用户名: 密码: 验证码:
亚波长微结构太赫兹功能器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波是指波长介于30~3000μm之间的电磁波。随着超快激光技术的发展,太赫兹波的产生和探测技术得到了快速发展,太赫兹技术正在日益走向应用。太赫兹波具有宽带宽,定向性好的优点,十分适合应用于卫星间以及地面短程宽带无线通信系统中,在这些应用系统中调制器、光开关、滤波器等太赫兹波功能器件是必不可少的。本文在对太赫兹光子晶体和超材料两种亚波长微结构人工电磁材料特性研究的基础上,重点分析了这两种微结构人工材料在太赫兹强度调制器和窄带谐振腔等中的应用。主要的工作内容和研究成果如下:
     1、搭建了透射式太赫兹时域谱系统。采用钛宝石飞秒激光泵浦光电导天线产生太赫兹脉冲,以碲化锌晶体电光取样探测太赫兹脉冲。用这套太赫兹时域谱系统测量了经过表面抛光处理的4mm厚的高密度聚乙烯(HDPE)和0.4mm厚的高阻硅(Si)平板的时域谱数据,经傅里叶变换后获得了两种材料在0-3THz波段的折射率,测量结果与文献报道的折射率数据相吻合。
     2、利用光子晶体线缺陷波导的慢光效应,设计了一种基于填充液晶的马赫-曾德尔干涉仪结构的太赫兹相位器件。马赫-曾德尔干涉仪由光子晶体线缺陷波导和光子晶体分光器组合构成。通过对不同晶格结构的光子晶体波导传输特性的分析发现正方晶格介质柱光子晶体和三角晶格空气孔光子晶体波导都具有明显的慢光效应,填充液晶后,线缺陷模色散曲线会随着液晶折射率改变而产生移动,在线缺陷模的慢光区域,色散曲线的移动使得波导内模式的有效折射率的变化幅度大于液晶折射率的变化幅度。慢光效应提高了这两种光子晶体线缺陷波导组成的马赫-曾德尔干涉仪的相位调制效率。计算表明这种液晶填充的光子晶体太赫兹马赫-曾德尔干涉仪的相位调制效率是纯液晶盒相位器件的1.8-5.7倍。
     3.、设计了一种由宽口径光子晶体线缺陷波导、光子晶体渐变锥形结构以及点缺陷构成的介质柱光子晶体窄带谐振腔结构。数值仿真分析表明光子晶体渐变锥形结构能减少宽、细两种不同口径线缺陷波导耦合过程中反射损耗、多模传输时的多模干涉损耗以及两种波导之间模式失配造成的损耗,有效地提高耦合效率。同时窄带谐振腔锥形耦合系统能大幅度提高窄带滤波效果,Q值为不通过锥形结构直接耦合时的2倍,便于在准波长尺度的点缺陷内形成强的太赫兹局域场。
     4、提出了一种能增强磁性感应的新型双开田谐振环结构的太赫兹超材料强度调制器。该超材料的谐振结构由两个通过金属连接起来的同心开口金属圆环构成,基底材料为本征砷化镓。数值仿真分析表明,与传统双开口谐振环结构的超材料相比,环间连接的开口环结构能有效提高在太赫兹波垂直入射时,由太赫兹波电场激励产生电容而引起的LC谐振的谐振强度。当波长为800nm的飞秒激光照射该超材料,本征砷化镓基底的自由电子浓度随飞秒激光的光强增加而增加,而双开口谐振环结构的LC谐振的电容效应将随自由电子浓度的增加而减弱,实现对透射光的光强调制。数值仿真结果表明环间连接的开口环结构对与LC谐振相同频率的太赫兹波能实现调制深度为40%的强度调制,而相同结构参数的传统双开口谐振环结构仅能实现深度为30%强度调制。
Terahertz waves refer to the electromagnetic waves with wavelength range between30~3000μm. Due to the fast development of the technology of ultrafast lasers, there has been great interest in terahertz wave applications nowadays. With a wide bandwidth and an excellent linear propagation direction, terahertz waves are particularly suitable for the wireless communication. So the terahertz functional devices such as intensity modulators, optical switches, filters et al. are essential for the researches of terahertz waves.In this thesis, the study including theories and applications of two kinds of terahertz subwavelength microstructure, photonic crystals and metamaterials, are discussed. Respectively, terahertz modulators and narrow bandwidth cavities made by these two artificial materials are discussed. The major contents and results are shown as follows:
     1. A terahertz time domain spectroscopy (THz-TDS) has been set up. Terahertz transmitter is based on photoconductive antenna, and terahertz detector is based on electro-optic crystal ZnTe. The quart-optical path (4f) of terahertz waves is constructed by four paraboloidal mirrors, and the sample are assumed to put in the point of the second'focus point. Terahertz spectroscopy of HDPE and Si plates were measured by this THz-TDS, the results showed that the indices and the spectroscopy of the two samples agree well with the available datum.
     2. A novel tunable photonic crystal (PC) waveguide Mach-Zehnder interferometer (MZI) based on nematic liquid crystals (LCs)5CB is proposed, which is composed of the photonic crystal line defect waveguides and splitters. The line defect modes of the PC waveguide with different liquid crystals refractive indices are analyzed by using the plane wave expansion method. Owing to the slow group velocity region of the line defect mode, when the index of5CB is changing by rotating its derector, the variation of the line defect mode's effective indices is larger than the variation of the indices of liquid crystals. As a conclusion, the slow light in the line-defect of PC promotes the phase modulating efficiency of MZI. The efficiencies of MZI are1.8-5.7times larger than the phase modulator made of liquid crystal box.
     3. A pillar photonic crystal (PPC) with a tapered waveguide and a point defect to highly confine Terahertz wave is demonstrated. A PPC taper can provide low loss connections between waveguides with different cross-sectional areas. Terahertz wave is first guided into the tapered waveguide, gradually compressed to its end, and finally confined in the point defect cavity. The numerical simulations indicate that narrow band Terahertz wave is highly confined in the point defect cavity with the quality factor twice the value of the cavity without the tapered structure. Also, the coupling process is greatly extended, so the slow light effect is extremely strong. The demonstrated device may be used as an antenna for enhancing light-matter interactions in the point defect cavity at terahertz frequencies and improving the sensitivity of terahertz near field microscopy.
     4. A novel terahertz double split-ring resonator (DSRR) metamaterial which can optically tune the transmission of the terahertz wave is presented and demonstrated. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper is constituted by two split rings connected by two bridges. Numerical simulations with finite integration technique (FIT) method reveal that the magnetic response of this DSRR with connecting bridges is stronger than the traditional DSRR. Then by increasing the carrier density of the intrinsic gallium arsenide (GaAs) substrate, the magnetic response of the original and complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band terahertz modulator with several nanoseconds response time.
引文
[1]http://fir.u-fukui.ac.jp/thzlab/index_files/Eng_THz_TDS.htm.University of Fukui.
    [2]van Exter M, Grischkowsky D R. Characterization of an optoelectronic terahertz beam system. Microwave Theory and Techniques, IEEE Transactions on,1990,38(11):1684-1691.
    [3]Shen Y C, Upadhya P C, Beere H E, et al. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Applied Physics Letters,2004, 85(2):164-166.
    [4]Masahiko T, et al. Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging. Measurement Science and Technology,2002, 13(11):1739.
    [5]Faulks R, Rihani S, Beere H E, et al. Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas. Applied Physics Letters,2010,96(8):081106-3.
    [6]Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B,1996,13(11):2424-2436.
    [7]Chmielak B, Waldow M, Matheisen C, et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express,2011,19(18):17212-17219.
    [8]Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters,1995,67(24):3523-3525.
    [9]Gallot G, Grischkowsky D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B, 1999,16(8):1204-1212.
    [10]Kawase K, Mizuno M, Sohma S, et al. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser. Opt. Lett.,1999,24(15):1065-1067.
    [11]Shi W, Ding Y J. Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide. Applied Physics Letters,2003,83(5):848-850.
    [12]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002,417(6885):156-159.
    [13]Sasaki Y, Yokoyama H, Ito H. Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation. Opt. Express,2004, 12(14):3066-3071.
    [14]Taniuchi T, Nakanishi H. Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing. Electronics Letters. Volume 40:Institution of Engineering and Technology; 2004. p 327-328.
    [15]Fathololoumi S, Dupont E, Chan C W I, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt. Express,2012, 20(4):3866-3876.
    [16]Kumar S, Chan C W I, Hu Q, et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of h v/kB. Nat Phys,2011,7(2):166-171.
    [17]Shi Y, Yang Y, Xu X, et al. Ultrafast carrier dynamics in Au/GaAs interfaces studied by terahertz emission spectroscopy. Applied Physics Letters,2006,88(16):161109-3.
    [18]Nagatsuma T. Exploring Sub-Terahertz Waves for Future Wireless Communications.2006 18-22 Sept.2006. p 4-4.
    [19]Mittleman D M, Gupta M, Neelamani R, et al. Recent advances in terahertz imaging. Applied Physics B,1999,68(6):1085-1094.
    [20]Grischkowsky D, Keiding S, Exter M v, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B,1990,7(10):2006-2015.
    [21]Markelz A G, Roitberg A, Heilweil E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chemical Physics Letters,2000, 320(1-2):42-48.
    [22]Woolard D, Kaul R, Suenram R, et al. Terahertz electronics for chemical and biological warfare agent detection. Microwave Symposium Digest,1999 IEEE MTT-S International. Volume 3; 1999. p 925-928.
    [23]Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals:Molding the Flow of Light. New Jersey:Princeton University Press,2008.
    [24]John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58(23):2486.
    [25]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett.,1987,58(20):2059.
    [26]Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Physical Review Letters,1991,67(17):2295-2298.
    [27]Kogelnik H, Shank C V. Stimulated emission in a periodic structure. Applied Physics Letters, 1971,18(4):152-154.
    [28]Nakamura M, Yariv A, Yen H W, et al. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters,1973,22(10):515-516.
    [29]Soda H. GaInAsP/InP surface emitting laser. Jpn. J. Appl. Phys.,1979,18:2329-2330.
    [30]Loncar M, Scherer A, Qiu Y. Photonic crystal laser sources for chemical detection. Applied Physics Letters,2003,82(26):4648-4650.
    [31]Chow E, Grot A, Mirkarimi L W, et al. Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity. Opt:Lett.,2004,29(10):1093-1095.
    [32]Smith C L C, Wu D K C, Lee M W, et al. Microfluidic photonic crystal double heterostructures. Applied Physics Letters,2007,91 (12):121103-121103-3.
    [33]Noda S, Tomoda K, Yamamoto N, et al. Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths. Science,2000,289(5479):604-606.
    [34]McNab S, Moll N, Vlasov Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express,2003,11(22):2927-2939.
    [35]Bogaerts W, Taillaert D, Luyssaert B, et al. Basic structures for photonic integrated circuits in Silicon-on-insulator. Opt. Express,2004,12(8):1583-1591.
    [36]Notomi M, Shinya A, Mitsugi S, et al. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express,2004,12(8):1551-1561.
    [37]Baba T. Slow light in photonic crystals. Nature Photonics,2008,2(8):465-473.
    [38]Finlayson C E, Cattaneo F, Perney N M B, et al. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Physical Review E,2006, 73(l):016619.
    [39]Frandsen L H, Lavrinenko A V, Fage-Pedersen J, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express,2006,14(20):9444-9450.
    [40]Li J, White T P, O'Faolain L, et al. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express,2008,16(9):6227-6232.
    [41]Toshihiko B, Daisuke M. Slow light engineering in photonic crystals. Journal of Physics D: Applied Physics,2007,40(9):2659-2665.
    [42]Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature,2004,432(7014):200-203.
    [43]Lodahl P, Floris van Driel A, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature,2004,430(7000):654-657.
    [44]Englund D, Fattal D, Waks E, et al. Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters,2005, 95(l):013904.
    [45]Ozbay E, Michel E, Turtle G, et al. Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett.,1994,19(15):1155-1157.
    [46]Takagi K, Kawasaki A. Fabrication of three-dimensional terahertz photonic crystals with diamond structure by particle manipulation assembly. Applied Physics Letters,2009, 94(2):021110-021110-3.
    [47]Li Z, Zhang Y, Li B. Terahertz photonic crystal switch in silicon based on self-imaging principle. Opt. Express,2006,14(9):3887-3892.
    [48]Li J. Terahertz modulator using photonic crystals. Optics Communications,2007, 269(1):98-101.
    [49]Li J S, He J L, Hong Z. Terahertz wave switch based on silicon photonic crystals. Appl. Opt., 2007,46(22):5034.
    [50]Liu H, Yao J, Xu D, et al. Propagation characteristics of two-dimensional photonic crystals in the terahertz range. Applied Physics B:Lasers and Optics,2007,87(1):57-63.
    [51]Burgess I B, Zhang Y, McCutcheon M W, et al. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities. Opt. Express,2009,17(22):20099-20108.
    [52]Zhang H, Guo P, Chen P, et al. Liquid-crystal-filled photonic crystal for terahertz switch and filter. J. Opt. Soc. Am. B,2009,26(1):101.
    [53]Wu B, Zhang H, Guo P, et al. Multifunctional photonic crystal cross waveguide for terahertz waves. J. Opt. Soc. Am. B,2010,27(3):505-511.
    [54]Chen H-m, Su J, Wang J-I, et al. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals. Opt. Express,2011,19(4):3599-3603.
    [55]Kim Y S, Lin S-Y, Wu H-Y, et al. A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. Journal of Applied Physics,2011,109(12).
    [56]He J, Liu P, He Y, et al. Narrow bandpass tunable terahertz filter based on photonic crystal cavity. Appl. Opt.,2012,51(6):776-779.
    [57]Li J-s, Zouhdi S. Ultrafast and low-power terahertz wave modulator based on organic photonic crystal. Optics Communications,2012,285(6):953-956.
    [58]Wall-Clarke A, Savel'ev S. Nonlinear effects in the Josephson-vortex terahertz photonic crystal: Second harmonic generation. Physical Review B,2012,85(21):214521.
    [59]Jian Z, Pearce J, Mittleman D M. Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy. Semiconductor Science and Technology,2005,20(7):S300.
    [60]Zhao Y, Grischkowsky D R.2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides. Microwave Theory and Techniques, IEEE Transactions on,2007,55(4):656-663.
    [61]Bingham A L, Grischkowsky D. Terahertz two-dimensional high-Q photonic crystal waveguide cavities. Opt. Lett.,2008,33(4):348-350.
    [62]Ghattan Z, Hasek T, Wilk R, et al. Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals. Optics Communications,2008, 281(18):4623-4625.
    [63]Li J-s, Tao G-s. Terahertz wave modulator based on optically controlled photonic crystal slab. Microwave and Optical Technology Letters,2010,52(10):2226-2227.
    [64]Liang S, Liu H-Y, Dai Q-F, et al. Defect modification and energy extraction in a one-dimensional terahertz photonic crystal. Journal of Applied Physics,2011,109(2):024902.
    [65]Jian Z, Pearce J, Mittleman D M. Defect modes in photonic crystal slabs studied using terahertz time-domainspectroscopy. Opt. Lett.,2004,29(17):2067-2069.
    [66]Lin C, Chen C, Schneider G, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides. Opt. Express,2004,12(23):5723-5728.
    [67]Nemec H, Kuzel P, Duvillaret L, et al. Highly tunable photonic crystal filter for the terahertz range. Opt. Lett.,2005,30(5):549-551.
    [68]Jian Z, Mittleman D M. Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy. Journal of Applied Physics,2006,100(12):123113-5.
    [69]Benz A, Fasching G, Deutsch C, et al. Terahertz photonic crystal resonators in double-metal waveguides. Opt. Express,2007,15(19):12418-12424.
    [70]Prasad T, Colvin V L, Mittleman D M. The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy. Opt. Express,2007, 15(25):16954-16965.
    [71]Zhang Y, Zhang Y, Li B. Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides. Opt. Express,2007, 15(15):9281-9286.
    [72]Benz A, Deutsch C, Brandstetter M, et al. Terahertz Active Photonic Crystals for Condensed Gas Sensing. Sensors,2011,11(6):6003-6014.
    [73]Shi Y, Zhou Q-I, Liu W, et al. Out-of-plane resonances in terahertz photonic crystal slabs modulated by optical pumping. Opt. Express,2011,19(21):20808-20816.
    [74]Swift G P, Gallant A J, Kaliteevskaya N, et al. Negative refraction and the spectral filtering of terahertz radiation by a photonic crystal prism. Optics Letters,2011,36(9):1641-1643.
    [75]Kim J-I, Jeon S-G, Kim G-J, et al. Two-Dimensional Terahertz Photonic Crystals Fabricated by Wet Chemical Etching of Silicon. Journal of Infrared, Millimeter, and Terahertz Waves,2012, 33(2):206-211.
    [76]Jin C, Cheng B, Li Z, et al. Two dimensional metallic photonic crystal in the THz range. Optics Communications,1999,166(1-6):9-13.
    [77]Kitahara H, Tsumura N, Kondo H, et al. Terahertz wave dispersion in two-dimensional photonic crystals. Physical Review B,2001,64(4):045202.
    [78]Katsarakis N, Bender M, Singleton L, et al. Two-dimensional metallic photonic band-gap crystals fabricated by LIGA. Microsystem Technologies,2002,8(2-3):74-77.
    [79]Wang S-W, Lu W, Chen X-S, et al. Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders Journal of Applied Physics,2003,93(11):9401-9403.
    [80]Shew B-Y, Li H-C, Pan C-L, et al. X-ray micromachining SU-8 resist for a terahertz photonic filter. J. Phys. D:Appl. Phys.,2005,38.
    [81]Wu D, Fang N, Sun C, et al. Terahertz plasmonic high pass filter. Applied Physics Letters,2003, 83(1):201-203.
    [82]Drysdale T D, Mills G, Ferguson S M, et al. Metallic tunable photonic crystal filter for terahertz frequencies. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2003,21(6):2878-2882.
    [83]Lin C, Chen C, Schneider G J, et al. Fabrication of terahertz two-dimensional photonic crystal lens on silicon-on-insulator.2004:116-120.
    [84]Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Applied Physics Letters,2002,80(15):2634-2636.
    [85]Haus J W, Powers P, Bojja P, et al. Terahertz generation in photonic crystals.2004:18-27.
    [86]Kurt H, Citrin D S. Photonic crystals for biochemical sensing in the terahertz region. Applied Physics Letters,2005,87(4):041108-3.
    [87]Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi,1968,10(4):509.
    [88]Pendry J B, Holden A J, Stewart W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters,1996,76(25):4773-4776.
    [89]Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. Microwave Theory and Techniques, IEEE Transactions on,1999, 47(11):2075-2084.
    [90]Liu Y, Zhang X. Metamaterials:a new frontier of science and technology. Chemical Society reviews,2011,40(5):2494-2507.
    [91]Shelby R A, Smith D R, Schultz S. Experimental Verification of a Negative Index of Refraction. Science,2001,292(5514):77-79.
    [92]Schurig D, Mock J J, Justice B J, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science,2006,314(5801):977-980.
    [93]Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics. Nat Mater,2009, 8(7):568-571.
    [94]Pendry J B. Negative Refraction Makes a Perfect Lens. Physical Review Letters,2000, 85(18):3966-3969.
    [95]Fang N, Lee H, Sun C, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science,2005,308(5721):534-537.
    [96]Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon,2011,5(9):523-530.
    [97]Tanaka K, Plum E, Ou J Y, et al. Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials. Physical Review Letters,2010,105(22):227403.
    [98]Zheludev N I. The Road Ahead for Metamaterials. Science,2010,328(5978):582-583.
    [99]Yen T J, Padilla W J, Fang N, et al. Terahertz Magnetic Response from Artificial Materials. Science,2004,303(5663):1494-1496.
    [100]Linden S, Enkrich C, Wegener M, et al. Magnetic Response of Metamaterials at 100 Terahertz. Science,2004,306(5700):1351-1353.
    [101]Padilla W J, Taylor A J, Highstrete C, et al. Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies. Physical Review Letters,2006,96(10):107401.
    [102]Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett.,2006,31(5):634-636.
    [103]Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime:design, fabrication and characterization. Opt. Express,2008,16(10):7181-7188.
    [104]Hu T, Strikwerda A C, Fan K, et al. Terahertz metamaterials on free-standing highly-flexible polyimide substrates. Journal of Physics D:Applied Physics,2008,41(23):232004.
    [105]Miyamaru F, Kuboda S, Taima K, et al. Three-dimensional bulk metamaterials operating in the terahertz range. Applied Physics Letters,2010,96(8):081105-3.
    [106]Chen H-T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices. Nature,2006, 444(7119):597-600.
    [107]Chao G, Shao-Bo Q, Zhi-Bin P, et al. A Wide-Band Metamaterial Absorber Based on Loaded Magnetic Resonators. Chin. Phys. Lett.,2011,28(6):67808-067808.
    [108]Chen H-T, Padilla W J, Zide J M O, et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett.,2007,32(12):1620-1622.
    [109]Chen H-T, O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon,2008,2(5):295-298.
    [110]Wen Q-Y, Zhang H-W, Xie Y-S, et al. Dual band terahertz metamaterial absorber:Design, fabrication, and characterization. Applied Physics Letters,2009,95(24):241111-241111-3.
    [111]Shchegolkov D Y, Azad A K, O'Hara J F, et al. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B,2010,82(20):205117.
    [112]LIANG Lan-Ju Y J-Q, YAN Xin. Ultrabroad Terahertz Bandpass Filter Based on a Multiple-Layered Metamaterial with Flexible Substrates. Chin. Phys. Lett.,2012, 29(9):94209-094209.
    [113]Lu M, Li W, Brown E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt. Lett.,2011,36(7):1071-1073.
    [114]Li J, Tian Z, Chen Y, et al. Distinguishing octane grades in gasoline using terahertz metamaterials. Appl. Opt.,2012,51(16):3258-3262.
    [115]Lecaruyer P, Canva M, Rolland J. Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. Appl. Opt.,2007,46(12):2361-2369.
    [116]Letartre X, Seassal C, Grillet C, et al. Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Applied Physics Letters,2001, 79(15):2312-2314.
    [117]Notomi M, Yamada K, Shinya A, et al. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Physical Review Letters,2001, 87(25):253902.
    [118]Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,1999,397(6720):594-598.
    [119]Inoue K, Kawai N, Sugimoto Y, et al. Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs. Physical Review B,2002,65(12):121308.
    [120]Asano T, Kiyota K, Kumamoto D, et al. Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide. Applied Physics Letters, 2004,84(23):4690-4692.
    [121]Baba T, Mori D, Inoshita K, et al. Light localizations in photonic crystal line defect waveguides. Selected Topics in Quantum Electronics, IEEE Journal of,2004,10(3):484-491.
    [122]Gersen H, Karle T J, Engelen R J P, et al. Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides. Physical Review Letters,2005,94(7):073903.
    [123]Vlasov Y A, O'Boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438(7064):65.
    [124]Engelen R J P, Sugimoto Y, Watanabe M, et al. The effect of higher order dispersion on slow light propagation in photonic crystal waveguides.200621-26 May 2006. p 1-2.
    [125]Tanaka Y, Kuwatsuka H, Kawashima H, et al. Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides. Applied Physics Letters,2006, 89(13):131101-3.
    [126]Masaya N. Manipulating light with strongly modulated photonic crystals. Reports on Progress in Physics,2010,73(9):096501.
    [127]Kane Y. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on,1966,14(3):302-307.
    [128]Krauss T F. Slow light in photonic crystal waveguides. Journal of Physics D:Applied Physics, 2007,40(9):2666-2670.
    [129]Mori D, Baba T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Opt. Express,2005,13(23):9398-9408.
    [130]Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat Photon,2008,2(12):741-747.
    [131]Tanabe T, Notomi M, Kuramochi E, et al. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat Photon,2007, 1(1):49-52.
    [132]Beard M C, Turner G M, Schmuttenmaer C A. Terahertz Spectroscopy. The Journal of Physical Chemistry B,2002,106(29):7146-7159.
    [133]Hangyo M, Nagashima T, Nashima S. Spectroscopy by pulsed terahertz radiation. Measurement Science and Technology,2002,13(11):1727-1738.
    [134]Han P Y, Zhang X C. Free-space coherent broadband terahertz time-domain spectroscopy. Measurement Science and Technology,2001,12(11):1747-1756.
    [135]Bolivar P H, Brucherseifer M, Rivas J G, et al. Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies. Microwave Theory and Techniques, IEEE Transactions on,2003,51(4):1062-1066.
    [136]Han P Y, Tani M, Usami M, et al. A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics,2001, 89(4):2357-2359.
    [137]Exter M v, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett.,1989,14(20):1128-1130.
    [138]Bass M, Franken P A, Ward J F, et al. Optical Rectification. Physical Review Letters,1962, 9(11):446-448.
    [139]Cai Y, Brener I, Lopata J, et al. Coherent terahertz radiation detection:Direct comparison between free-space electro-optic sampling and antenna detection. Applied Physics Letters,1998, 73(4):444-446.
    [140]Smith R M, Arnold M A. Terahertz Time-Domain Spectroscopy of Solid Samples:Principles, Applications, and Challenges. Applied Spectroscopy Reviews,2011,46(8):636-679.
    [141]Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters,1993,71(17):2725-2728.
    [142]Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Opt. Lett., 2000,25(16):1210-1212.
    [143]Kress M, Loffler T, Eden S, et al. Terahertz-pulse generation by photoionization of airwith laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett.,2004, 29(10):1120-1122.
    [144]Xie X, Dai J, Zhang X C. Coherent Control of THz Wave Generation in Ambient Air. Physical Review Letters,2006,96(7):075005-4.
    [145]Zhong H, Karpowicz N, Zhang X C. Terahertz emission profile from laser-induced air plasma. Applied Physics Letters,2006,88(26):261103-3.
    [146]Dai J, Xie X, Zhang X C. Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases. Physical Review Letters,2006,97(10):103903-4.
    [147]Wu Q, Zhang X C. Free-space electro-optics sampling of mid-infrared pulses. Applied Physics Letters,1997,71(10):1285-1286.
    [148]Dai J, Zhang J, Zhang W, et al. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B,2004,21(7):1379-1386.
    [149]Afsar M N. Dielectric Measurements of Millimeter-Wave Materials. Microwave Theory and Techniques, IEEE Transactions on,1984,32(12):1598.
    [150]Khoo I-C, Wu S-T. Optics and nonlinear optics of liquid crystals. Singapore:World Scientific, 1993.
    [151]Liu C Y, Chen L W. Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation. Opt. Express,2004,12(12):2616.
    [152]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.,1994,114(2):185.
    [153]Chen C Y, Hsieh C F, Lin Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express,2004,12(12):2625.
    [154]Mekis A, Chen J C, Kurland I, et al. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters,1996,77(18):3787-3790.
    [155]Charlton M D B, Zoorob M E, Parker G J, et al. Experimental investigation of photonic crystal waveguide devices and line-defect waveguide bends. Materials Science and Engineering:B, 2000,74(1-3):17-24.
    [156]Fan S, Villeneuve P R, Joannopoulos J D, et al. Channel Drop Tunneling through Localized States. Physical Review Letters,1998,80(5):960-963.
    [157]Centeno E, Guizal B, Felbacq D. Multiplexing and demultiplexing with photonic crystals. Journal of Optics A:Pure and Applied Optics,1999,1(5):L10.
    [158]Yanik M F, Fan S. Stopping Light All Optically. Physical Review Letters,2004,92(8):083901.
    [159]Barclay P, Srinivasan K, Painter O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express,2005, 13(3):801-820.
    [160]Krauss T F, Rue R M D L, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature,1996,383(6602):699-702.
    [161]Taillaert D, Bogaerts W, Bienstman P, et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. Quantum Electronics, IEEE Journal of,2002,38(7):949-955.
    [162]Prather D W, Murakowski J, Shi S, et al. High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. Opt. Lett.,2002,27(18):1601-1603.
    [163]Mekis A, Joannopoulos J D. Tapered Couplers for Efficient Interfacing Between Dielectric and Photonic Crystal Waveguides. J. Lightwave Technol.,2001,19(6):861.
    [164]Gallot G, Jamison S P, McGowan R W, et al. Terahertz waveguides. J. Opt. Soc. Am. B,2000, 17(5):851-863.
    [165]Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett.,2001,26(11):846-848.
    [166]Happ T D, Kamp M, Forchel A. Photonic crystal tapers for ultracompact mode conversion. Opt. Lett.,2001,26(14):1102-1104.
    [167]Palamaru M, Lalanne P. Photonic crystal waveguides:Out-of-plane losses and adiabatic modal conversion. Applied Physics Letters,2001,78(11):1466-1468.
    [168]Bienstman P, Assefa S, Johnson S G, et al. Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B,2003,20(9):1817-1821.
    [169]Pottier P, Ntakis I, De La Rue R M. Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further device functionality. Optics Communications,2003,223(4-6):339-347.
    [170]Burns W K, Milton A. Mode conversion in planar-dielectric separating waveguides. Quantum Electronics, IEEE Journal of,1975, 11(1):32-39.
    [171]Marcuse D. Radiation losses of tapered dielectric slab waveguides. The Bell System Technical Journal,1970,49:273-290.
    [172]Khoo E, Liu A, Wu J. Nonuniform photonic crystal taper for high-efficiency mode coupling. Opt. Express,2005,13(20):7748-7759.
    [173]Johnson S G, Bienstman P, Skorobogatiy M A, et al. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Physical Review E, 2002,66(6):066608.
    [174]Chase S T, Joseph R D. Resonant array bandpass filters for the far infrared. Appl. Opt.,1983, 22(11):1775-1779.
    [175]Zhang S, Genov D A, Wang Y, et al. Plasmon-Induced Transparency in Metamaterials. Physical Review Letters,2008,101(4):047401.
    [176]Cho D J, Wu W, Ponizovskaya E, et al. Ultrafast modulation of optical metamaterials. Opt. Express,2009,17(20):17652-17657.
    [177]Zhou J, Koschny T, Kafesaki M, et al. Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies. Physical Review Letters,2005,95(22):223902.
    [178]Lahiri B, McMeekin S G, Khokhar A Z, et al. Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt. Express,2010,18(3):3210-3218.
    [179]Soukoulis C M, Linden S, Wegener M. Negative Refractive Index at Optical Wavelengths. Science,2007,315(5808):47-49.
    [180]Wang Y, Wu Q, Wu Y M, et al. Broadband Terahertz Left-Hand Material With Negative Permeability for Magnetic Response. Magnetics, IEEE Transactions on,2011, 47(10):2592-2595.
    [181]Chen H-T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator. Nat Photon,2009,3(3):148-151.
    [182]Guo H, Liu N, Fu L, et al. Resonance hybridization in double split-ring resonator metamaterials. Opt. Express,2007,15(19):12095-12101.
    [183]Baena J D, Marques R, Medina F, et al. Artificial magnetic metamaterial design by using spiral resonators. Physical Review B,2004,69(1):014402.
    [184]Marques R, Mesa F, Martel J, et al. Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments. Antennas and Propagation, IEEE Transactions on,2003,51(10):2572-2581.
    [185]Marques R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B,2002,65(14):144440.
    [186]Klein M W, Enkrich C, Wegener M, et al. Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt. Lett.,2006,31(9):1259-1261.
    [187]Clemens M, Weiland T. Discrete electromagnetism with the finite integration technique. Progress in Electromagn. Research PIER,2001,32:65-87.
    [188]Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials. Opt. Express, 2010,18(12):13044-13050.
    [189]Huggard P G, Cluff J A, Moore G P, et al. Drude conductivity of highly doped GaAs at terahertz frequencies. Journal of Applied Physics,2000,87(5):2382-2385.
    [190]Bitzer A, Ortner A, Merbold H, et al. Terahertz near-field microscopy of complementary planar metamaterials:Babinet's principle. Opt. Express,2011,19(3):2537-2545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700