围和增益步长。本文采用级联差分放大对的方式,根据数字基带的反馈信号实现各级增益的组合,从而达到54dB的动态范围和1.7dB的增益步长。最后一级模数转换器采用MASH21b-24b级联结构sigma-delta ADC。对于WLAN要求,ADC需要有10MHz的信号带宽。对于如此大的带宽要求,如果采用传统ADC,如流水线ADC,也可以实现模/数转换,但是功耗、面积都非常大。Sigma-delta模数转换器以其独特的工作机理放松了对模拟电路设计的要求,通过过采样,噪声整型及多位量化器技术降低带宽内的噪声,提高信噪比,从而提高ADC的精度。对多位DAC引入的非线性采用DWA数字校正方法。
     采用Cadence Virtuoso layout Editor进行了整体电路的版图设计,并使用Diva/Dracula验证工具完成了各单元和整体链路的DRC(Design Rule Check)和LVS(Layout Versus Schematic)验证。整体电路输入信号为5.7GHz,噪声系数为9.284dB,输入阻抗匹配S11为-16dB,匹配阻抗50Ω,VGA输入控制位为默认值10011时,链路增益达到了45.95dB, IIP3为-16.7dBm,最大输入信号幅值-30dBm,达到了WLAN的性能指标要求。整个接收机(除频率合成器外)电流功耗为38mA,版图面积3mm×3mm。
WLAN(Wireless Local Area Networks) is a combinative product of computer networking and wireless communication technology. This new type network can not only realize all the functions which conditional wired networks can provide, but also access networks by wireless information channels. WLAN is a convenient and high speed network employed in mobility, individual communications and multimedia applications, and is an effective means of accessing broadband. Problems met in wired network can be easily solved in WLAN which transmits data, sounds and videos in air. Nowadays, WLAN can transmit data in the range of decade meters to several hundred meters indoor and several decade miles outdoor. In the respect of application and prospect of WLAN, the integrated radio frequency(RF) receiver used for WLAN physical levels has a great valuable prospect. How to realize a low cost but high performance RF receiver is a challenge. The system of RF receiver requires high linearity as far as possible while high sensitivity performance has been already achieved. Therefore, the harmonic distortion can be suppressed and low BER can be met. In addition, RF receiver requires large dynamic range of radio frequency input and output, which results in good adaptability and ability of anti-interference. In early times, the integrated RF receiver circuits were fabricated in GaAs technology which can work at a high frequency and has low noise. As the developing of CMOS technology, the frequency and noise characteristics of CMOS have been improved greatly nowadays and, therefore, fabricating the RF receiver circuits in CMOS technology can be realized very well. The CMOS technology has the advantages of low cost, small area and high performance, and can be easily integrated with digital baseband circuits according with the development of SOC(System on Chip).
     This dissertation has deigned the integrated circuits of RF receiver for IEEE 802.11a standard and the layout based on TSMC 0.18um CMOS technology. Firstly, systematic design is introduced and mechanisms of homodyne receiver, heterodyne receiver and two-step do wn-convertor structure are analysed, then, requirements of each sub-modules are defined. There are many non-idealities in the structures mentioned above, such as noise, image frequency, nonlinearities, impedance mis-matchingwhich have been analysed in this paper. The important parameters such as noise figure(NF), image rejection ration(IRR), gain, 1dB compression(P1dB), input third-order intercept point(IIP3) are spread out. Then the architecture used for IEEE802.11a standard is decided after carefully analyzing the required characteristics. Sub-blocks including LNA, Mixer, AGC, Gm-C filter, AGC and sigma-delta ADC are therefore designed. As the first stage, passive CMOS LNA plays an important role that its noise performance, gain and linearity have a great influence to the whole chain. The second stage is mixer and its linearity, gain and noise are also key points of this paper. Gilbert unit is used as the core circuit of mixer and output signal of the locate oscillator is amplified by adding an input buffer, which makes the MOSFET work on a better switching state, then the linearity performance of mixer can be improved. Gm-C filter is used for the large bandwidth requirement. AGC, the so called Variable Gain Amplifier is used to change the gain of the chain by digital signal feedback from digital signal processing module. The main characteristics of AGC are dynamic range and gain step. Cascade differential amplifiers are used and the gain is decided by the feedback digital signal from digital base-band. The dynamic range and gain step are respectively 54dB and 1.7dB. The final stage is MASH21b-24b sigma-delta ADC. The WLAN system requires a bandwidth of 10MHz and the traditional ADC, such as pipelined ADC has a greater dissipation and occupied a larger area than sigma-delta ADC which can relax the requirements of system by its mechanism. The sigma-delta ADC reduces the noise in the interested band by noise shaping and multi-bit quantization and therefore improves the SNR and the precision of ADC. DWA is used for the non-linearity induced by multi-bit DAC。
     The whole layout of the circuits is designed by using Cadence Virtuoso layout Edition. DRC(Design Rule Check) and LVS (Layout Versus Schematic) have been achieved by using Diva/Dracula. When the frequency of the input signal is 5.7GHz, the whole system has a NF of 9.284dB, S11-16dB, matched impedance 50Ω, gain of the whole link 45.95dB when input bits of VGA is 10011, IIP3-16.7dB, the maxim amplitude of input-30dBm. The simulation results meet the requirements of the WLAN. The whole receiver circuits (except for PLL) have a current dissipation of 38mA and the layout occupies an area of 3 mm×3mm.
引文
[1.1]David M. Pozar. Microwave and RF Wireless System. Third Avenue, N.Y. John Wiley & Sons, Inc.2001.
    [1.2]Stephen A Maas. Nonlinear Microwave and RF Circuit. Second Edition, Boston, London:Artech House.2003.
    [1.3]Ting-Ping Liu, Eric Westerwick.5-GHz CMOS Wireless LANs. IEEE Journal Solid-State Circuits,2000,35(12):1927-1933.
    [1.4]Peter Vizmuller. RF Design Guide:System, Circuit and Equations. Norwood, M.A.:ArtechHouse, Inc.1995:2-12.
    [1.5]Cotter W. Sayre. Complete Wireless Design. New York:McGraw-Hill,2001.
    [1.6]Behzad Razavi. RF Microelectronics, Upper Saddle River, N.J., Prentice Hall PTR.1998:7-20.
    [1.7]P. Zhang, T. Nguyen, C. Lam, D. Gambetta, T. Soorapanth, B. Cheng, S. Hart, I. Sever, T. Bourdi, A. K. Tham, and B. Razavi. A 5-ghz direct- conversion cmos transceiver. IEEE Journal of Solid-State Circuits,2003,38(12): 2232-2238.
    [1.8]M. A. Margarit, D. Shih, P. J. Sullivan, F. Ortega. A 5-GHz BiCMOS RFIC front-end for IEEE 802.11a/HipcrLAN wireless LAN. IEEE Journal of Solid-State Circuits,2003,38(7):1284-1287.
    [1.9]Agilent Technologies, Inc. Testing and Troubleshooting Digital RF Com-munications Receiver Designs. USA:Product Catalog.2002.
    [1.10]R. Barrak, A. Ghazel, F. Ghannouchi. Design and Optimisation of RF Filters; for Multistandard RF Sub-sampling Receiver. IEEE International Confere-nee on Design and Test of Integrated Systems, Gammarth, Tunisia. Septe-mber 2006.
    [1.11]I. Vassiliou, K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J. C. Rudell, A. Yamanaka, S. Bouras, I. Bouras. A single-chip digitally calibrated 5.15-5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN. IEEE Journal of Solid-State Circuits,2003,38(12):2221-2231.
    [1.12]J. Ryynanen, K. Kivekas, J. Jussila, L. Sumanen, A. Parssinen, K. A. I. Halonen. A single-chip multimode receiver for GSM900, DCS 1800, PCS 1900, and WCDMA. IEEE Journal of Solid-State Circuits,2003,38(4):594-602.
    [1.13]K. Muhammad, et. al. All-digital TX frequency synthesizer and discrete time receiver for Bluetooth radio in 130-nm CMOS. IEEE Journal of Solid-State Circuits,2004,39(2):2278-2291.
    [1.14]Radio Transmission and Reception GSM 05.05. ETSI,1996.
    [1.15]UMTS UE. Radio Transmission and Reception (FDD),3GPP TS25.101 Version 5.2.0 Release 5 ETSI 2002.
    [1.16]Higher Data Rate Extension in the 2.4 GHz Band. IEEE Std 802.11gTM,2003.
    [1.17]K. Muhammad, et. al. Digital RF processing:Toward low-cost reconfigure-able radio. IEEE Communications Magazine, pp.105-113, Aug.2005.
    [1.18]D. M. Akos, M. Stockmaster, J. B. T. Tsui, J. Cashera. Direct Band-pass Sampling of Multiple Distinct RF signals. IEEE Trans. On Comm.,1999, 47(7):983-988.
    [1.19]RF Micro Devices. Designer Handbook technologies.2000.
    [1.20]R. Barrak, A. Ghazel, F. Ghannouchi. Optimized multi-standard RF sub-sampling radio receiver design.12th IEEE International Conference on Electronics, Circuits and Systems, Gammarth, Tunisia, December 2005.
    [1.21]E. Sall and M. Vesterbacka. Silicon-on-Insulator CMOS technology for system-on-chip. Swedish System-on-Chip Conference, pp.13-14, April 2004.
    [1.22]Design of Sampling-Based Down conversion Stage for Multi-standard RF Sub-sampling Receiver Electronics. Circuits and Systems,2006. ICECS'06. 13th IEEE International Conference on Issue Date:2006:577.
    [1.23]X. P. Li, and M. Ismail. Multi-standard CMOS Wireless Receivers:Analysis and Design. New York:Kluwer Academic Publisher,2002.
    [1.24]Vincent Arkesteijn, Roel Schiphorst, Fokke Hoeksema, Eric Klumperink, Bram Nauta, and Kees Slump. A software defined radio test-bed for WLAN front ends. In Proceedings of the 3rd PROGRESS Workshop on Embedded Systems, October 2002.
    [1.25]Z. Wang, X. Ma, and G. B. Giannakis. OFDM or single-carrier block transmissions. IEEE Transactions on Communications,2004,52(3):380-394.
    [1.26]I. Vassiliou, K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J. C. Rudell, A. Yamanaka, S. Bouras, I. Bouras. A single-chip digitally calibrated 5.15-5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN. IEEE Journal of Solid-State Circuits,2003,38(12):2221-2231.
    [1.27]Adiseno, M. Ismail, H. Olsson. A wide-band RF front-end for multiband multi-standard high-linearity low-IF wireless receivers. IEEE Journal of Solid-State Circuits,2002,37(9):1162-1168.
    [1.28]P. Busson, P.-O. Jouffre, P. Dautriche, et. Al. A complete single-chip front-end for digital satellite broadcasting, in International Conference on Consumer Electronics,2001.
    [1.29]B.-E. Kim, S.-Y. Kim, T.-J. Lee, J.-K. Lim, Y.-J. Kim, M. S. Jeong, K. Kim, S.-U. Kim, S.-H. Park, B.-K. Ko. A CMOS singlechip direct conversion satellite receiver for digital broadcasting system. Symposium on VLSI Circuits Digest of Technical Papers,2002.
    [1.30]V. J. Arkesteijn, E. A. M. Klumperink, B. Nauta. A wideband high-linearity RF receiver front-end in CMOS. Proceedings of the 30th European Solid-State Circuits Conference, Sept.2004:71-74.
    [1.31]M. Laddomada, F. Daneshgaran, M. Mondin, R. M. Hickling. A PCBased Software Receiver using a Novel Front-End Technology. IEEE Communi-cations Magazine, August,2001:136-145.
    [1.32]M. Fuencisla, M. Artalejo, Market Impact of Software Radio:Benefits and Barriers. Masters Dissertation, Massachusetts Institute of Technology,2002: 19-38.
    [1.33]M. Puvaneshwari, O.Sidek. Wideband Analog Front-end for Multi-stan-dard Software Defined Radio Receiver, Proc.15th IEEE Int. Symp. on Personal, Indoor, and Mobile Radio Communications,2004,3:1937-1941.
    [1.34]K. Muhammad, D. Leipold, B. Staszewski, Y.-C. Ho, C. M. Hung, K. Maggio, C. Fernando, T. Jung, J. Wallberg, J.-S. Koh, S. John, I. Deng, O. Moreira, R Staszewski, R. Katz, O. Friedman. A discrete-time bluetooth receiver in a 0.13μm digital CMOS process. Proceedings of the 2004 IEEE International Solid-State Circuits Conference,2004:268-269.
    [1.35]Malaysian Communication and Multimedia Commission (MCMC). Malay-sian Spectrum Plan. First Edition. Malaysia:MCMC.2002:20-25.
    [1.36]K. Muhammad, R. B. Staszewski. D. Leipold, Digital RF processing:Toward low-cost reconfigurable radios. IEEE Communications Magazine,2005,43(8): 105-113.
    [1.37]Z. Ru, E. A. M. Klumperink, and B. Nauta. On the suitability of discrete-time receivers for software-defined radio. IEEE International Symposium on Circuits and Systems,2007:2522-2525.
    [1.38]V. J. Arkesteijn, E. A. M. Klumperink, B. Nauta. ADC clock jitter requirements for software radio receivers, in Proceedings of the 2004 IEEE 60th Vehicular Technology Conference, Sept.2004:1983-1985.
    [1.39]C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE,1949,37(1):10-21.
    [1.40]J.-H. C. Zhan, B. R. Carlton, S. S. Taylor. Low-cost direct conversion RF front-ends in deep submicron CMOS, in Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium, June 2007:203-206.
    [1.41]G. Cafaro, T. Gradishar, J. Heck, S. Machan, G. Nagaraj, S. Olson, R. Salvi, B. Stengel, B. Ziemer. A 100MHz-2.5GHz direct conversion CMOS transceiver for SDR applications, in Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium, June 2007:189-192.
    [1.42]Vincent J. Arkesteijn, Eric A. M. Klumperink, Bram Nauta. Variable bandwidth analog channel filters for software defined radio. Proceedings of the 12th Pro RISC workshop on Circuits, Systems and Signal Processing, 2001:258-261.
    [1.43]Thomas H. Lee, Hirad Samavati, Hamid R. Rategh.5-GHz CMOS Wireless LANs. IEEE transactions on Microwave Theory and techniques,2002,50(1): 268-280.
    [1.44]R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee, M. Mikhemar, W. Tang, A. A. Abidi. An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits,2006,41(12): 2860-2876.
    [1.45]M. Megahed, et al. Low cost UTSI technology for RF wireless applications. IEEE International Microwave Symposium,1998:981-983.
    [1.46]R. Reedy, et al. UTSi CMOS:a complete RF SOI solution. Analog Integrated Circuits and Signal Processing, vol.25, Issue 2, Kluwer Academic Publishers, Hingham, USA,2001.
    [1.47]P. F. Lu, et. al. Floating-body effects in partially depleted SOI CMOS circuits. IEEE Journal of Solid-State Circuits,32(8):1241-1253, August 1997.
    [1.48]N. H. W. Fong. Low-Voltage Radio-Frequency CMOS Integrated Circuits in Silicon-On-Insulator. Ph.D. Dissertation, Carleton University,2002.
    [1.49]S. Lam, W. H. Ki, M. Chan. The Silicon-on-sapphire technology for RF integrated circuits:potential and limitations. IEEE International Conference on Electrical and Electronics Technology, pp.483-486, August 2001.
    [2.1]Behzad Razavi. A 5.2-GHz CMOS Receiver with 62-dB Image Rejection. IEEE Journal Solid-State Circuits,2001,36(5):810-815.
    [2.2]Vincent J. Arkesteijn, Eric A. M. Klumperink, B. Nauta. An analogue front-end architecture for software defined radio. Proceedings of the 13th ProRISC workshop on Circuits, Systems and Signal Processing,2002: 165-168.
    [2.3]Vincent J. Arkesteijn, Eric A. M. Klumperink, B. Nauta. An analogue front-end test-bed for software defined radio. Proceedings of the 3rd International Symposium on Mobile Multimedia Systems & Applications, pages 1-7, December 2002.
    [2.4]L. F. W. van Hoesel, F. W. Hoeksema, R. Schiphorst, V. J. Arkesteijn, and C. H. Slump. Frequency offset correction in a software defined hiperlan/2 demodulator using preamble section A. In Proceedings of the 3rd Interna-tional Symposium on Mobile Multimedia Systems & Applications,2002: 51-62.
    [2.5]M. J. McCullagh. Radio Design Challenges for UWB Systems. UWB, March 2003.
    [2.6]J.-H. C. Zhan, B. R. Carlton, S. S. Taylor. Low-cost direct conversion RF front-ends in deep submicron CMOS, in Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium, June 2007:203-206.
    [2.7]Vincent Arkesteijn, Roel Schiphorst, Fokke Hoeksema, Eric Klumperink, Bram Nauta, Kees Slump. A combined receiver front-end for Bluetooth and HiperLAN/2. Proceedings of the 4th PROGRESS Symposium on Embe-dded Systems, October 2003.
    [2.8]V. Arkesteijn. Software defined radio maakt draadloze communicatie flexible. Bits & Chips,2003,5(18):42-43.
    [2.9]R. Schiphorst, F. Hoeksema, V. Arkesteijn, K. Slump, E. Klumperink, B>. Nauta. A GPP-based software-defined radio front-end for WLAN standards. Proceedings of the 2004 IEEE Benelux Signal Processing Symposium,2004: 203-206.
    [2.10]V. J. Arkesteijn, E. A. M. Klumperink, B. Nauta. A wideband high-linearity RF receiver front-end in CMOS. Proceedings of the 30th European Solid-State Circuits Conference,2004:71-74.
    [2.11]R. Bagheri, A. Mirzaei, S. Chehrazi, M. E. Heidari, M. Lee, M. Mikhemar, W. Tang, and A. A. Abidi. An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits,2006,41(12): 2860-2876.
    [2.12]Vincent J. Arkesteijn, Eric A. M. Klumperink, Bram Nauta. ADC clock jitter requirements for software radio receivers. Proceedings of the 2004 IEEE 60th Vehicular Technology Conference,2004:1983-1985.
    [2.13]Vincent J. Arkesteijn, Roel Schiphorst, Fokke W. Hoeksema, Eric A. M. Klumperink, Bram Nauta, and Cornells H. Slump. A combined analogue-digital software defined radio receiver front-end for Bluetooth and Hiper-LANs. Proceedings of the 5th PROGRESS Symposium on Embedded Systems, 2004.
    [2.14]Vincent J. Arkesteijn, Eric A. M. Klumperink, Bram Nauta. A wideband inductorless CMOS front-end for software defined radio. Proceedings of the 14th Pro RISC workshop on Circuits, Systems and Signal Processing,2004: 452-456.
    [2.15]Vincent J. Arkesteijn, Eric A. M. Klumperink, Bram Nauta. Jitter requirem-ents of the sampling clock in software radio receivers. IEEE Trans-actions on Circuits and Systems Ⅱ,2006,53(2):90-94.
    [2.16]Eric A.M. Klumperink, Rameswor Shrestha, Eisse Mensink, Vincent J. Arkesteijn, and Bram Nauta. Polyphase multi-path radio circuits for dyna-mic spectrum access. IEEE Communications Magazine,2007,45(5):104-112.
    [2.17]N. Dehaese, S. Bourdel, H. Barthelemy, G. Bas. Simple demodulator for 802.15.4 low-cost receivers. Radio and Wireless Symposium,2006:315-318.
    [2.18]T. Maede, H. Yano, T. Yamase, N. Yoshida, N. Matsuno, S. Hori, K. Numata, R. Walkington, T. Tokairin, Y. Takahashi, M. Juji, H. Hi da. A direct-conversion CMOS transceiver for 4.9-5.95GHz multi-standards WLANs. in ISSCC Digest of Technical Papers,2004:90-91.
    [2.19]R. Ahola, A. Aktas, J. Wilson, K. R. Rao, F. Jonsson, I. Hyyrylainen, A. Brolin, T. Hakala, A. Friman, T. Makiniemi, J. Hanze, M. Sanden, D. Wallner, Y. Guo, T. Lagerstam, L. Noguer, T. Knuuttila, P. Olofsson, M. Ismail. A single chip CMOS transceiver for 802.11a/b/g WLANs. ISSCC Digest of Technical Papers,2004:92-93.
    [2.20]L. Perraud, C. Pinatel, M. Recouly, J. L. Bonnot, N. Sornin, F. Benoist, M. Massei, O. Gibrat. A dual-band 802.11a/b/gradio in 0.18μm CMOS. ISSCC Digest of Technical Papers,2004:94-95.
    [2.21]D. Manstretta, M. Brandolini, and F. Svelto. Second-order intermodulation mechanisms in CMOS downconverters. IEEE Journal of Solid-State Circuits, 2003,38(3):394-406.
    [2.22]Vincent J. Arkesteijn, Eric A. M. Klumperink, Bram Nauta. High-Q variable bandwidth passive filters for software defined radio. In Proceedings of The Fourth International Symposium on Wireless Personal Multimedia Comm-unications,2001:1571-1572.
    [2.23]Vincent J. Arkesteijn, Eric A. M. Klumperink, B. Nauta. High-Q variable bandwidth passive filters for software defined radio. Proceedings of the 2nd PROGRESS workshop on Embedded Systems, pages 5-7, October 2001.
    [2.24]J. Mitola. The software radio architecture. IEEE Communications Magazine, 1995,33(5):26-38.
    [2.25]R. Schiphorst. Software-defined radio for wireless local-area networks, Ph.D. dissertation, University of Twente,2004.
    [2.26]T. Hentschel, M. Henker, G. Fettweis. The digital front-end of software radio terminals. IEEE Personal Communications,1999,6(4):40-46.
    [2.27]N. C. Davies. A high performance HF software radio, in Eighth International Conference on HF Radio Systems and Techniques,2000:249-256.
    [2.28]R. J. Lackey and D. W. Upmal. Speakeasy:the military software radio. IEEE Communications Magazine,1995,33(5):56-61.
    [2.29]P. G. Cook, W. Bonser. Architectural overview of the SPEAKeasy system. IEEE Journal on Selected Areas in Communications,1999,17(4):650-661,.
    [2.30]H. Yoshida, S. Otaka, T. Kato, H. Tsurumi. A software defined radio receiver using the direct conversion principle:Implementation and evaluation, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,2000:1044-1048.
    [2.31]Vincent Arkesteijn, Roel Schiphorst, Fokke Hoeksema, Eric Klumperink, Bram Nauta, Kees Slump. A software defined radio test-bed for WLAN front ends, Proceedings of the 3rd PROGRESS Workshop on Embedded Systems, October 2002.
    [2.32]D. G-W. Yee. A Design Methodology for Highly-Integrated Low-Power Receivers for Wireless Communications, Ph.D. Dissertation, University of California, Berkeley,2001.
    [2.33]A. Ismail, A. Abidi. A 3.1 to 8.2 GHz direct conversion receiver for MB-OFDM UWB communications, IEEE International Solid-State Circuits Conference, pp.208-209, February 2005.
    [2.34]Peregrine Semiconductor Corp., http://www.peregrine-semi.com.
    [2.35]D. Lottici and V. Reggiannini. Non-linear pre-distortion of OFDM signals over frequencyselective fading channels," IEEE Transaction on Communi-cations, vol.49, pp.837-843, May 2001.
    [2.36]Y. Guo and J. R. Cavallaro. Post-compensation of RF non-linearity in mobile OFDM systems by estimation of memory-less polynomial. IEEE International Symposium on Circuits and Systems,2002,1:217-220.
    [2.37]B. C. S. Kang and B. Kim. Linearity analysis of CMOS for RF application. IEEE Transactions on Microwave Theory and Techniques,2003,51(3):972-977.
    [2.38]P. Wambacq, P. Dobrovoln, et al. Compact modeling of nonlinear distortion in analog communication circuits. IEEE Transation on Computer-Aided Design of Integrated Circuits and Systems,22(9):2003,1215-1227.
    [2.39]R. T. M. Hamalainen, V. Hovinen, et. al. On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS. IEEE Journal on Selected Areas in Communications,2002,20(9):1712-1721.
    [2.40]A. Taha, K. Chugg. A theoretical study on the effects of interference on UWB multiple access impulse radio. IEEE Asilomar Conference on Signals, Systems and Computers,2002,1:728-732.
    [2.41]I. O'Donnell, et. al. An integrated, low power, Ultra-wideband transceiver architecture for low-rate, indoor wireless systems. IEEE CAS Workshop on Wireless Communications and Networking, September 2002.
    [2.42]M. Verhelst, et. al. Architectures for low power Ultra-wideband radio receivers in the 3.1-5GHz band for data rates<10Mbps, International Symposium on Low Power Electronics and Design,2004:280-285.
    [2.43]V. J. Arkesteijn, E. A. M. Klumperink, B. Nauta. A wideband high-linearity RF receiver front-end in CMOS. Proceedings of the 30th European Solid-State Circuits Conference, Sept.2004:71-74.
    [3.1]Behzad Razavi. RF Microelectronics, Prentice Hall,2003.
    [3.2]Thomas H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Second Edition, Cambridge University Press,2004.
    [3.3]D. Johns, K. Martin. Analog Integrated Circuit Design. New York, Wiley, 2001.
    [3.4]Jakonis D., Folkesson K., Dabrowski J., Eriksson P., Svensson C. A 2.4-GHz RF Sampling Receiver Front-End in 0.18μm CMOS. IEEE Journal of Solid-State Circuits,2005,40(6):1265-1277.
    [3.5]J. Lerdworatawee, W. Namgoong. Low-noise amplifier design for ultrawide-band radio. IEEE Transactions on Circuits and Systems. II,2004,51(6): 1075-1087.
    [3.6]S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, B. Nauta. A wideband noise-canceling CMOS LNA exploiting a transformer, in Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium, June 2006.
    [3.7]R. Ramzan, S. Andersson, J. Dabrowski, C. Svensson. A 1.4V 25mW inductorless wideband LNA in 0.13μm CMOS, in ISSCC Digest of Technical Papers,2007:424-425.
    [3.8]J.-H. C. Zhan and S. S. Taylor. A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications. ISSCC Digest of Technical Papers, 2006:200-201.
    [3.9]S. Chehrazi, A. Mirzaei, R. Bagheri, A. A. Abidi. A 6.5 GHz wideband CMOS low noise amplifier for multi-band use. in Proceedings of the IEEE Custom Integrated Circuits Conference, Sept.2005:801-804.
    [3.10]F. Bruccoleri, E. A. M. Klumperink, B. Nauta. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits,2004,39(2):275-282.
    [3.11]S. Andersson, C. Svensson, O. Drugge. Wideband LNA for a multi-stan-dard wireless receiver in 0.18μm CMOS. in European Solid-State Circuits Conference,2003.
    [3.12]Adiseno, H. Magnusson, H. Olsson. A 1.8-V wide-band CMOS LNA for multiband multistandard front-end receiver, in European Solid-State Circuits Conference,2003.
    [3.13]F. Bruccoleri. Wide-band low-noise amplifier techniques in CMOS. Ph.D. dissertation, University of Twente, Nov.2003.
    [3.14]J. Borremans, P. Wambacq, D. Linten. An ESD-protected DC to-6GHz 9.7mW LNA in 90nm digital CMOS, in ISSCC Digest of Technical Papers, 2007:422-423.
    [3.15]Koutsoyannopoulos K., Papa nanos Y., Yorgos K., et.al. Systematic analysis and modeling of integrated inductors and transformers in RFIC design. IEEE Trans Circuits SystⅡ:Analog and Digital Signal Processing,2000,47(8): 699-702.
    [3.16]I. O'Donnell, et. Al. An integrated, low power, Ultra-wideband transceiver architecture for low-rate, indoor wireless systems. IEEE CAS Workshop on Wireless Communications and Networking, September 2002.
    [3.17]B. C. S. Kang, B. Kim. Linearity analysis of CMOS for RF application. IEEE Transactions on Microwave Theory and Techniques,2003,51(3):972-977.
    [3.18]Lopez-VillegasJ M, Samitier J, Cane C, et. Al. Improvement of the quality f actor of RF integrated inductors by layout optimization. IEEE TransMicrow Theory Tech,2000,48(1):76-78.
    [3.19]Arcioni P, Castello R, Per regrini L, et. Al. An improved lumped element equivalent circuit for on silicon integrated inductors. Proceedings IEEE RAWCON'98,1998
    [3.20]Guo L, Yu Mingbin, Chen Zhen, et. Al. RF on-chip passive components fabricated by CMOS compatible Cu interconnect technology. European Microelectronics Packing and Interconnection Symposium, Cracow, Poland, 2002:251-253.
    [3.21]Niknejad A. M., Meyer R. G. Analysis, design, and optimization of spiral inductors and transformers for Si RFICs. IEEE J Solid State Circuits,1998, 33(10):1470-1472.
    [3.22]Niknejad A. M., Meyer R. G. Analysis and optimization of monolithic inductors and transformers for RF Ics. Proceedings of the IEEE Custom Integrated Circuits Conference,1997:375-378.
    [3.23]Guo L, Yu Mingbin, Chen Zhen, et. Al. RF on-chip passive components fabricated by CMOS compatible Cu interconnect technology. European Microelectronics Packing and Interconnection Symposium, Cracow, Poland, 2002:251-254.
    [3.24]Thomas H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Second Edition, Cambridge University Press,2004.
    [3.25]M. J. Roberts, S. Iezekiel, C. M. Snowden. A W-band self-oscillating sub harmonic MMIC mixer. IEEE Trans. Microwave. Theory Tech.,1998,46 (12): 2104-2018.
    [3.26]N. Bourhill, S. Iezekiel, D. P. Steenson. A millimeter-wave fiber-radio downlink based on optically controlled MMIC self-oscillating mixers, in Proc. 33rd Eur. Microwave Conf,2003:607-610.
    [3.27]J. V. D. Tang and D. Kasperkovitz. A 0.9-2.2-GHz monolithic quadrature mixer oscillator for direct-conversion satellite receiver. in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb.1997:88-89.
    [3.28]B. Razavi. A 2-GHz 1.6-mW phase-locked loop. IEEE J. Solid-State Circuits, 1997,32(5):730-735.
    [3.29]M. B. Bendak, B. A. Xavier, P. M. Chau. A 1.2-GHz CMOS quadrature self-oscillating mixer. IEEE Int. Circuits Systems Symp., Jun.1999:434-437.
    [3.30]G. Fraello, G. Palmisano. Low voltage folded-mirror mixer, Electron. Lett., 1997,33(21):1780-1781.
    [3.31]M. Racanelli, P. Kempf. SiGe BiCMOS technology for RF circuit applications. IEEE Trans. Electron Devices,2005,52(7):1259-1270.
    [3.32]M. T. Terrovitis, R. G. Meyer. Noise in current-commutating CMOS mixers. IEEE J. Solid-State Circuits,1999,34(6):772-783.
    [3.33]P. Andreani and H. Sjoland. Tail current noise suppression in RF CMOS VCOs. IEEE J. Solid-State Circuits,2002,37(3):342-348.
    [3.34]N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, N. Tarr. Design of wide-band CMOS VCO for multiband wireless LAN application-ns. IEEE J. Solid-State Circuits,2003,38(8):1333-1342.
    [3.35]C. G. Tan. A high-performance low-power CMOS double-balanced IQ down-conversion mixer for 2.45-GHz ISM band application. IEEE RFIC Symp.,2003:457-460.
    [3.36]V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, A. V. Roermund. A high gain, low voltage folded-switching mixer with current-reuse in 0.18-μm CMOS, in IEEE RFIC Symp.,2004:31-34.
    [3.37]V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, A. H. M. V. Roermund. A low-voltage folded-switching mixer in 0.18-μm CMOS. IEEE J. Solid-State Circuits,2005,40:1259-1264.
    [3.38]C. Hermann, M. Tiebout, H. Klar. A 0.6 V 1.6-mW transformer based 2.5-GHz down-conversion mixer with 5.4-dB gain and-2.8-dBm IIP3 in 0.13-μm CMOS. IEEE Trans. Microw. Theory Tech.,2005,53(2):488-495.
    [3.39]P. J. Sullivan, B. A. Xavier and W. H. Ku. Low voltage performance of a microwave CMOS Gilbert cell mixer. IEEE Journal of Solid-State Circuits, 1997,32(7):1151-1155.
    [3.40]R. Jacob Baker, Harry W. Li, David E. Boyce. CMOS:circuit design, layout, and simulation. New York:IEEE Press,1998.
    [3.41]C. Enz, F. Krummenacher, E. A. Vittoz. An analytical MOS transistor model valid in all regions of operation and dedicated to low voltage and low- current applications, special issue of the Analog Integrated Circuits and Signal Processing Journal on Low-Voltage and Low-Power Design,1995,8:83-114.
    [3.42]W. Redman-White and D. M. W. Leenaerts.1/f noise in passive CMOS mixers for low and zero IF integrated receivers, in Proceedings of the 27th European Solid-State Circuits Conference, Sept.2001.
    [3.43]P. E. Allen, D. R. Holberg. CMOS Analog Circuit Design. Oxford Univers-ity Press, Second Edition,2002.
    [3.44]Jose Silva-Martinez, Michiel Steyaert, Willy Sansen. High-Performance CMOS Continuous-Time Filters. London, Kluwer Academic Publishers,1993.
    [3.45]F. Krummenacher, N. Joehl. A 4-MHz CMOS Continuous-Time Filter with On-Chip Automatic Tuning. IEEE Journal Of Solid-State Circuits,1988,23(3): 102-105.
    [3.46]Bo Shi, Weiyun Shan. A Gm-C Baseband Filter with Automatic Frequency Tuning for a Direct Conversion IEEE802.11a Wireless LAN Receiver. IEEE, 2004,15(2):150-170.
    [3.47]A. A. Abidi. Direct-Conversion Radio Transceivers for Digital Communic-ations. IEEE Journal of Solid-State Circuits,1995,30(12):1399-1410.
    [3.48]B. Razavi. A 2.4-GHz CMOS Receiver for IEEE 802.11 Wireless LANs. IEEE Journal of Solid-State Circuits,1999,34(10):1382-1385.
    [3.49]W. Kluge, L. Dathe, R. Jaehne, S. Ehrenreich, D. Eggert. A 2.4GHz CMOS Transceiver for 802.11b Wireless LANs. IEEE International Solid-State Circuits Conference,2003:360-363.
    [3.50]P. J. Chang, A. Rofougaran, A. A. Abidi. A CMOS Channel-Select Filter for a Direct Conversion Wireless Receiver. Symposium on VLSI Circuits, Honolulu, 1996:62-63.
    [3.51]Y. Changsik, L. Seung-Wook, K. Wonchan, A±1.5-V.4-MHz CMOS continuous time filter with a single-integrator based tuning, Journal of Solid-State Circuits. IEEE,1998,33(1):18-27.
    [3.52]A. Yoshizawa, Y. P. Tsividis. Anti-Blocker Design Techniques for MOSF-ET-C Filters for Direct Conversion Receivers. IEEE Journal of Solid-State Circuits,2002,37(3):357-364.
    [3.53]U. Stehr, F. Henkel, L. Dalliuge, P. Waldow. A Fully Differential CMOS Integrated 4th Order Reconfigurable Lowpass Filter for Mobile Applications ICECS.2003:1-4.
    [3.54]D. H. Shen, C.-M. Hwang, B. B. Lusignan, B. A.Wooley. A 900-MHz RF front-end with integrated discrete-time filtering. IEEE Journal of Solid-State Circuits,1996,31(12):1945-1954.
    [3.55]A. Motamed, C. Hwang, M. Ismail. A low-voltage low power wide range CMOS variable gain amplifier. IEEE Trans. Circuits Syst. Ⅱ,1998,45(7): 800-811.
    [3.56]R. Harjani. A low-power CMOS VGA for 50Mb/s disk drive read channels. IEEE Trans. Circuits Syst. Ⅱ,1995,42(6):370-376.
    [3.57]M. Mostafa, H. Elwan, A. Bellaour, B. Kramer, S. Embabi. A 110 MHz 70 dB CMOS variable gain amplifier, in Proc. IEEE Int. Symp. On Circuits and Syst., 1999,2:628-631.
    [3.58]A. Thanachayanont, P. Naktongkul. Low-voltage wideband compact CMOS variable gain amplifier. IEEE Electronics Letters,2005,41(2):120-129.
    [3.59]S. Tadjpour, F. Behbahani and A. A. Abibi. A CMOS variable gain amplifier for a wideband wireless receiver, in Digest of Technical Papers, Symposium on VLSI Circuits,1998:86-89.
    [3.60]C. Srinivasan and K. Radhakrishna Rao. A 20MHz CMOS Variable Gain Amplifier, in Proc.9th International Conference on VLSI Design,1996: 90-93.
    [4.1]R. H. Walden. Performance trends for analog-to-digital converters. IEEE Communication Magazine, February 1999,37:96-101.
    [4.2]K. Poulton. A 4GSamples/s 8b ADC in 0.35um CMOS. IEEE International Solid-State Circuits Conference,2002:166-167.
    [4.3]R. Norsworthy, R. Schreier, G. C. Temes. Delta-sigma data converters. IEEE Press, Piscataway, NJ,1997.
    [4.4]B. E. Boser, B. A. Wooley. The design of sigma-delta modulation analog-to-digital converters. IEEE J. Solid-State Circuits,1988, SC-23:1298-1300;
    [4.5]G. E. Moore. No exponential is forever but forever can be delayed, IEEE International Solid-State Circuits Conference.2003,1:20-23.
    [4.6]刘益成,罗维炳.信号处理与过采样转换器.电子工业出版社,1997.
    [4.7]H. Pan. A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR. IEEE Journal of Solid-State Circuits,2000,35:1769-1783.
    [4.8]J. C. Candy, G. C. Temes. Oversampling delta-sigma data converters. IEEE Press, New York,1992.
    [4.9]H. Chen, B. Song, K. Bacrania. A 14-b 20-MSamples/s CMOS pipelined ADC. IEEE Journal of Solid-State Circuits,2001,36:997-1001.
    [4.10]Aziz, P. M. Sorensen, V. D. Spiegel. An overview of sigma-delta converters. IEEE Signal Processing Magazine,1996:61-84.
    [4.11]R. Veldhoven. A tri-mode continuous time sigma delta modulator with switched-capacitor DAC for a GSM-EDGE/CDMA2000/UMTS receiver. IEEE International Solid-State Circuits Conference,2003:60-61.
    [4.12]Z. Li, H. Z. Yang. A 3V 5.88mW 13b 400kHz sigma-delta modulator with 84dB dynamic range.半导体学报,2008,29(11):2232-2237.
    [4.13]苟曦,李怡然,陈建球等.一个0.9V电源电压16位300μW音频Σ△调制器.复旦学报(自然科学版),2008,47(6):763-768.
    [4.14]T. Kuo, K. Chen, H. Yeng. A wideband CMOS sigma-delta modulator with incremental data weighted averaging. IEEE Journal of Solid-State Circuits, 2002,37:11-17.
    [4.15]C. C. Cutler. Transmission system employing quantization[P]. U S Patent, No 2927962. March 8,1960.
    [4.16]F. D. Jager. Delta modulation-a method of PCM transmission using the one unit code. Philips Res.Rep.,1952,7:442-466.
    [4.17]H. Inose, Y.Yasuda, J.Murakami. A telemetering system by code modulation Δ-Σ modulation, IRE Trans.Space Electron.Telemetry,1962,8:204-209.
    [4.18]Z. F. Wang, Z. H Li. A Charge delta-sigma modulator for differential-capacitance sensors.传感技术学报,2006,19(5):2252-2254.
    [4.19]G. R. Ritchie. Higher order interpolation analog to digital converters. Ph.D. Dissertation, University of Pennsylvania,1977.
    [4.20]J. C. Candy. A use of double integration in sigma-delta modulation. IEEE transactions on communications,1985:249-258.
    [4.21]L. A. Williams Ⅱ, B. A. Wooley. Third-order cascade sigma-delta modul-ators. IEEE Transactions on Circuits and Systems,1991,38(5):489-498.
    [4.22]T. Hayashi, Y. Inabe, K. Uchimura, et al. A multistage delta-sigma modulator without double integration loop. IEEE International Solid-State Circuits Conference,1986,182-183.
    [4.23]W. L. Lee, A novel higher order interpolative modulator topology for high resolution oversampling. Master thesis, MIT, Cambridge, MA,987-989.
    [4.24]L. E. Larson, T, Cataltepe, G. C. Temes. Multi-bit oversampled sigma-delta A/D converter with digital error correction. Electron.Lett.,1988:1051-1052.
    [4.25]杨骁,陈贵灿,程军等.一种新型级联Σ△调制器系统结构.西安交通大学学报,2008,42(12):1541-1545.
    [4.26]R. G. Vaughan, N. L. Scott, D. R. White. The Theory of Band-pass Sampling, IEEE Trans. On Signal Processing,1991,39(9):1973-1984.
    [4.27]L. R. Carley. A noise-shaping coder topology for 15-Bit converters, IEEE Journal of Solid-State Circuits,1989,24:267-273.
    [4.28]褚炜路,戎蒙恬,李萍等.二阶多比特sigma-delta ADC中的自适应量化算法.上海交通大学学报,2008,42(2):308-311.
    [4.29]K. Nguyen, R. Adams, K. Sweetland, et al. A 106-dB SNR hybrid oversamp-ling analog-to-digital converter for digital audio, IEEE Journal of Solid-State Circuits,40(12):2408-2415.
    [4.30]T. C. Leslie, B. Siggh. An improved sigma-delta modulator architecture, IEEE International Symposium on Circuits and Systems,1990,1:372-375.
    [4.31]N. Bridgett, C. Lewis. Effect of initial conditions on limit cycle performance of second order sampled data sigma-delta modulator, Electron.Lett.,1990,26: 817-819.
    [4.32]R. Ledzius, J. I. Rwin. The basis and architecture for the reduction of tones in a sigma-delta DAC, IEEE Trans. Circuits and System-II:Analog and Digital Signal Proc.,1993,40(7):429-439.
    [4.33]T. H. Kuo, S. Y. Lee, D.J. Lu.3.3 V mixed-mode IC design using switched-current techniques for speech applications, IEEE Proceeding-Circuits, Devices and Systems,1997,144(6):367-374.
    [4.34]R. D. Rio, J. M. Rosa, B. P. Verdu, et al. highly linear 2.5-V CMOS ΔΣ modulator for ADSL, IEEE Transactions on Circuits and Systems,2004,51: 47-62.
    [4.35]I. Fujimori, L. Longo, A. Hairapetian, et al. A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8x oversampling Ratio, IEEE Journal of Solid-State Circuits,2000,35:1820-1828.
    [4.36]M. R. Miller, C. S. A. Petrie. A multibit sigma-delta ADC for multimode receivers, IEEE Journal of Solid-State Circuits,2003,38(3):475-482.
    [4.37]R. Schreier, J. Lloyd, L. Singer, et al. A 50Mw bandpass sigma delta ADC with 333kHz BW and 90dB DR. International Solid-State Circuits Conferen-ce,2002:216-217.
    [4.38]R. Gaggl, A. Wiesbauer, G. Fritz, et al. A 85-dB dynamic range multibit delta-sigma ADC for ADSL-CO applications in 0.18-μm CMOS, IEEE Journal of Solid-State Circuits,2003,38:1105-1114.
    [4.39]马绍宇,韩雁,黄小伟等.一种高性能、低功耗音频Σ△调制器.半导体学报,2008,29(10):2050-2056.
    [4.40]Y. Q. Yang, T. Sculley, J. Abraham. A single die 124dB stereo audio delta sigma ADC with 111dB THD,33rd European Solid State Circuits Conference, 2007:252-255.
    [4.41]K. Vleugels, S. Rabii, B. Wooley. A 2.5-V sigma-delta modulator for broadband communications applications, IEEE Journal of Solid-State Circuits, 2001,36:1887-1899.
    [4.42]Y. Q. Yang, T. Sculley, J. Abraham. A single die 124dB stereo audio delta sigma ADC with 111dB THD,33rd European Solid State Circuits Confe-rence,2007:252-255.
    [4.43]J. Y. Wu, Z. Y. Zhang, R. Subramoniam, et.al. A 107.4dB SNR mulit-bit sigma delta ADC with 1-PPM THD at-0.12dB from full scale input, IEEE Journal of Solid-State Circuits,2009,44(11):3060-3066.
    [4.44]Y. Q. Yang, T. Sculley, J. Abraham. A 128dB dynamic range 1kHz bandwidth stereo ADC with 114dB THD, very large scale integration,2007.VLSI-SoC 2007. IFIP International Conference on 15-17:248-251.
    [4.45]Z. F. Wang, Z. H Li. A Charge delta-sigma modulator for differential-capacitance sensors,传感技术学报,2006,19(5):2252-2254.
    [4.46]J. M. Rose, S. Escalera, B. P. Verdu, et al. A CMOS 110-dB@40-kS/s programmable-gain chopper-stabilized third-order 2-1 cascade sigma-delta modulator for low-power high-linearity automotive sensor ASICs, IEEE Journal of Solid-State Circuits,2005,40(11):2246-2264.
    [4.47]K. Vleugels, S. Rabii, B. Wooley. A 2.5-V sigma-delta modulator for broadband communications applications, IEEE Journal of Solid-State Circuits, 2001,36:1887-1899.
    [4.48]J. Y. Wu, Z. Y. Zhang, R. Subramoniam, et.al. A 107.4dB SNR mulit-bit sigma delta ADC with 1-PPM THD at-0.12dB from full scale input, IEEE Journal of Solid-State Circuits,2009,44(11):3060-3066.
    [4.49]R. D. Rio, J. M. Rosa, B. P. Verdu, et al. highly linear2.5-V CMOS ΣΔ modulator for ADSL, IEEE Transactions on Circuits and Systems,2004,51: 47-62.
    [4.50]K. Nguyen, R. Adams, K. Sweetland, et al. A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio, IEEE Journal of Solid-State Circuits,40(12):2408-2415.
    [4.51]Rebeschini M. Delta Sigma Data Converters:Theory, Design, and Simulation. New York, NY:IEEE Press,1996,32-60.
    [4.52]C. Ying, R. T. long, H. Z. liang. A 16bit 96kHz chopper-stabilized sigma-delta ADC.半导体学报,2007,28(8):1204-1209.
    [4.53]W. Ou, X. B. Wu. High-consistency behavior modeling of a switched-capacitor sigma-delta modulator in simulink.半导体学报,2008,29(11): 2209-2217.
    [4.54]Z. Li, H. Z. Yang. A 3V 5.88mW 13b 400kHz sigma-delta modulator with 84dB dynamic range.半导体学报,2008,29(11):2232-2237.
    [4.55]X. Zhang, D. S. Yu, S. M. Sheng, et. Al. A behavioral simulation method and an optimized design of sigma-delta ADC.北京大学学报(自然科学版),2009,45(2):209-214.
    [5.1]石春琦.LVS版图验证方法的研究.电子器件,2002,25(2):165-169.
    [5.2]何开全,谭开洲,李荣强.高性能模拟集成电路工艺技术.微电子学,2004,34(4):398-401.
    [5.3]蒋安平.超大规模集成电路测试.电子工业出版社,2005:100-310.
    [5.4]王燕,张莉.集成电路器件电子学(第三版).电子工业出版社,2004.
    [5.5]C.Saint,J.Saint.集成电路版图设计[影印版].清华大学出版社,2004.
    [5.6]王志功.集成电路设计与九天EDA工具应用.东南大学出版社,2004.
    [5.7]Buchler J, Kasper E, Russer P, et al. Silicon high-resistivity-substrate millimeterwave technology. IEEE Trans MicrowTheory Tech,1986, 34:1516-1520.
    [5.8]Rheinfelder C, St rohm K, Beisswanger F, et al.26GHz coplanar siege MMIC's. IEEE Int. Microwave Symp Dig, San Francisco, CA,1996, 1:237-239.
    [5.9]Ponchak G. E., Downey A. N., Katehi L. P. B. High f requency interconnects on silicon substrates. IEEE Radio Frequency Integrated Circuits Symposium, 1997:101-105.
    [5.10]Ponchak G. E., Katehi L. P B. Measured attenuation of coplanar waveguide on CMOS grade silicon subst rates wit h polyimide interface layer. Electron Lett., 1998,34(13):1327-1330.
    [5.11]Laney D. C., Larson L. E., Malinowski J., et al. Low-loss microwave transmission lines and inductors implemented in a Si/SiGe HBT process. Proceeding of Bipolar/BiCMOS Circuits and Technology Meeting,1998: 101-105.
    [5.12]Ponchak G. E., Margomenos A., Katehi L. P. B., Low loss, finite width ground plane, thin film microst rip lines on Si wafers. Digest of Papers of Silicon Monolithic Integrated Circuits in RF Systems,2000:43-47.
    [5.13]Ruy W., Baik S. H., Kim H., et al. Embedded microst rip interconnect lines for gigahertz digital circuits. IEEE Trans Advanced Packaging,2000,23(3): 495-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700