用户名: 密码: 验证码:
污泥热干燥与焚烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展、人口增长和城市化进程的加快,以及污水处理率的提高,市政污泥的产生量也越来越大。同时随着我国造纸工业的迅速发展,造纸污泥的产量也不可避免地越来越大。在市政污泥和造纸污泥的产生量不断增加的同时,我国污泥的处理技术和装备却普遍落后,污泥安全处理处置的保障率很低。如果污泥处理不当或不及时,会带来严重的二次污染。因此如何妥善、科学地处理处置污泥己成为目前国内外共同研究的环保课题。
     污泥干燥能使污泥显著减容,产品稳定、无臭且无病原生物,干燥处理后的污泥产品用途多,可以用作肥料、土壤改良剂、替代能源等。而焚烧是污泥处置最彻底的一种方法。本文对污泥干燥、热解和焚烧进行了理论、试验和数值模拟研究。
     污泥在80~160℃条件下进行了不同干燥温度下、不同污泥饼厚度和不同初始含水率下的等温干燥实验,同时对污泥干燥动力学模型进行拟合,得出污泥干燥的最佳干燥动力学模型。结果表明,干燥温度越高,干燥速率越大,干燥时间越短。污泥饼厚度越厚,干燥速率越小,干燥所需时间越长。污泥初始含水率越小,干燥速率越快,干燥所需时间越短。比较7种干燥模型,其中page和modified page模型比较适合拟合污泥干燥过程。利用page模型验证,实验值和拟合值具有很好的一致性。污泥干燥的扩散系数介于2.03×10-8与8.25×10-8 m2/s之间,活化能为24.364 kJ/mol和指前因子为7.603×10-5m2/s。
     利用热分析技术对污泥热解特性进行了研究,探讨不同条件下污泥的热解特性。主要研究了污泥在氮气气氛下和在二氧化碳气氛下的热解特性,同时还研究了污泥在催化剂作用下的热解特性。最后对污泥热解的表观动力学模型及动力学参数进行了研究。结果表明,污泥在氮气气氛下热解过程中有三个明显的失重峰:第一个失重阶段约在200~490℃区间内,第二个失重阶段约在490~650℃区间内,第三个失重阶段约在650~920℃区间内。催化剂对污泥热解活化能影响的大小排序为:MnO2>Al2O3>MgO>Fe2O3>CuO>CaO。当0.1≤α≤0.9时,污泥氮气气氛下热解过程用FWO方法和KAS方法计算的平均表观活化能分别为102.4kJ/mol和88.7kJ/mol。
     利用热分析技术对污泥与煤及生物质混合燃烧特性进行了研究。探讨不同条件下污泥与煤及生物质的混合特性。主要研究了污泥与煤、污泥与秸秆和污泥与垃圾的混合燃烧特性,同时研究了污泥在催化剂作用下的燃烧特性和污泥在不同氧气浓度下的燃烧特性。最后对污泥与煤及生物质混合燃烧动力学模型及参数进行了研究。结果表明,污泥、煤、秸秆和垃圾四种试样中,秸秆的可燃性和综合燃烧性能最好,煤的可燃性最差,污泥的综合燃烧性能最差。污泥催化燃烧的可燃性指数大小排序为:污泥+MgO>污泥+MnO2>污泥+Fe2O3>污泥>污泥+Al2O3>污泥+CuO,综合燃烧指数大小排序为:污泥+MgO>污泥+MnO2>污泥+Fe2O3>污泥+Al2O3>污泥+CuO>污泥。污泥在O2/N2气氛不同氧气浓度下燃烧,可燃指数和综合燃烧指数最大的工况为氧气浓度60vol%。污泥在O2/CO2气氛不同氧气浓度下燃烧,可燃指数和综合燃烧指数最大的工况为氧气浓度80vol%,说明氧气浓度影响可燃性和燃烧性能。
     在自制的流化床干燥塔里面进行了造纸污泥的干燥试验。分析了流化床干燥塔的空塔、喷水、污泥干燥等试验过程。结果表明,造纸污泥是高水份、低热值的固体废弃物,本身是负热值的燃料,如果不干燥或者加辅助燃烧,污泥不能维持其自燃。经过半干化后污泥的低位发热值可以提高到3000~5000kJ/kg,相当于褐煤的热值。半干化后的污泥可以当燃料使用。污泥流化床干燥实验进行不够顺利分析其原因可能有以下几方面原因造成:污泥喷入不够均匀,使得干化效果不好。喷射污泥入射角过大使得污泥挂壁严重影响实验效果。鼓风机不匹配,送风量不够,流化效果不好。布风板布风效果不好。利用商业CFD软件FLUENT6.2对污泥的流化床干燥和焚烧过程进行了数值模拟。
     通过分析干燥数值模拟可以得出以下结论:当入口烟气的温度为433.15 K时,预测的烟气出口温度约为420.94K,温度变化的趋势和实验结果较为吻合;运用CFD对三种不同的运行工况进行计算,分别是入口温度为413.15 K, 423.15 K和433.15 K,预测结果表明干燥效果收入口烟气温度的影响,入口烟气温度越高,干燥效果越好,三种工况出口烟气水分质量百分含量分别为:1.66%, 2.02%和2.35%。通过分析燃烧数值模拟可以得出以下结论: CFB炉膛模拟预测结果表明造纸污泥与煤混燃过程在床层底部燃烧剧烈,最高温度在密相区约为1400K;预测结果表明造纸污泥从返料口进入炉膛时,炉膛最高温度约为1396.3K,平均温度为1109.6K,炉膛出口平均温度为996.8K;数学模型预测结果表明当混入15%的造纸污泥时,炉膛出口烟气平均温度最高为1000.8K。
With the economic development, population increase, urbanization propulsion, improvement of the disposal rate of sewage, production of sewage sludge has been increasing rapidly. While treatment technology and equipment of municipal wastewater in China are generally behind production increase, and the protection of safe treatment and disposal of sludge is very low. Sludge will result in serious secondary pollution for human and environment if not be prompt handled properly. Therefore, the properly scientific treatment and disposal of sludge has become an attractive subject of environmental protection at home and abroad.
     Sludge drying can significantly reduce capacity, and its product is stable, odorless and non-pathogenic. Sludge product after drying is used as fertilizer, soil conditioner, alternate energy and so on. And the incineration of sludge disposal is the most thorough method. In this paper, sludge drying, pyrolysis and incineration are studied by theoretical analysis, experimental and numerical simulation.
     Paper sludge is carried out by isothermal drying experiment in the temperatures range of 80~160℃under the conditions of the different drying temperatures, different thicknesses and different initial sludge cake moisture content. The kinetic models of sludge drying are fitted to find the best sludge drying kinetic model. The results showes that the higher drying temperature is, the faster drying rate is, and the shorter drying time is. The thicker sludge cake is, the slower the drying rate is, and the longer drying time is. The smaller the initial moisture content is, the faster drying rate is, and the shorter drying time is. Among seven different kinds of drying model, Page and Modified page model are suitable for fitting sludge drying process. Tested by the Page model, the experimental and fitted values have a good consistency. The diffusion coefficient of dry sludge ranges from2.03×10-8 to 8.25×10-8 m2/s, with the average values of 24.364 kJ/mol and the pre-exponential factor of 7.603×10?5m 2 /s.
     The pyrolysis characteristics of sludge are studied by thermogravimetric analysis to explore variations of sludge pyrolysis characteristics under different conditions. This study is focused on pyrolysis characteristics in nitrogen atmosphere and carbon dioxide atmosphere, and it also studies catalytic pyrolysis of sludge. Finally, the apparent kinetic models and kinetic parameters of sludge pyrolysis are studied. The results showed that sewage sludge pyrolysis in nitrogen atmosphere has three distinct weight loss peaks: the first phase at temperature range of 200~490℃, the second phase at temperature range of 490~650℃, the first three stages at temperature range of 650~ 920℃. According to the activation energy, the catalytic importance sequence for sludge pyrolysis is described as: MnO2> Al2O3> MgO> Fe2O3> CuO> CaO. The activation energy is practically constant in the range of 0.2~0.9, with the average values of 102.4 kJ/mol and 88.7kJ/mol calculated by FWO and KAS methods, respectively.
     The co-combustion behaviour of sewage sludge with biomass and coal are carried out in a thermogravimetric analyzer under different conditions. The study is also focused on co-combustion characteristics of sewage sludge with coal, sludge with straw and sewage sludge with waste. The catalytic combustion characteristics and the influence of oxygen concentrations are also studied. Finally, sewage sludge and coal and biomass co-combustion kinetic model and parameters are studied. The results show that: Among four kinds of samples, namely, sludge, coal, straw and garbage, the integrated combustion properties and combustibility of straw are the best, and the combustibility of coal is worst and the integrated combustion properties of sludge is worst. According to combustible index, the sequence for catalytic combustion of sludge is described as: sludge +MgO>sludge +MnO2>sludge +Fe2O3>sludge>sludge +Al2O3>sludge +CuO. While according to integrated combustion index, the sequence is described as: sludge +MgO>sludge +MnO2>sludge +Fe2O3>sludge +Al2O3>sludge +CuO>sludge. When sludge combusts in O2/N2 with different oxygen concentrations, the combustible index and integrated combustion index reach maximum at 60vol%. When sludge combusts in O2/CO2 with different oxygen concentrations, the combustible index and integrated combustion index reach maximum at 80vol%. These results show that oxygen concentration have effect on the integrated combustion properties and combustibility.
     Drying of paper sludge is tested in the self-made fluidized bed drying tower to analyze the experimental process of empty tower, fountain and sludge drying. The results show that paper sludge is a kind of solid waste having features of high-moisture, low heat value. If not is dried, or add auxiliary combustion, sewage sludge can not maintain the self-ignition, due to its negative caloric value. After semi-dry, the low calorific value of sludge can reach up to 3000~5000kJ/kg, equivalent to that of lignite, so it can be used as fuel. Sludge fluidized bed drying experiment carried out unfavorably is caused by following reasons: Uniform sludge spraying has a bad effect on drying. Spray angle is too large making the sludge wall. Blower does not match making the air supply not enough. Grid plate does not work well.
     Commercial CFD software FLUENT6.2 was used to simulate drying and incineration process of sludge in fluidized bed. The results show that when the flue gas inlet temperature is 433.15 K, the predicted gas outlet temperature is about 420.94, the temperature various trend is good agree with experimental data. Three kinds of operational conditions was modeled by CFD, the temperature is 413.15, 423.15 and 433.15 respectively, the predictions indicate that the effect of drying was influenced by the flue gas inlet temperature, the high inlet temperature is, the more water was evaporated, the mass percent of H2O is 1.66%, 2.02% and 2.35%. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around 1400K. The predictions indicate that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (1396.3K), area-weighted average temperature (1109.6K) and the furnace gas outlet area-weighted average temperature(996.8K). The mathematical modeling predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K.
引文
[1].何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社. 2003. 308
    [2].池涌,李晓东,严建华,等.洗煤泥与污泥处理焚烧技术及工程实例[M].北京:化学工业出版社. 2005
    [3].徐强.污泥处理处置技术及装置[M].北京:化学工业出版社. 2003
    [4]. Werther, J. and Ogada, T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999. 25(1). 55-116
    [5].马学文.城市污泥干燥特性及工艺研究[D].杭州市:浙江大学,2008
    [6]. Mandavgane, S., Tulsyan, A., Jha, B., et al. Utilisation of Recycled Paper Mill Sludge Using Circulation Fluidised Bed Boiler[J]. Cbee 2009: Proceedings of the 2009 International Conference on Chemical, Biological and Environmental Engineering, 2010. 501-503, 529
    [7]. Salihoglu, N.K., Pinarli, V. and Salihoglu, G. Solar drying in sludge management in Turkey[J]. Renewable Energy, 2007. 32(10). 1661-1675
    [8]. Mathioudakis, V.L., Kapagiannidis, A.G., Athanasoulia, E., et al. Extended Dewatering of Sewage Sludge in Solar Drying Plants[J]. Desalination, 2009. 248(1-3). 733-739
    [9]. Zhao, L., Chen, D.Z. and Xie, J.L. Sewage sludge solar drying practise and characteristics study[J]. 2009 Asia-Pacific Power and Energy Engineering Conference (Appeec), Vols 1-7, 2009. 2584-2588
    [10]. Jin, H., Chen, T.H., Wu, K., et al. Research on Natural Drying of Municipal Sludge by Anaerobic Digestion with Solar Energy[J]. Proceedings of the 2nd International Conference on Asian-European Environmental Technology and Knowledge Transfer, 2008. 120-121, 561
    [11]. Slim, R., Zoughaib, A. and Clodic, D. Modeling of a solar and heat pump sludge drying system[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2008. 31(7). 1156-1168
    [12]. Mehrdadi, N., Joshi, S.G., Nasrabadi, T., et al. Aplication of solar energy for drying of sludge from pharmaceutical industrial waste water and probable reuse[J]. International Journal of Environmental Research, 2007. 1(1). 42-48
    [13]. Seginer, I. and Bux, M. Modeling solar drying rate of wastewater sludge[J]. Drying Technology, 2006. 24(11). 1353-1363
    [14]. Wett, B., Demattio, M. and Becker, W. Parameter investigation for decentralised dewatering and solar thermic drying of sludge[J]. Water Science and Technology, 2005. 51(10). 65-73
    [15]. Anon. Solar sludge drying system reduces sludge volume by 98 percent[J]. Wem-Water Engineering & Management, 2003. 150(1). 8-8
    [16]. Bux, M., Baumann, R., Quadt, S., et al. Volume reduction and biological stabilization of sludge in small sewage plants by solar drying[J]. Drying Technology, 2002. 20(4-5). 829-837
    [17]. Luboschik, U. Solar drying of sewage sludge - System IST[J]. Recycling the Resource, 1996. 5-6. 393-395, 479
    [18]. Luboschik, U. Solar sludge drying - Based on the IST process[J]. Renewable Energy, 1999. 16(1-4). 785-788
    [19]. Menendez, J.A., Dominguez, A., Inguanzo, M., et al. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue[J]. Journal of Analytical and Applied Pyrolysis, 2005. 74(1-2). 406-412
    [20]. Dominguez, A., Menendez, J.A., Inguanzo, M., et al. Sewage sludge drying using microwave energy and characterization by IRTF[J]. Afinidad, 2004. 61(512). 280-285
    [21]. Idris, A., Khalid, K. and Omar, W. Drying of silica sludge using microwave heating[J]. Applied Thermal Engineering, 2004. 24(5-6). 905-918
    [22]. Vaxelaire, J., Bongiovanni, J.M., Mousques, P., et al. Thermal drying of residual sludge[J]. Water Research, 2000. 34(17). 4318-4323
    [23]. Saveyn, H., Curvers, D., Schoutteten, M., et al. Improved Dewatering by Hydrothermal Conversion of Sludge[J]. Journal of Residuals Science & Technology, 2009. 6(1). 51-56
    [24]. Peregrina, C., Rudolph, V., Lecomte, D., et al. Immersion frying for the thermal drying of sewage sludge: An economic assessment[J]. Journal of Environmental Management, 2008. 86(1). 246-261
    [25]. Gomez-Rico, M.F., Fullana, A. and Font, R. Volatile organic compounds released from thermal drying of sewage sludge[J]. Water Pollution Ix, 2008. 111. 425-433, 639
    [26]. Abu-Orf, M., Junnier, R., Mah, J., et al. Demonstration of combined dewatering and thermal vacuum drying of municipal residuals[J]. Journal of Residuals Science & Technology, 2007. 4(1). 25-34
    [27]. Tao, T., Peng, X.F. and Lee, D.J. Skin layer on thermally dried sludge cake[J]. Drying Technology, 2006. 24(8). 1047-1052
    [28]. Tao, T., Peng, X.F. and Lee, D.J. Thermal drying of wastewater sludge: Change in drying area owing to volume shrinkage and crack development[J]. Drying Technology, 2005. 23(3). 669-682
    [29]. Stasta, P., Boran, J., Bebar, L., et al. Thermal processing of sewage sludge[J]. Applied Thermal Engineering, 2006. 26(13). 1420-1426
    [30]. Hayashi, N. and Shimada, S. Study on drying organic sludges by thermal jet dryer - Part 1: Drying performance of thermal jet dryer[J]. Drying Technology, 2006. 24(12). 1601-1607
    [31]. Easterby, R.J. and Tyldesley, A. Thermal drying of sewage sludge - HSE's role in promoting safer plant.[J]. Hazards Xvi: Analysing the Past, Planning the Future, 2001,(148). 255-263, 902
    [32].葛仕福,鲁维加,郭宏伟,等.利用烟气低温废热干燥处理印染污泥的中试[J].环境工程, 2007,(01)
    [33].侯凤云,吕清刚,那永洁,等.湿污泥颗粒的流化床干燥实验及模型[J].过程工程学报, 2007, (04)
    [34].相杰,程新群,高东兴,等l.利用锅炉尾气干燥城市污泥研究[J].能源研究与信息, 2007,(02)
    [35].姜瑞勋,李爱民,王伟云.脱水污泥薄层干燥特性及动力学模型分析[J].中国环境科学, 2009,(01)
    [36].陈茗,李爱民.脱水污泥真空干燥实验研究[J].沈阳航空工业学院学报, 2006,(03)
    [37].曲艳丽,李爱民,李润东,等.饼状污泥干燥特性的研究[J].燃烧科学与技术, 2005,(01)
    [38].唐凤翔,张济宇.惰性粒子喷动流化床中冷冻融解氢氧化铝污泥干燥试验研究[J].福州大学学报(自然科学版), 2004,(05)
    [39].温祖谋.制革污泥流化干燥试验研究[J].中国皮革, 2000,(09)
    [40].马侠,蒋旭光,马增益,等.桨叶式干燥机污泥干燥试验研究[J].能源工程, 2006,(03)
    [41].徐小宁,邓文义,李晓东.污泥在桨叶式干燥机内干化特性研究[J].能源工程, 2007,(03)
    [42].王兴润,金宜英,杜欣,等.污水污泥动态间壁热干燥特性及工艺[J].化工学报, 2007,(09)
    [43].王兴润,金宜英,王志玉,等.污水污泥间壁热干燥实验研究[J].环境科学, 2007,(02)
    [44].沈维民,贺新华,王赛辉.生化污泥干燥脱水技术的研究[J].工程建设, 2006,(05)
    [45].芮延年.旋翼式沸腾干燥法污泥无害化处理技术[J].苏州大学学报(工科版), 2008,(04)
    [46].李爱民,曲艳丽,陈满堂,等.污水污泥干燥特性的实验研究[J].燃烧科学与技术, 2003,(05)
    [47].李爱民,曲艳丽,杨子贤, et al.污水污泥干燥过程中表观形态变化及水分析出特性[J].化工学报, 2004,(06)
    [48]. Slim, R., Zoughaib, A. and Clodic, D. Characterization of Sewage Sludge Water Vapor Diffusivity in Low-Temperature Conductive Drying[J]. Journal of Porous Media, 2009. 12(12). 1195-1210
    [49].郑宗和,牛宝联,雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水, 2003,(S1)
    [50].雷海燕,李惟毅,郑宗和.污泥的太阳能干燥实验研究[J].太阳能学报, 2004,(04)
    [51].李延吉,李润东,冯磊,等.基于微波辐射研究城市污水污泥脱水特性[J].环境科学研究, 2009,(05)
    [52].谢敏,施周,刘小波,等l.微波辐射对净水厂污泥脱水性能及分形结构的影响[J].环境化学, 2009,(03)
    [53].田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响[J].中国环境科学, 2006,(04)
    [54].王凯军,俞金海and俞其林.新型污泥干化/焚烧技术的试验研究[J].中国给水排水, 2008,(11)
    [55].王涛.污泥焚烧技术现状、存在问题与发展趋势[J].西南给排水, 2007. 29(1). 7-11
    [56]. Daud, W.R.W. Fluidized Bed Dryers - Recent Advances[J]. Advanced Powder Technology, 2008. 19(5). 403-418
    [57]. Florin, N.H., Maddocks, A.R., Wood, S., et al. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia[J]. Waste Management, 2009. 29(4). 1399-1408
    [58]. Harris, A.T. and Zhong, Z. Non-isothermal thermogravimetric analysis of plywood wastes under N-2, CO2 and O-2 atmospheres[J]. Asia-Pacific Journal of Chemical Engineering, 2008. 3(5). 473-480
    [59]. Pendharkar, P.C. Genetic algorithm based neural network approaches for predicting churn in cellular wireless network services[J]. Expert Systems with Applications, 2009. 36(3). 6714-6720
    [60]. Choudhury, D., Borah, R.C., Goswamee, R.L., et al. Non-isothermal thermogravimetric pyrolysis kinetics of waste petroleum refinery sludge by isoconversional approach[J]. Journal of Thermal Analysis and Calorimetry, 2007. 89(3). 965-970
    [61]. Muthuraman, M., Namioka, T. and Yoshikawa, K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis[J]. Applied Energy, 2010. 87(1). 141-148
    [62]. Jiang, X.G., Li, C.Y., Chi, Y., et al. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion[J]. Journal of Hazardous Materials, 2010. 173(1-3). 205-210
    [63]. Francioso, O., Rodriguez-Estrada, M.T., Montecchio, D., et al. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production[J]. Journal of Hazardous Materials, 2010. 175(1-3). 740-746
    [64]. Raje, N., Aacherekar, D.A. and Reddy, A.V.R. Compositional characterization of carbon electrode material: A study using simultaneous TG-DTA-FTIR[J]. Thermochimica Acta, 2009. 496(1-2). 143-150
    [65]. Han, J., Kanchanapiya, P., Sakano, T., et al. The behaviour of phosphorus and heavy metals in sewage sludge ashes[J]. International Journal of Environment and Pollution, 2009. 37(4). 357-368
    [66]. Crelier, M.M.M. and Dweck, J. Water content of a Brazilian refinery oil sludge and its influence on pyrolysis enthalpy by thermal analysis[J]. Journal of Thermal Analysis and Calorimetry, 2009. 97(2). 551-557
    [67]. Chien, Y.C., Liang, C.P. and Shih, P.H. Emission of polycyclic aromatic hydrocarbons from the pyrolysis of liquid crystal wastes[J]. Journal of Hazardous Materials, 2009. 170(2-3). 910-914
    [68]. Casajus, C., Abrego, J., Marias, F., et al. Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge[J]. Chemical Engineering Journal, 2009. 145(3). 412-419
    [69]. Bedyk, T., Nowicki, L., Stolarek, P., et al. Effect of CaO and Dolomite Additive on the Thermal Decomposition of Sewage Sludge in an Inert Atmosphere[J]. Journal of Residuals Science & Technology, 2009. 6(1). 3-10
    [70]. Shao, J., Yan, R., Chen, H., et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis[J]. Energy & Fuels, 2008. 22(1). 38-45
    [71]. Nowicki, L., Stolarek, P., Olewski, T., et al. Mechanism and Kinetics of Sewage Sludge Pyrolysis by Thermogravimetry and Mass Spectrometry Analysis[J]. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, 2008. 29(3). 813-825
    [72]. Magalhaes, W.L.E., Job, A.E., Ferreira, C.A., et al. Pyrolysis and combustion of pulp mill lime sludge[J]. Journal of Analytical and Applied Pyrolysis, 2008. 82(2). 298-303
    [73]. Zhu, Y., Chai, X.L., Li, H.J., et al. Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill[J]. Thermochimica Acta, 2007. 464(1-2). 59-64
    [74]. Khiari, B., Marias, F., Vaxelaire, J., et al. Incineration of a small particle of wet sewage sludge: A numerical comparison between two states of the surrounding atmosphere[J]. Journal of Hazardous Materials, 2007. 147(3). 871-882
    [75]. Biagini, E., Barontini, F. and Tognotti, L. Devolatilization of Biomass fuels and Biomass components studied by TG/FTIR technique[J]. Industrial & Engineering Chemistry Research, 2006. 45(13). 4486-4493
    [76]. Font, R., Fullana, A. and Conesa, J. Kinetic models for the pyrolysis and combustion of two types of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2005. 74(1-2). 429-438
    [77]. Calvo, L.F., Sanchez, M.E., Moran, A., et al. TG-MS as a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge[J]. Journal of Thermal Analysis and Calorimetry, 2004. 78(2). 587-598
    [78]. Ferrasse, J.H., Chavez, S., Arlabosse, P., et al. Chemometrics as a tool for the analysis of evolved gas during the thermal treatment of sewage sludge using coupled TG-FTIR[J]. Thermochimica Acta, 2003. 404(1-2). 97-108
    [79]. Yu, Y.H., Kim, S.D., Lee, J.M., et al. Kinetic studies of dehydration, pyrolysis and combustion of paper sludge[J]. Energy, 2002. 27(5). 457-469
    [80]. Midilli, A., Dogru, M., Howarth, C.R., et al. Combustible gas production from sewage sludge with a downdraft gasifier[J]. Energy Conversion and Management, 2001. 42(2). 157-172
    [81]. Caballero, J.A., Font, R. and Esperanza, M.M. Kinetics of the thermal decomposition of tannery waste[J]. Journal of Analytical and Applied Pyrolysis, 1998. 47(2). 165-181
    [82]. Otero, M., Diez, C., Calvo, L.F., et al. Analysis of the co-combustion of sewage sludge and coal by TG-MS[J]. Biomass & Bioenergy, 2002. 22(4). 319-329
    [83]. Otero, M., Gomez, X., Garcia, A.I., et al. Effects of sewage sludge blending on the coal combustion: A thermogravimetric assessment[J]. Chemosphere, 2007. 69(11). 1740-1750
    [84]. Otero, M., Sanchez, M.E., Garcia, A.I., et al. Simultaneous thermogravimetric-mass spectrometric study on the co-combustion of coal and sewage sludges[J]. Journal of Thermal Analysis and Calorimetry, 2006. 86(2). 489-495
    [85]. Adami, C., Tschernjaew, J. and Kummel, R. Co-combustion of sewage sludge in a lignite-fired industrial power station[J]. Chemie Ingenieur Technik, 1997. 69(7). 973-976
    [86]. Duan, Y.F., Zhao, C.S., Wang, Y.J., et al. Mercury Emission from Co-combustion of Coal and Sludge in a Circulating Fluidized-Bed Incinerator[J]. Energy & Fuels, 2010. 24. 220-224
    [87]. Pettersson, A., Andersson, B.A., Steenari, B.M., et al. Leaching of phosphorus from ashes of co-combustion of sewage sludge and wood[J]. Proceedings of the 18th International Conference on Fluidized Bed Combustion, 2005. 831-844, 937
    [88]. Pettersson, A., Amand, L.E. and Steenari, B.M. Chemical fractionation for the characterisation of fly ashes from co-combustion of biofuels using different methods for alkali reduction[J]. Fuel, 2009. 88(9). 1758-1772
    [89]. Pettersson, A., Amand, L.E. and Steenari, B.M. Leaching of ashes from co-combustion of sewage sludge and wood - Part II: The mobility of metals during phosphorus extraction[J]. Biomass & Bioenergy, 2008. 32(3). 236-244
    [90]. Pettersson, A., Amand, L.E. and Steenari, B.M. Leaching of ashes from co-combustion of sewage sludge and wood - Part I: Recovery of phosphorus[J]. Biomass & Bioenergy, 2008. 32(3). 224-235
    [91]. Miller, B.B., Kandiyoti, R. and Dugwell, D.R. Trace element behavior during co-combustion of sewage sludge with polish coal[J]. Energy & Fuels, 2004. 18(4). 1093-1103
    [92]. Miller, B.B., Kandiyoti, R. and Dugwell, D.R. Trace element emissions from co-combustion of secondary fuels with coal: A comparison of bench-scale experimental data with predictions of a thermodynamic equilibrium model[J]. Energy & Fuels, 2002. 16(4). 956-963
    [93]. Lopes, M.H., Abelha, P., Oliveira, J.F.S., et al. Heavy metals behavior during monocombustion and co-combustion of sewage sludge[J]. Environmental Engineering Science, 2005. 22(2). 205-220
    [94]. Lopes, M.H., Abelha, P., Lapa, N., et al. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed[J]. Waste Management, 2003. 23(9). 859-870
    [95]. Amand, L.E. and Leckner, B. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed[J]. Fuel, 2004. 83(13). 1803-1821
    [96]. Barbosa, R., Lapa, N., Boavida, D., et al. Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes[J]. Journal of Hazardous Materials, 2009. 170(2-3). 902-909
    [97]. Diaz-Somoano, M., Unterberger, S. and Hein, K.R.G. Prediction of trace element volatility during co-combustion processes[J]. Fuel, 2006. 85(7-8). 1087-1093
    [98]. Cenni, R., Frandsen, F., Gerhardt, T., et al. Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge[J]. Waste Management, 1998. 18(6-8). 433-444
    [99]. Deng, W.Y., Yan, J.H., Li, X.D., et al. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge[J]. Journal of Environmental Sciences-China, 2009. 21(12). 1747-1752
    [100].Yan, R., Zhu, H.J., Zheng, C.G., et al. Emissions of organic hazardous air pollutants during Chinese coal combustion[J]. Energy, 2002. 27(5). 485-503
    [101].Wei, Y., Yerushalm, L. and Haghighat, F. Estimation of Greenhouse Gas Emissions by the Wastewater Treatment Plant of a Locomotive Repair Factory in China[J]. Water Environment Research, 2008. 80(12). 2253-2260
    [102].Leckner, B., Amand, L.E., Lucke, K., et al. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed[J]. Fuel, 2004. 83(4-5). 477-486
    [103].Pohorely, M., Svoboda, K., Trnka, O., et al. Gaseous emissions from the fluidized-bed incineration of sewage sludge[J]. Chemical Papers-Chemicke Zvesti, 2005. 59(6B). 458-463
    [104].Buser, S. and Brandt, G. HCN and N2O emissions from sewage sludge incineration in a fluidized bed incinerator[J]. Gefahrstoffe Reinhaltung Der Luft, 1998. 58(4). 161-165
    [105].Gutierrez, M.J.F., Baxter, D., Hunter, C., et al. Nitrous oxide (N2O) emissions from waste and biomass to energy plants[J]. Waste Management & Research, 2005. 23(2). 133-147 120
    [106].Shimizu, T. and Toyono, M. Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor[J]. Fuel, 2007. 86(15). 2308-2315
    [107].Toraman, O.Y., Topal, H., Bayat, O., et al. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2004. 39(4). 973-986
    [108].张建琴,陈涛.热电厂锅炉焚烧污水厂污泥试验研究[J].环境保护与循环经济, 2008,(08)
    [109].安文,王涛,田成文.循环流化床锅炉混烧造纸污泥的可行性分析[J].节能, 2006,(06)
    [110].朱葛,赵长遂,陈晓平,等.石化污泥与煤流化床混烧污染物排放特性[J].化工学报, 2008,(10)
    [111].汤金花,吴浪.漂染污泥在电厂煤粉炉与煤混烧对环境影响分析[J].广东化工, 2008,(09)
    [112].陈晓平,赵长遂,兰计香.造纸污泥流化床焚烧技术试验研究[J].燃烧科学与技术, 2000,(01)
    [113].岑可法,徐旭,谷月玲,等.工业废弃物和生活垃圾流化床焚烧技术的研究[J].西安交通大学学报, 2000,(01)
    [114].邓文义,严建华,李晓东,等.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版), 2008,(10)
    [115].方建华,翟华,王雪青,等.污泥在循环流化床炉内的燃烧和污染排放特性[J].工程热物理学报, 2001,(03)
    [116].李军,李媛, H.G.Hohnecker.流化床焚烧炉污泥焚烧工艺特性研究[J].环境工程, 2004,(03)
    [117].李润东,刘连芳,李爱民.添加剂对污泥流化床焚烧过程重金属迁移特性影响[J].热力发电, 2004,(10)
    [118].李晓东,岑宇虹.污泥流化床焚烧技术的研究及应用[J].燃烧科学与技术, 2002,(02)
    [119].李媛.流化床焚烧工艺在城市污水厂污泥处理中的研究进展[J].环境保护, 2003,(12)
    [120].李媛.流化床焚烧工艺在污泥处理中的研究进展[J].节能与环保, 2004,(02)
    [121].黎兵,谭德见,黄永军,等.污泥循环流化床焚烧技术的研究进展[J].电站系统工程, 2007,(01)
    [122].李爱民,王志,魏砾宏,等.污水污泥在流化床内燃烧特性的试验研究[J].沈阳航空工业学院学报, 2001,(04)
    [123].李美玉,李爱民,王志,等.发展我国污泥流化床焚烧技术[J].劳动安全与健康, 2001,(08)
    [124].刘建国,姜秀民,马玉峰,等.油污泥的循环流化床焚烧和资源化利用[J].动力工程, 2007,(01)
    [125].毛玉如,马晓峰,要建军,等.流化床垃圾焚烧发电技术[J].锅炉制造, 2000,(02)
    [126].孙昕,赵长遂,陈晓平,等.造纸污泥与煤循环流化床混烧试验研究[J].南京工程学院学报(自然科学版), 2004,(02)
    [127].谢智明.污泥处理中流化床焚烧工艺的研究与进展[J].机电技术, 2007,(02)
    [128].蒲文灏,王逸仁.用流化床焚烧造纸污泥的热态试验[J].节能, 1999,(11)
    [129].蒲文灏,王逸仁.用流化床焚烧造纸污泥的热态试验[J].工业锅炉, 1999,(03)
    [130].徐旭,谷月玲,严建华,等.污泥流化床焚烧产物的重金属排放特性研究[J].环境工程, 1999,(06)
    [131].贠小银,吕清刚,那永杰,等.循环流化床污泥焚烧一体化工艺的研究与应用[J].环境工程, 2007,(04)
    [132].曾庭华,严建华,蒋旭光,等.造纸污泥的流化床焚烧技术研究[J].浙江大学学报(工学版), 1999,(03)
    [133].赵长遂,陈晓平,段钰锋,等.造纸污泥流化床焚烧试验研究[J].工程热物理学报, 2001,(05)
    [134].赵长遂,孙昕,陈晓平,等.造纸废弃物与煤循环流化床混烧特性研究[J].东南大学学报(自然科学版), 2005,(01)
    [135].蒋旭光,池涌,严建华,等.污水污泥流化床焚烧研究及65t/d焚烧炉设计[J].热力发电, 2000,(04)
    [136].邓文义,严建华,李晓东,等.造纸污泥干化及焚烧系统污染物排放特性[J].燃烧科学与技术, 2008,(06)
    [137].王晓东,唐慧敏,王江,等.污泥成型焚烧热用于工位采暖的新工艺[J].中国环保产业, 2009,(01)
    [138].张宗宇,盛成,吴静,等.污泥干燥焚烧一体化中热量计算的探讨[J].化工机械, 2009,(03)
    [139].马海艳,吴新,陈晓平,等.污泥焚烧NO_x排放特性预测的径向基网络模型[J].能源研究与利用, 2006,(03)
    [140].肖汉敏,马晓茜.污泥与煤和煤矸石共燃特性研究[J].燃料化学学报, 2008,(05)
    [141].Xiao, H.M., Ma, X.Q. and Lai, Z.Y. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal[J]. Applied Energy, 2009. 86(9). 1741-1745
    [142].Doymaz, I. and Akgun, N.A. Study of Thin-Layer Drying of Grape Wastes[J]. Chemical Engineering Communications, 2009. 196(7). 890-900
    [143].Hii, C.L., Law, C.L., Cloke, M., et al. Thin layer drying kinetics of cocoa and dried product quality[J]. Biosystems Engineering, 2009. 102(2). 153-161
    [144].Pardeshi, I.L., Arora, S. and Borker, P.A. Thin-Layer Drying of Green Peas and Selection of a Suitable Thin-Layer Drying Model[J]. Drying Technology, 2009. 27(2). 288-295
    [145].Nasiroglu, S. and Kocabiyik, H. Thin-Layer Infrared Radiation Drying of Red Pepper Slices[J]. Journal of Food Process Engineering, 2009. 32(1). 1-16
    [146].Montes, E.J.M., Gallo, R.T., Pizarro, R.D.A., et al. Modelling the kinetics of thin-layer yam (dioscorea rotundata) drying[J]. Revista Ingenieria E Investigacion, 2008. 28(2). 45-52
    [147].Lee, G. and Hsieh, F. Thin-Layer Drying Kinetics of Strawberry Fruit Leather[J]. Transactions of the Asabe, 2008. 51(5). 1699-1705
    [148].Bruce, D.M. Exposed-layer barley drying, three models fitted to new data up to 150°C[J]. Journal of Agricultural Engineering Research, 1985. 32. 337-347
    [149].M. Kashaninejad, A.M., A.Safekordi, L. G.Tabil. Thin-layer drying characteristics and modeling of pistachio nut[J]. Journal Of Food Process Engineering, 2007. 78. 98-108
    [150].White, G.M. Fully exposed drying of popcorn[J]. Transactions of the ASAE, 1981. 24. 466-468
    [151].S.M. Henderson , S.P. Grain drying theory, II. Temperature effects on drying coefficients[J]. Journal of Agricultural Engineering Research, 1961. 44. 1111-1122
    [152].Togrul, I.T. and Pehlivan, D. Mathematical modelling of solar drying of apricots in thin layers[J]. Journal of Food Engineering, 2002. 55(3). 209-216
    [153].S.M.Henderson. Progress in developing the thin layer drying equation[J]. Transactions of the ASAE, 1974. 17. 1167-1168
    [154].Al, Y.I.S.-E.e. A model for ear corn drying[J]. Transactions of the ASAE, 1980. 5. 1261-1265
    [155].Reyes, A., Eckholt, M., Troncoso, F., et al. Drying kinetics sludge from a wastewater treatment plant[J]. Drying Technology, 2004. 22(9). 2135-2150
    [156].Akgun, N.A. and Doymaz, I. Modelling of olive cake thin-layer drying process[J]. Journal of Food Engineering, 2005. 68(4). 455-461
    [157].Wang, Z.F., Sun, J.H., Chen, F., et al. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying[J]. Journal of Food Engineering, 2007. 80(2). 536-544
    [158].Celma, A.R., Rojas, S., Lopez, F., et al. Thin-layer drying behaviour of sludge of olive oil extraction[J]. Journal of Food Engineering, 2007. 80(4). 1261-1271
    [159].Brown, M.E., Maciejewski, M., Vyazovkin, S., et al. Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results[J]. Thermochimica Acta, 2000. 355(1-2). 125-143
    [160].顾利锋,陈晓平,赵长遂,等.城市污泥和煤混燃特性的热重分析法研究[J].热能动力工程, 2003,(06)
    [161].顾利锋,陈晓平,赵长遂.城市污泥和煤混燃特性的热重分析法研究[J].热能动力工程, 2003. 18(6). 561-563
    [162].Wolski, N., Maier, J. and Hein, K.R.G. Fine particle formation from co-combustion of sewage sludge and bituminous coal[J]. Fuel Processing Technology, 2004. 85(6-7). 673-686
    [163].贾相如,金保升,王清华.污水污泥着火和燃烧特性研究[J].锅炉技术, 2007,(04)
    [164].刘亮,李录平,周孑民,等.污泥和煤混烧特性的热重分析法研究[J].环境科学学报, 2006,(05)
    [165].Skodras, G., Palladas, A., Kaldis, S.P., et al. Cleaner co-combustion of lignite-biomass-waste blends by utilising inhibiting compounds of toxic emissions[J]. Chemosphere, 2007. 67(9). S191-S197
    [166].Shimizu, T., Toyono, M. and Ohsawa, H. Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor[J]. Fuel, 2007. 86(7-8). 957-964
    [167].邓剑,罗永浩,陈祎,等.稻秆燃烧动力学特性研究[J].工业锅炉, 2008,(05) 124
    [168].Li, X.G., Ma, B.G., Li, X., et al. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres[J]. Thermochimica Acta, 2006. 441(1). 79-83
    [169].周泽兴.火电厂排放CO2的分离和固定技术的研究开发现状[J].环境科学进展, 1993,(1). 56-57
    [170].Tsai, M.Y., Wu, K.T., Huang, C.C., et al. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler[J]. Waste Management, 2002. 22(4). 439-442
    [171].Lyngfelt, A. and Leckner, B. Combustion of wood-chips in circulating fluidized bed boilers - NO and CO emissions as functions of temperature and air-staging[J]. Fuel, 1999. 78(9). 1065-1072
    [172].Lyngfelt, A. and Leckner, B. Sulphur capture in circulating fluidized-bed boilers: can the efficiency be predicted?[J]. Chemical Engineering Science, 1999. 54(22). 5573-5584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700