用户名: 密码: 验证码:
多孔太阳墙的传热与流动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳辐射具有分散性和断续性的特点,是太阳能利用中最大的困难。如何有效地收集和蓄积太阳能,对太阳能的利用效率有着非常重要的影响。太阳能在建筑采暖和农业日光温室的应用中,太阳墙是太阳能收集和蓄积的关键技术,是实现太阳能—建筑一体化的重要组成部分,也是世界各国学者普遍研究和关注的课题。因此,太阳墙的研究有着非常重要的意义。本文综合分析了国内外“太阳墙”的研究现状,集多孔介质复合Trombe墙和太阳能多孔集热墙优点为一体,设计了一种多孔介质太阳墙,并采用数值模拟的方法对多孔介质太阳墙的传热机理及应用进行了研究。
     从简化的角度出发,建立描述多孔介质太阳墙传热与流动特性的一维数学模型,对作为媒质的空气在多孔墙内的流动,以及与多孔墙之间的换热机理进行了初步的研究。结果表明:多孔墙能收集与蓄积太阳能,并加热空气;降低多孔墙入口空气速度,能够提高空气的温度;在保证所需的太阳辐射吸收率的条件下,增大多孔墙的孔隙率与渗透率,能够提高空气的温度:当多孔固体材料采用金属与非金属材料时,出口空气温度有着较大的差别。当多孔骨架材料采用铝时,空气的温升幅度较大,出口空气温度高,而采用岩石,空气的温升幅度较小。在实际应用中,应合理选择渗透率和多孔骨架材料,尽可能地降低初投资。
     基于对多孔墙的热分析,为降低多孔墙与环境之间的辐射与对流换热损失,从结构上对多孔墙进行改进,设计了一种新型的多孔太阳墙系统。在多孔墙的集热面与环境之间设玻璃盖板,形成玻璃通道。利用玻璃通道的“温室效应”降低热损失和收集热空气。在多孔墙内侧通道内设有风机,在风机的作用下,室外空气流入多孔墙,与多孔墙进行热交换后,被加热到一定的温度,用于冬季的供暖。基于二维稳态Navier-Stoke方程、饱和多孔介质Brinkman-Forchheimer Extended Darcy模型和能量双方程模型,对这种设有风机并附加玻璃通道的新型的多孔太阳墙系统内的传热与流动特性进行数值模拟。结果表明:风机的设计对系统内温度场和流场有较大的影响;降低空气入口流速,可减小空气流动阻力,提高多孔墙的集热效率;附加玻璃通道的多孔太阳墙可减小长波辐射损失,并具有收集热空气的作用。因此,它具有较高的集热效率。
     设计了一种多孔蓄热墙-温室系统。将温室北墙设计为由“半透明”的等径、均匀的多孔球堆积而成的多孔墙,能吸收和蓄积太阳能,加热温室空气,而且能够主动地调节温室内的热环境。将温室与多孔蓄热墙结合起来,充分发挥两者的作用。从而提高了温室的太阳能利用效果。借助带内热源的饱和多孔介质能量双方程模型和Brinkman-Forchheimer Extended Darcy模型以及k-ε紊流模型,对该太阳能温室系统的传热与流动特性进行预测。在此基础上,进一步模拟分析了孔隙率分层多孔墙对温室系统特性的影响。结果表明:温室系统的入口参数和多孔墙的结构对温室内的温度场、流场和压力场有较大的影响。因此,针对一定结构的温室系统,应根据温室热环境的要求,合理地设计多孔墙本体,调节风机的运行工况。
     设计了两种通风方式下的多孔太阳墙采暖系统。采用饱和多孔介质Brinkman-Forchheimer Extended Darcy模型、带内热源的能量双方程模型以及k-ε紊流模型,对采暖系统内的传热与流动特性进行计算、分析和比较。结果表明,多孔太阳墙采暖系统的送排风方式,对采暖房内的温度场、流场有很大的影响,它直接影响到系统的保温作用,对多孔墙的热利用率有较大的影响。因此,在实际应用中,应合理地设计多孔太阳墙采暖系统,提高多孔墙的热利用率,从而降低多孔墙的热价。
     对局部和斜坡地板送风式多孔太阳墙采暖系统内的传热与流动进行了数值模拟,得到了两种系统内的温度分布、流场分布。分析了架空地板的结构、地板送风口尺寸对采暖房内温度场和流场的影响;分析了建筑南墙对室内温度的影响。结果表明:采用地板送风方式,能够保证采暖房内均匀的温度场和流场;采用斜坡式地板送风方式,更有利于保证各送风口流量分布均匀。在实际应用中,应注意建筑承重墙的隔热,防止“热蚀”现象发生。
     针对多孔墙的结构特点,采用描述填充结构的多孔介质模型,进一步分析了多孔墙的结构特性。结果表明:增大颗粒直径和孔隙率能够降低系统的阻力。这一结果提供了优化多孔墙的结构参数。
     设计了多孔太阳墙测试系统,该系统能用于测试多孔太阳墙系统的阻力,多孔墙的吸收率和体积换热系数等特性参数。但由于太阳辐射的模拟是一个难点,因此,为了精确测试多孔墙的热性能,还需对测试系统进行改进。
The characteristics of discontinuity and disperse of solar radiation give a great difficulty in solar energy applications. The absorption and storage of solar radiation has important effect on the utilization efficiency of solar energy. In heating buildings and greenhouses, the solar wall is a key part to incorporate the utilization of solar energy with the building, and also subject studied by researchers at home and abroad. So, it is very important to study the solar wall. In this paper, actualities of investigations on solar wall at home and abroad are analyzed. A new porous solar wall is designed by using the excellences of the porous composite Trombe wall and the porous absorption solar wall. In addition, based on numerical simulation, the application and heat transfer performances of the porous solar wall are studied.
     For simplification, one-dimensional mathematic model is used to describe the heat transfer and flow in the porous solar wall. The flow and heat transfer in the porous wall with the air as heat transfer medium are investigated primarily. To reach such conclusions, the porous wall can collect and store solar energy, and heat air; The air temperature will increase with a decrease in the inlet velocity; On the premise of demand for solar radiation collection, the air temperature will increase with an increase in the porosity and permeability of the porous wall; There are different results when metal and nonmetal are used as the material of the porous matrix, respectively. The increase speed of the air temperature is quicker when aluminum is used as the material of the porous wall. In contrast, the increase speed of the air temperature becomes slower when rock is used as the material of the porous wall. Consequently, the permeability and material of the porous wall should be carefully selected to reduce the cost of the porous solar wall.
     Based on the thermal analysis, the structure of the porous solar wall is improved and a new porous solar wall is designed to reduce convection and radiation heat exchanges between the porous wall and the ambient. The glass plate is located between the porous wall and the ambient to form a glass duct, which can reduce heat losses and collect hot air by using "greenhouse effective". Additionally, the fan is located in the duct near the inside surface of the porous wall. Under the action of the fan, the ambient air flows into the porous wall and exchanges heat with the porous wall. Then the air is heated to certain value to demand for heating in winter. Based on the two-dimensional steady Navier-Stokes equations, Brinkman-Forchheimer Extended Darcy model and energy two-equation model for saturated porous medium, the flow and heat transfer in the new porous solar wall system with glass duct and fan are simulated. The results show that the design of the fan has significant influence on the flow field and temperature field, the flow resistance will decrease and the thermal efficiency of porous wall will increase with a decrease in the inlet velocity, the porous wall with the glass duct can decrease length-wave radiation and collect hot air. So the new porous solar wall system can obtain a higher thermal efficiency as compared with a conventional one.
     A new greenhouse with heat-storage porous wall is designed, in which the north wall is a heat-storage porous wall. Equal diameter, uniform and semitransparent porous balls are used as the material of the porous solar wall, which can collect and store solar energy to heat the air in the greenhouse, and condition the thermal environment in the greenhouse. Their effect both can be exerted fully by combining the greenhouse with the heat-storage porous wall, which causes the higher solar energy utilization efficiency. Based on Brinkman-Forchheimer Extended Darcy model and energy two-equation model with internal heat source for saturated porous medium, k-εturbulent model, the flow and heat transfer characteristics of solar greenhouse system are simulated. Additionally, the influence of the porous wall with layered porosity on the characteristics of the greenhouse is also analyzed by numerical simulation further. The results show that the inlet parameters of the greenhouse and the structure of the porous wall have great effect on the temperature field, the flow field and the pressure field. So, for a certain structure of the greenhouse, the porous wall should be designed and the fan operation should be also conditioned reasonably according to the admired thermal environment in the greenhouse.
     Two kinds of new solar heating systems with a new porous heat storage wall are designed, which have different ventilation patterns. Based on k-εturbulent model, Brinkman-Forchheimer Extended Darcy model and energy two-equation model for saturated porous medium, the coupled heat transfer and flow characteristics in the new solar heating system are simulated, analyzed and compared. The results show that ventilation pattern has great effect on temperature field and flow field, which also has important influence on the insulation of the heating system and the thermal efficiency of the porous heat storage wall. Thus in real applications, the solar heating system with porous heat storage wall should be designed properly in order to increase the thermal efficiency of porous solar wall and decrease the heating price for porous wall.
     The flow field and temperature field are available by simulating the flow and heat transfer in two kinds of porous solar wall heating system with partial and slope under floor distribution system, respectively. The effect of the structure and air supply vent dimension of the under floor distribution system on flow field and temperature field are analyzed. The effect of the south wall on the temperature in the heating room also is studied. The results show that uniform temperature field and flow field in the heating room can be ensured by using the under floor distribution system, while the slope under floor distribution is good to obtain uniform mass flow rate for every supply air vent. In real applications, the south main wall of building should be insulated to prevent the phenomenon of "heat-erode".
     Based on the mathematical model used to describe the structure filled with uniform and equal diameter porous balls, the structure characteristics of porous solar wall are investigated further. The results show that the flow resistance will decrease with an increase in particle diameter and porosity. The results also provide parameters for an optimization of the porous wall.
     The porous solar wall experiment system is also designed, which can be used to investigate such performance parameters as the flow resistance of the porous solar wallsystem, the absorptivity and volume convection heat transfer coefficient of the porous wall,etc. But simulation of solar radiation is so difficult that the porous solar wall experimentsystem should be developed further to test the thermal performance of the porous wallaccurately.
引文
[1]张璧光,刘志军,谢拥群.太阳能干燥技术.北京:化学工业出版社,2006,1-14
    [2]董仁杰,彭高军.太阳能热利用工程.北京:中国农业科技出版社,1996,1-7
    [3]王君一,徐任学,孙喆,张茂.农村太阳能实用技术.北京:金盾出版社,2000,20-24
    [4][日]田中俊六.太阳能供冷与供暖.王容光译.北京:中国建筑工业出版社,1982
    [5]葛新石,龚堡,陆维德,王义方.太阳能工程-原理与应用.北京:学术期刊出版社,1988,1-21
    [6]项立成,赵玉文,罗运俊.太阳能的热利用.北京:宇航出版社,1990,13-22
    [7]王长贵,郑瑞澄.新能源在建筑中的应用.北京:中国电力出版社,2003,1-17
    [8]Duffle J.A.,Beckman W.A.Solar engineering of thermal processes.New York:John Wiley & Sons,1980
    [9]王长贵,崔容强.太阳能.北京:能源出版社,1985,1-23
    [10]方荣生,项立成,李亭寒.太阳能应用技术(第1版).北京:中国农业机械出版社,1985,214
    [11]Fang Xiande,Li Yuanzhe.Numerical simulation and sensitivity analysis of lattice passive solar heating walls.Solar Energy,2000,69(1):55-66
    [12]Nisbet S.K.,Kan C.M.The application of the transwall to horticultural glass-houses.Solar Energy,1987,39(6):473-482
    [13]Yang Hongxing,Zhu Zuojin,Burmett Joho.Simulation of the behavior of transparent insulation materials in buildings in northern China.Applied Energy,2000,67(3):293-306
    [14]Rockendorf G.,Janssen S.,Felten H.Transparently insulated hybrid wall.Solar Energy,1996,56(1-3):33-38
    [15]Trombe F.Maisons solaires.Techniques de 1' IngTenieur 3 C777,1974
    [16]Ben Yedder R.,Bilgen E.Natural convection and conduction in Trombe wall systems. International Journal of Heat and Mass Transfer,1991,34(4/5):1237
    [17]Smolec W.,Thomas A.Theoretical and experimental investigations of heat transfer in a Trombe wall.Energy Conversion Management,1992,34(5):385-400
    [18]Utzinger D.M.,Klein S.A.,Mitchell J.W.The effect of air flow rate in collectorstorage walls.Solar Energy,1980,25(4):511-520
    [19]Du Z-G.,Bilgen E.Natural convection in composite wall collectors with porous absorber.Solar Energy,1990,45(6):325-332
    [20]Chen W.,Liu W.Numerical analysis of heat transfer in a composite wall solar collector system with a porous absorber.Applied Energy,2004,78(2):137-149
    [21]王崇杰,何文晶,薛一冰.欧美建筑设计中太阳墙的应用.建筑学报,2004,(8):76-78
    [22]王崇杰,何文晶,太阳能采暖新技术-太阳墙在建筑中的应用与研究.重庆建筑大学学报,2004,26(7):38-40
    [23]Karsten Voss.Solar energy in building renovation-results and experience of international demonstration buildings.Energy and Buildings,2000,32(3):291-302
    [24]张学伟,刘伟,徐冬.太阳能多孔集热墙内传热与流动特性分析.建筑节能,2007,(12):54-56
    [25]黄翔,王天富.空调工程。北京:机械工业出版社,2006,358-372
    [26]Balcomb J.D.,Hedstrom J.C.,McFarland R.D.Simulation analysis of passive solar heated buildings-Preliminary results.Solar Energy,1977,19(3):277-282
    [27]方贤德.被动式太阳房的通用模拟程序.太阳能学报,1994,15(4):363-367
    [28]陈威,刘伟.太阳能集热组合墙系统的耦合传热与流动分析.太阳能学报,2005,26(6):882-886
    [29]戚豹,康文梅.太阳墙技术在节能型建筑中的应用.建筑节能,2008,(5):60-61
    [30]程尚摸.传热学.北京:高等教育出版社,1990
    [31]Nield D.A.,Bejan A.Convection in porous media.New York:Springer-Verlag Inc.,1992,4-23
    [32]Rees D.A.S.The onset of Darcy-Brinkrnan convection in a porous layer:an asymptotic analysis.International Journal of Heat Transfer,2002,45(11):2213-2220
    [33]Zehner P.,Schlunder E.U.Thermal conductivity of granular materials at moderate temperature.Chemic Ingenieur Technik,1970,42(14):933-941
    [34]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001
    [35]杨世铭,陶文铨.传热学(第3版).北京:高等教育出版社,2002,422-423
    [36]Duffie J.A.,Beckman W.A.Solar Engineering of Thermal.Processes.New York:Wiley,1980,76
    [37]科林斯R.E.,陈钟祥,吴望一.流体通过多孔材料的流动.北京:石油工业出版社,1984
    [38]Scheidegger A.E.The physics of flow through porous media.New York:Macmillan Co.,1957
    [39]Wooding R.A.Steady state free thermal convection of liquid in a saturated permeable medium.J.Fluid Mach,1957,(2):273-285
    [40]Nield D.A.Modeling high speed flow of a compressible fluid in a saturated porous medium.Transport in Porous Media,1994,14(1):85-88
    [41]Nield D.A.Effect of local thermal non equilibrium in steady convective processes in a saturated porous medium:forced convection in a channel.J.Porous Media,1998,(1):181-186
    [42]Pascal J.P.,Pascal H.Pressure diffusion in unsteady non-Darcy flow through porous media.Eur J Mech.,B/Fluids,1995,14(1):75-90
    [43]Pascal J.P.,Pascal H.Non-linear effects on some on some unsteady non-Darcy flows through porous media.Int J Non Linear Mechanics,1997,32(2):361-376
    [44]Lage J.L.,Antohe B.V.,Nield D.A.Two types of non-linear pressure drop versus flow rate relation observed for saturated porous media.ASMEJ.Fluids Engng,1997,119:701-706
    [45]Somerton C.W.On thermal instability of superpose fluid and porous layer.J.Heat Transfer, 1989, 111:357-362
    [46] Poulikakos D. Forced convection in a duct partially filled with a porous material.ASME Journal of Heat Transfer, 1987,109: 653-662
    [47] Nishimura T., Takumi T. Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions. Int. J. Heat Mass Transfer, 1986, 29(6): 889-898
    [48] Alkam M. K., A I Nimr M. A. Transient non-Darcian forced convection flow in a pipe partially filled with a porous material. Int. J. Heat Mass Transfer 1998, 41(2):347-356
    [49] Vafai K., Tien C. L. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Transfer, 1981,24: 195-203
    [50] Hsu C. T., Cheng P. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 1990, 33(8): 1587-1597
    [51] Reda D. C. Slip flow experiments in welded tuff: the Knudsen diffusion problem,Chin-Fu Tsang, Coupled processes Associated with Nuclear Waste Repositories, 1987,485-493
    [52] Persoff P., Hulen J. B. Hydrologic Characterization of four cores from the geysers coring project. Proceeding Twenty First Workshop on Geothermal Engineering,Stanford University, C A, 1996,22-24
    [53] Wu Y. S., Pruess K. Gas flow in porous media with Klinkenberg effects. Transport in Porous Media, 1998,32(1): 117-137
    [54] Prasad V., Kladias N., Bandyopadhaya A. Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres. Int. J. Heat Mass Transfer, 1989, 32(9): 1793-1796
    [55] Patankar S. V., Spalding D. B. A calculation procedure for the transient and steady state behavior of shell and tube heat exchangers. Design and Theory Source Book.NewYork: Mc Graw Hill, 1974,155-176
    [56] Baer M. R., Nunziato J. W. A. Two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int J Multiphase Flow,1986, 12: 861-889
    [57] Bear J., Sorek S. Displacement waves in saturated thermo-elastic porous media. Fluid Dynamic Res., 1992, 9(4): 155-164
    [58] Sorek S., Bear J. Shock waves in saturated thermo-elastic porous media. Transport in Porous Media, 1992,9(1-2): 3-13
    [59] Levy A., Sorek S., Ben Dor G Evolution of the balance equations in saturated thermo-elastic porous media following abrupt simultaneous changes in pressure and temperature. Transport in Porous Media, 1995,21: 241-268
    [60] Levy A., Sorek S., Ben Dor G Jump conditions across strong compaction waves in gas saturated rigid porous media. Shock Waves, 1993,3(2): 105-111
    [61] Sorek S., Krylov A., Levy A. et al. Simple waves in saturated porous media. JSME Int J: Series B, 1996, 39(2): 299-304
    [62] Sorek S., Levy A., Ben Dor G, et al. Contributions to theoretical /experimental developments in shock waves propagation in porous media. Transport in Porous Media, 1999, 34(1-3): 63-100
    [63] Beavers G S., Joseph D. Boundary conditions at a naturally permeable wall. J Fluid Mech., 1967, 30: 197-207
    [64] Neale G, Nader W. Practical signification of Brinkman's extension of Darcy's law coupled parallel flows within a channel and a bounding porous medium. Canada J Chem. Engng., 1974,52(1): 475-478
    [65] Rudraiah N. Forced convection in a parallel plate channel partially filled with porous materials. ASME Journal of Heat Transfer, 1985,107: 322-331
    [66] Jang J. Y., Chen J. L. Forced convection in a parallel plate channel partially with a high porosity medium. International Communication of Heat Mass Transfer, 1992,19(2): 263-273
    [67]Chikh S.,Boumedien A.,Bouhadef K.Analytical solution non-Darcian forced convection analysis in an annular partially filled with a porous material.Numerical Heat Transfer A,1995,38(9):707-722
    [68]Vafai K.,Kim S.J.On the limitations of the Brinkman Forchhermer extended Darcy Equation.International Journal of Heat and Fluid Flow,1995,16(1):11-15
    [69]A I Nimr M.A.,Alkam M.K.Unsteady non-Darciatian forced convection analysis in an annulus partially filled with a porous material.Journal of Heat Transfer Transactions oftheASME,1997,119(4):799-804
    [70]Salinger A.G.,Aris R.,and Derby J.Finite Element formulations for large scale coupled flows in adjacent porous and open fluid domains.Int.J.Numer.Methods,1994,18:1185-1209
    [71]Beckermann C.,Ramadhyani S.Natural convection flow and heat transfer between a fluid layer and porous layer inside a rectangular enclosure.ASME Journal of Heat Transfer,1987,109.:363-369
    [72]Beckermann C.,Viskanta R.,Ramadhyani S.Natural convection in vertical enclosures containing simultaneously fluid and porous layers.J.Fluid Mech.,1988,186:257-284
    [73]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006.32
    [74]过增元,黄素逸等.场协同原理与强化传热新技术.北京:中国电力出版社,2004,154-155
    [75]Fuller R.J.,Meyer C.P.,Sale P.J.M.Validation of a Dynamic Model for Predicting Energy Use in Green_house.Agrie.Engng.Res,1987,38(1):1-14
    [76]Jolliet O.,Danloy L.,Gay J-B.,et al.Horticern:an Improved Static Model for Predicting the Energy Consumption of a Greenhouse.Agricultural and Forest Meteorology,1991,55(3-4):265-294
    [77]陈端生,郑海山,刘步洲.日光温室气象环境综合研究-墙体、覆盖物热效应研 究初报.农业工程学报,1990,6(2):77-81
    [78]亢树华,陈端生.日光温室优型结构的研究.农业工程学报,1997,12(A00):30-35
    [79]欧阳莉,刘伟.温室内多孔蓄热墙传热与流动特性研究.见:中国工程热物理学会.中国工程热物理学会传热传质学术会议论文集.广州:2007,596-599
    [80]徐冬,刘伟,张学伟等.多孔太阳墙集热系统内流动与传热分析.见:中国工程热物理学会.中国工程热物理学会传热传质学术会议论文集.广州:2007,606-610
    [81]Ahrnet Kurklu,Sefai Bilgin.A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse.Renewable Energy,2003,28(5):683-697
    [82]郑瑞登.太阳能供热采暖工程应用推广.太阳能,2007,2:37-41
    [83]卫欣.一种公共建筑上的太阳墙系统.太阳能,2007,1:28-29
    [84]Luis A.Medineli Sanino,Ricardo A.,et al.Modeling and identification of solar energy water heating system incorporat'mg nonlinearities.Solar Energy,2007,81(5):570-580
    [85]Huseyin Gunerhan,ArifHepbasli.Exergetic modeling and performance evaluation of solar water heating systems for building applications.Energy and Buildings,2007,39(5):509-516
    [86]陈威.温室-蓄热层-采暖房系统中的传热与流动研究:[博士学位论文].武汉:华中科技大学图书馆,2004
    [87]连之伟,刘蔚巍.空调房间气流组织与人体舒适.建筑热能与通风.2006,25(5):22-25
    [88]薛若军.空调房间内热舒适度的数值模拟.哈尔滨工业大学学报,2005,37(8):1145-1147
    [89]Andrew Manning,Farhad Memarzadeh.Analysis of air type and exhaust location in laboratory animal research facilities using CFD.ASHRAE Trans,2000,60(1):877-883
    [90]王海英.下送风气流组织影响因素的实验研究.暖通空调,2002,32(5):20-22
    [91]Chow W.K.,Wong L.T.,Chan K.T.et al.Experimental studies on the airflow characteristics of air-conditioned spaces.ASHRAE Transaction,1994,100(1):256-263
    [92]ISO International Standard 7730.Moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort.In:International Standards Organization,Geneva,1994,564-570
    [93]ANSI/ASHRAE Standard 55-1992.Thermal environmental conditions for human occupancy.ASHRAE Atlanta,1992,197-204
    [94]Chao C.Y.,Wan M.P.Experimental study of ventilation performance and contaminant distribution of underfloor ventilation systems vs traditional ceiling based ventilation system.Indoor Air,2004,14(10):600-611
    [95]Gan Guohui.Effective depth of fresh air distribution in rooms with single-sided natural ventilation.Energy and Buildings,2000,31(3):65-73
    [96]孔琼香,俞炳丰.办公楼地板送风系统应用与研究现状.暖通空调,2004,34(4):26-31
    [97]Sodec F.,Craig R.The underfloor air supply system-the European experience.ASHRAE Transactions,1990,96(2):690-695
    [98]Spoormaker H.Low-pressure underfloor HVAC Systems.ASHRAE Transactions,1990,96(2):670-677
    [99]范存养.办公室下送风空调方式的应用.暖通空调,1997,27(4):30-39
    [100]Tuddenham D.Design considerations for a floor-based air conditioning system with modular services units at the New Hong Kong Bank Headquarters.ASHRAE Transactions,1985,91(2):387-403
    [101]Bauman F.S.,Webster T.Outlook for underfloor air distribution.ASHRAE Journal,2001,43(6):18-27
    [102]Bauman F.S.,Powell K.,Bannon R.et al.Underfloor air technology,www.cbe. berkeley.edu/underfloorair/,2006-05-12
    [103]Hagstrom K.,Sandberg E.,Koskla H.Classification for the room air conditioning strategies.Building and Environment,2000,35(6):699-707
    [104]Faulkner D.,Fisk W.J.,Sullivan D.P.Indoor airflow and pollutant removal ina room with floor-based task ventilation:Results of additional experiments.Building and Environment,1995,30(3):323-332
    [105]Fisk W.J.,Faulkner D.,Pih D.et al.Indoor air flow and pollutant removal in a room with task ventilation.Indoor Air,1991,1(3):247-262
    [106]Bauman F.S.,Arens E.A.,Tanabe S.et al.Testing and optimizing the performance of a floor-based task conditioning system.Energy and Buildings,1995,27(3):173-186
    [107]马仁民,连之伟.置换通风几个问题的讨论.暖通空调,2000,30(4):18-22
    [108]Skistad H.,Mundt E.,Nielsen P.,et al.Displacement ventilation in non- industrial premises.In:Rehva Displacement Ventilation Guidebook.Norway,2002,367-372
    [109]Arnold D.Raised floor air distribution-a case study.ASHRAE Transactions,1990,96(2):665-669
    [110]刘骏,李强民.旋流风口的特性及在地板送风系统中的应用.建筑热能通风空调,1999,19(1):43-46
    [111]马仁民.论下部送风空调节能及适用条件.暖通空调,1983,13(3):2-6
    [112]王怡.工作区水平送风气流分布及舒适条件的研究:[硕士学位论文].西安:西安建筑科技大学图书馆,1994,22-70
    [113]冯海燕.地板送风房间热舒适的模糊综合评判:[硕士学位论文].西安:西安建筑科技大学,1998,12-68
    [114]Bauman F.,Pecora P.,Webster T.How Low can You Go? Airflow performance of low-height underfloor plenums.In:CBE Summary Report.Berkeley:Center for the Built Environment(CBE),1999,1-23
    [115]Daly A.Underfloor air distribution:Lessons Learned.ASHRAE Journal,2002, 44(5):21-27
    [116]Webster T.,Baurnan F.S.,Ring E.Supply fan energy use in pressurized underfloor air distribution system.In:CBE Summary Report.Berkeley:Center for the Built Environment(CBE),2002,20-45
    [117]Fukao K.,Ichihara M.,Oguro M.,et al.Comparison of underfloor vs overhead air distribution systems in an office building.ASHRAE Transactions,2002,108(1):64-71
    [118]夏越美.太阳辐射试验及其标准分析.航空标准化与质量,2001,(5):33-38
    [119]王元,张林华.一种全新型全光谱太阳辐射模拟器设计.太阳能学报,2006,27(11):1132-1136
    [120]驭风.新型太阳能模拟系统.太阳能,1995,(1):7
    [121]张素宁.太阳辐射逐时模型的建立.太阳能学报,1997,18(3):273-277
    [122]陆忠汉等.实用气象手册.上海:上海辞书出版社,1984:24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700