用户名: 密码: 验证码:
小兴安岭北麓晚中生代浅成热液金矿系统的岩浆流体作用与金成矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区位于黑龙江省中部小兴安岭北麓,地处兴蒙造山带东部、松辽盆地/松嫩地块北缘,位于兴安地块、佳木斯地块之间,是一个经历了古亚洲洋演化、兴蒙造山和蒙古-鄂霍茨克板块作用、太平洋板块俯冲作用叠加的复合构造区。多期、复杂的地质作用形成了超常富集的金及多金属成矿系统,尤以浅成热液金矿成矿最为发育。继上世纪五十年代末发现团结沟大型浅成热液金矿床以来,近年来又发现了东安和三道湾子大中型浅成热液金矿床,以及高松山、富强、平顶山、马连和杜家河等中小型浅成热液金矿床,使得本区成为我国乃至世界经济地质学家关注和研究的热点。为了深入揭示该区浅成热液金矿床的成矿规律,本论文在前人研究成果的基础上,选择重要和具有代表性的三道湾子、东安和团结沟浅成热液金矿床的矿床地质特征、成矿流体、矿床地球化学和成矿年代学进行了系统的研究,取得的主要成果和进展如下。
     1.通过矿床地质和矿相学研究,进一步认证三道湾子碲金矿床为浅成热液低硫化型碲金矿床,矿体呈脉状和透镜状产出,赋矿围岩为塔木兰沟组火山岩,成矿过程可划分为白色石英-黄铁矿、灰白色石英-多金属硫化物、深灰色石英-金-碲化物和晚期碳酸盐四个阶段。东安银金矿床为浅成热液低硫化型银金矿床,矿体多呈脉状,赋矿围岩为流纹斑岩、细粒碱长花岗岩和中粗粒碱长花岗岩,其成矿阶段划分为石英-黄铁矿、白色硅化-冰长石、灰白色硅化-冰长石和玉髓状石英-萤石四个阶段。团结沟锑银金矿床为浅成热液低硫化型锑银金矿床,矿体多呈脉状、扁豆状产于花岗杂岩体内部及与黑龙江岩群的接触带内,赋矿围岩有斜长花岗斑岩、花岗闪长岩和花岗斑岩,矿化阶段可划分为脉状石英-自形黄铁矿、黄铁矿-白铁矿-灰黑色玉髓状石英、细粒状黄铁矿和碳酸盐阶段。
     2.矿床的矿物流体包裹体研究揭示,三道湾子、东安和团结沟金矿床的流体包裹体以气液两相包裹体为主,纯液相包裹体和纯气相包裹体次之。其中,三道湾子碲金矿床流体包裹体的均一温度峰值集中在350~320℃、310~290℃、280~250℃和240~200℃,盐度依次为1.39~5.09%NaCleq、1.39~4.32%NaCleq、1.56~5.09%NaCleq和1.22~4.63%NaCleq;东安银金矿床流体包裹体的均一温度峰值集中在360~310℃、300~270℃、250~210℃和190~170℃,盐度依次为4.01~6.14%NaCleq、2.89~6.14%NaCleq、0.70~4.32%NaCleq和2.06~3.21%NaCleq;团结沟锑银金矿床流体包裹体的均一温度主要集中在360~280℃、270~230℃、220~190℃和180~150℃,盐度依次为0.70~9.99%NaCleq、1.22~6.58%NaCleq、1.22~4.79%NaCleq和0.35~4.32%NaCleq。
     3.流体包裹体的气相成分和群体包裹体的氢氧同位素特征揭示,三道湾子碲金矿床的初始流体为含CO_2和少量CH4的H_2O-NaCl岩浆流体,成矿阶段CO_2逃逸,使流体转化为贫CO_2的还原性岩浆流体,成矿晚期伴随着大气降水的不断加入,流体接近循环天水;东安银金矿床的初始流体为中高温、低盐度H_2O-NaCl岩浆流体,成矿阶段流体为以大气降水为主的含少量CO_2和H_2的H_2O-NaCl流体,到成矿晚阶段则有大气降水的混入,流体接近于循环天水;团结沟锑银金矿床的初始流体为含CO_2的H_2O-NaCl岩浆流体,成矿阶段为含少量C2H_2、C2H4和C2H6等烃类的H_2O-NaCl岩浆流体,晚期则有大气降水的混入。
     4.成岩成矿时代和成矿地质条件研究显示,三道湾子碲金矿床的成矿发生在118.9~125.3Ma之间,东安银金矿床的成矿在109.7~105.14Ma之间,团结沟锑银金矿床成矿在102.07±0.84Ma之后或102~100Ma之间;前者与成矿密切相关的岩浆热事件是塔木兰沟组准铝质、高钾钙碱性、钾质火山岩和准铝质、钙碱性、钠质辉绿玢岩脉有关,东安银金矿床成矿与准铝质-过铝质、高钾钙碱性、钾质-高钾质宁远村组火山岩有关,后者成矿与准铝质-过铝质、高钾钙碱性、钾质-高钾质宁远村组火山岩和过铝质、钙碱性-高钾钙碱性、钾质花岗杂岩有关。
     5.通过与成矿密切相关的火山岩、浅成岩的地质地球化学研究,揭示研究区内与成矿相关的火成岩的稀土和微量元素具有富集轻稀土元素和大离子亲石元素、亏损高场强元素的特征,铕负异常不明显。Sr-Nd和Lu-Hf同位素研究表明,三道湾子碲金矿床与成矿有关的塔木兰沟组火山岩的母熔体可能来自于古亚洲洋和/或蒙古-鄂霍次克洋闭合时,俯冲板片流体交代的富集大陆岩石圈地幔减压熔融的产物,而低(~(87)Sr/~(86)Sr)i和正εNd(t)值表明塔木兰沟组火山岩源区有亏损软流圈地幔的参与;东安银金矿床与成矿相关的宁远村组火山岩可能为安山质岩浆的最终分异产物,推测安山质母岩浆来自于下地壳的部分熔融;团结沟锑银金矿床与成矿有关的花岗杂岩来源于俯冲产生的岩浆与下地壳相互作用的产物。
     6.将岩浆作用与流体起源演化相结合,进一步厘定三道湾子碲金矿床的含矿流体库起源于俯冲流体交代改造的富集大陆岩石圈地幔部分熔融产生的钙碱性玄武质岩浆,演化后期在伸展环境下上升,伴随着温压降低导致成矿元素大量卸载,形成脉状和透镜状矿体;东安银金矿床的含矿流体起源于中生代镁铁质下地壳部分熔融产生的岛弧钙碱性岩浆,其诱因是古太平洋板块的俯冲导致岩石圈拆沉,引发软流圈地幔上涌并发生镁铁质下地壳部分熔融,在伸展环境下上升到地壳浅部,与浅部大气降水相混合,物理化学条件发生变化,使成矿流体中金、银溶解度逐渐降低而发生沉淀;团结沟锑银金矿床的含矿流体来源于俯冲作用产生的岩浆流体,其岩浆流体的形成与晚中生代壳幔相互作用密切相关,早阶段岩浆具有岛弧钙碱性火山岩属性,是底侵的软流圈地幔与下地壳相互作用的产物;而晚阶段岩浆则具有岛弧-钙碱性和埃达克质浅成侵入岩属性,是大洋板块俯冲产生的埃达克质岩浆与下地壳物质相互作用的结果,暗示含矿流体库的形成是在上述两阶段岩浆房的幔源岩浆与下地壳物质(岩浆)相互作用,多次岩浆分异或抽提作用后聚集而成,晚白垩世在伸展环境下,含矿流体上升形成了团结沟锑银金矿床。
     7.结合东北地区中生代区域动力学背景,认为三道湾子碲金矿床成矿与伊泽奈崎板块北北西向俯冲有关,成矿热动源为俯冲板片流体交代的富集大陆岩石圈地幔减压部分熔融产生的玄武质岩浆;东安银金矿床的形成与伊泽奈崎板块向欧亚板块的俯冲由北北西转变为北西向有关,其热动源为下地壳部分熔融产生的安山质岩浆,团结沟锑银金矿床的形成与泽奈崎板块北西向俯冲有关,热动源为中生代底侵的埃达克质岩浆与下地壳相互作用而产生的岩浆。
The Northern Lesser Xing’an Range is located in the middle part of Heilongjiang Province,estern Xing'an Mongolian orogenic Belt, northern rim of Songliao Basin or Songnen Massif, andbetween Xing'an Massif and Jiamusi Massif, which is a complex tectonic region that experiencedevolution of the Paleo-Asian Ocean, orogenesis of the Xing'an Mongolian and close of theMongoian-Okhotsk, as well as subduction of the Passific Plate. The multi-period andcomplicated geological process formed enrichment of supernormal gold and multi-metalmetallogenic system, especially epithermal gold deposit. Since the Tuanjiegou larger epithermalgold deposit was discovered in the late1950s, a number of deposits have been discovered in theregion, including the Dong’an and Sandaowanzi medium-and large-scale epithermal golddeposits, Gaosongshan, Fuqiang, Pingdingshan, Malian and Dujiahe medium-and small-sizedepithermal gold deposits. Epithermal gold deposits have been the focus of hot research topic inthe study area by many economic geologist from China and globally., In order to deeply revealedregularity regularity of epithermal deposits in the study area, combining previous research results,we chose important and representative deposits, such as Sandaowanzi, Dong'an and Tuanjiegouepithermal gold deposits to undertake system study from ore deposit geological characteristics,ore-froming fluids, geochemistry of mineral deposits and metallogenic chronology. The mainadvance achievements from this study area are as followings.
     1. According to research on geology of ore deposit and mineralography, we further indicatethat the Sandaowanzi Te-Au deposit is a low-sulphidation epithermal Te-Au deposit. Theorebodies for Sandaowanzi Te-Au deposit occurs as veined and lenticular bodies, and are hostedby the Tamulangou group volcanics. Four stages of mineralization have been identified, rangingfrom white quartz-pyrite, through gray quartz-polymetallic-sulfide and dark gray quartz-gold-telluride, to a final carbonate stage. The Dong'an Ag-Au deposit is alow-sulphidation Ag-Au deposit. Orebodies mainly occurs as veined bodies, and hosted byrhyolite porphyry, fine-grained alkali granite and middle-to coarse-grained alkali granite.Ore-forming processes within the deposit can be divided into four mineralization stages:quartz-pyrite, white silicification-adularia, offwhite silicification-adularia and chalcedonicquartz-fluorite. The Tuanjiegou Sb-Ag-Au deposit is a low-sulphidation epithermal Sb-Ag-Audeposit. Orebodies occurs as veined and lenticular bodies, and are hosted within an apophysis ofthe granite complex, with some mineralization within a contact zone between the graniteporphyry apophysis and rocks of the Heilongjiang Group. The main orebearing wall-rocks arerocks of plagioclase granite porphyry, granodiorite and granite porphyry. Four stages ofmineralization have been identified, ranging from an early veiny quartz–euhedral pyrite stage,through pyrite–marcasite–gray–black chalcedonic quartz and fine granular pyrite stages, to afinal carbonate stage.
     2. The mineral fluid inclusions reveal that fluid inclusions from the Sandaowanzi, Dong'anand Tuanjiegou gold deposits mainly are aqueous two-phase inclusions, with minor pure liquidinclusions and pure volatile inclusions. Fluid inclusions form the Sandaowanzi Te-Au depositmainly are aqueous two-phase inclusions, with minor pure liquid inclusions and pure volatileinclusions. The homogenization temperature for the Sandaowanzi Te-Au deposit is range from350~320℃, through310~290℃and280~250℃, to240~200℃. Salinities is in order of1.39~5.09%NaCleq,1.39~4.32%NaCleq,1.56~5.09%NaCleq and1.22~4.63%NaCleq.The homogenization temperature for the Dong'an Ag-Au deposit are range from360~310℃,through300~270℃and250~210℃, to190~170℃, and salinities is in order of4.01~6.14%NaCleq,2.89~6.14%NaCleq,0.70~4.32%NaCleq and2.06~3.21%NaCleq. Thehomogenization temperature for the Tuanjiegou Sb-Ag-Au deposit are range from360~280℃,270~230℃,220~190℃and180~150℃, and salinities is in order of0.70~9.99%NaCleq,1.22~6.58%NaCleq,1.22~4.79%NaCleq and0.35~4.32%NaCleq.
     3. Gas phase composition for fluid inclusions, and Hydrogen and oxygen isotopecharacteristics for group inclusions indicate that the initial ore-forming fluid for the SandaowanziTe-Au deposit is H_2O-NaCl magmatic fluid of CO_2-bearing and minor CH4. The fluid translateinto reduced magmatic fluid of CO_2-poor after CO_2escaping in the ore-forming stage. Theore-forming fluid approximates recycled water with continous influxing of meteoric waters inthe late ore-forming stage. The initial ore-forming fluid for the Dong'an Ag-Au deposit ischaracterized by medium to high temperature, low salinity H_2O-NaCl magmatic fluid, and minorCO_2and H_2-bearing H_2O-NaCl magmatic fluid in the metallogenic stage, however, ore-forming fluid approximates recycled water with continous influxing of meteoric waters. The initialore-forming fluid for the Tuanjiegou Sb-Ag-Au deposit is characterized by CO_2-bearingH_2O-NaCl magmatic fluid, and minor hydrocarbon-bering (such as C2H_2, C2H4and C2H6)H_2O-NaCl magmatic fluid in the metallogenic stage, however, influxing of meteoric waters inthe late ore-forming stage.
     4. Study on diagenetic and metallogenetic epoch, and geological setting show thatmetallogenesis of the Sandaowanzi Te-Au deposit formed at118.9~125.3Ma, Dong'an Ag-Audeposit fromed at109.7~105.14Ma, Tuanjiegou Sb-Ag-Au deposit formed at102~100Ma orafter102.07±0.84Ma. Related magmato-thermal event for the Sandaowanzi Te-Au deposit isclosely related to quasi-aluminous, high-K calc-alkaline and potassium volcanics, as well asquasi-aluminous, calc-alkaline and sodium diabase porphyrite. Related magmato-thermal eventfor the Dong'an Ag-Au deposit is closely related to quasi-aluminous to peraluminous, high-Kcalc-alkaline and potassium to high potassium Ningyuancun group volcanics. Relatedmagmato-thermal event for the Tuanjiegou Sb-Ag-Au deposit is closely related toquasi-aluminous to peraluminous, high-K calc-alkaline and potassium to high potassiumNingyuancun gourp volcanics, as well as peraluminous, calc-to high-K calc-alikaline andpotassium granite complex.
     5. According to study on geochemistry for volcanics and hypabyssal rocks that areassociated with the formation of the deposit, showing that rare earth and rare elements forigneous rock that is closely related to ore-forming is characterized by enrichment in light rareearth elements (LREE), large ion lithophile elements (LREE), depletion in high field-strengthelement (HFSE) and Nb depletion is not obvious. Researh on Sr-Nd and Lu-Hf isotope show thatmelt of the Tamulangou group volcanics are associated with the formation of SandaowanziTe-Au deposit was possibly derived from decompression melting of an enriched continentallithospheric mantle, which had been previously metasomatized by fluids derived from subductedslabs, during the closure of the paleo-Asian and/or Mongolia-Okhotsk Oceans. Moreover,However, low (~(87)Sr/~(86)Sr)iand positive εNd(t) values suggest that depleted asthenospheric mantlehad been involved in the sources of the Tamulangou volcanics. The Ningyuancun groupvolcanics are associated with the formationg of Dong'an Ag-Au deposit were derived from thedifferentiation end-product of andesitic magmas. The granite complex are associated with theformationg of Tuanjiegou Sb-Ag-Au deposit were derived from end-product of interactionbetween magma related subduction and lower mafic crust.
     6. Combing with magmatism and fluid evolution, we further confirm that ore-forming fluidis derived from calc-alkaline basaltic magma formed by partial melting of an enriched continental lithospheric mantle, which had been previously metasomatized by fluids derivedfrom subducted slabs. In the late evolution stage under stretching environment, mgma descentwith reducing of temperature and pressure and unload ore-forming elements, and then formedveined and lenticular orebodies. The ore-forming fluid for Dong'an Ag-Au deposit is derivedfrom arc calc-alkaline magma formed by partial melt of lower mafic crust, and incentive islithosphere delamination caused by subduction of the Pacific Palte, which triggered upwelling ofasthenosphere and occurred partial melting of lower mafic crust. In the late evolution stage understretching environment, mgma descent to crust at shallow levels and mix with meteoritic water.After that, solubility of Au and Ag in the ore-forming fluid is gradually dropped and precipitatedwith variation of physical and chemical conditions. The ore-forming fluid for the TuanjiegouSb-Ag-Au deposit is derived from subduction-derived magmatic fluid, which is closely related tocrust-matle interaction in the Mesozoic. The earlier stage magma is characterized by arccalc-alkaline volcanics, which is end-product of interaction of underplated asthenosphere andlow crust, while the late stage magma is characterized by arc calc-alkaline and adakite-likehypabyssal intrusive rock, which is end-product of interaction of adakite-like magma and lowcrust. The mineralizing fluids that formed the Tuanjiegou gold deposit were exsolved frommagmas that formed during both of these stages, with the deposit forming after fluids ascendedthrough the crust in the Late Cretaceous.
     7. Combing with Mesozoic regional dynamics background, considering that the formationof Sandaowanzi Te-Au deposit is related to subduction of the Izanagi plate towards NNWtrending, and its metallogenic thermal source is basaltic magma derived from partial melting ofan enriched continental lithospheric mantle, which had been previously metasomatized by fluidsderived from subducted slabs. The formation of Dong'an Ag-Au deposit is closely related tosubduction of the Izanagi plate from NNW trending to NW trending, and its metallogenicthermal source is andesitic magma derived from partial melting of low crust. The formation ofthe Tuanjiegou Sb-Ag-Au deposit is associated with subduction of the Izanagi plate towards NWtrending, and its metallogenic thermal source is magma derived from interaction of adakite-likemagma and low crust.
引文
[1]. Arribas, A., Hedenquist, J.W., Itaya, T., et al. Contemporaneous formation of adjacent porphyry andepithermal Cu–Au deposits over300ka in northern Luzon, Philippines[J]. Geology,1995,23,337–40.
    [2]. Bonham H F. Models for volcanic-hosted epithermal precious metal deposits: A review. InternationalVolcanological Congress, Symposium. Hamilton, New Zealand,1986, Feb., p.13–17.
    [3]. Borg, L.E., Clynne, M.A., The petrogenesis of felsic calc-alkaline magmas from the southernmostCascades, California: origin by partial melting of basaltic lower crust[J]. Journal of Petrology,1998,39,1197–1222.
    [4]. Cill J B. Orog enic andesite and plate tectonics[M]. Berlin: Springer Verlag,1981.
    [5]. Condie K T. Plate tectonic and crust evolution[M]. New York: Pergamon Press Inc,1982.
    [6]. Cooke D R and Deyell C L. Descriptive names for epithermal deposits: Their implications for inferringfluid chemistry and ore genesis. Eliopoulos, et al. Proceedings of the Seventh Biennial SGA Meeting—Mineral Exploration and Sustainable Development. Rotterdam: Millpress Science Publishers, p.457–460.
    [7]. Cooke D R, Deyell C L. Descriptive names for epithermal deposits: Their implications for inferring fluidchemistry and ore genesis[A]. ELIOPOULOS, et al. Proceedings of the Seventh Biennial SGAMeeting-Mineral Exploration and Sustainable Development[C]. Rotterdam: Millpress Science Publishers,2003,457–460.
    [8]. Cooke DR, Simmons SF. Characteristics and genesis of epithermal gold deposits[J]. Rev Econ Geol,2000,13:21–244.
    [9]. Corbett G. Epithermal gold for explorationists [J]. AIG Jounal Applied Geoscientific Practice andResearch in Australia,2002, April:1–26.
    [10].Cui Peilong, Sun Jinggui, Han Shijiong, et al., Zircon U–Pb–Hf isotopes and bulk-rock geochemistry ofgneissic granites in the northern Jiamusi Massif, Central Asian Orogenic Belt: implications for MiddlePermian collisional orogeny and Mesoproterozoic crustal evolution. International geology review,DOI:10.1080/00206814.2013.767489.
    [11].D. W. Pals, P. G. Spry.2003. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit,Vatukoula, Fiji, Mineralogy and Petrology (2003)79:285–307.
    [12].Engebretson D.C.,Cox A., Gordon R.G..Relative motions between oceanic and continental plates in thePacific basin [J].Geol.Soc.Spec.Paper,1985,206:1–59.
    [13].Fan W M, Guo F, Wang Y J. et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension inthe northern Da Hinggan Mountains, Northeastern China[J]. Journal of volanology and geothermalresearch,2003,121:115–135.
    [14].Fei Wang, Xin-Hua Zhou, Lian-Chang Zhang, et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China): Timing and implications for the dynamic setting of NE Asia[J], Earth and Planetary ScienceLetters,2006,251:179–198.
    [15].Guo, F., Fan, W.M., Li, C.W.,et al. Early Paleozoic subduction of the Paleo-Asian Ocean: evidence fromthe geochronology and geochemistry of Dashizhai basalts from the Nei Mongolia region, NE China[J].Science in China (Series D—Earth Sciences),2009,52,940–951.
    [16].Hanson GN. Rare Earth elements in petrogenetic studies of igneous systems[J]. Ann. Rev. Earth PlanetSci.,1980,8:371–406.
    [17].Hawkesworth, C.J., Gallagher, K., Hergt, J.M., et al. Mantle and slab contributions in arc magmas[J].Annual Review of Earth and Planetary Sciences,1993,21:175–204.
    [18].Heald P, Foley N K, Haba D O.Comparative anatomy of volcanic-hosted epithermal deposits-acidsulphate and adularia-sericite types[J]. Economic Geology,1987,80:1–26.
    [19].Hedenquist, J.W., Arribas, R.A. and Gonzalez, U.E.(2000) Exploration for epithermal gold deposits. In S.Hagemann and P.E. Brown (eds), Gold in2000. Society of Economic Geologists, Reviews in EconomicGeology,13,245–77.
    [20].Hedenquist, J.W., Izawa, E., White, N.C., et al. Geology, geochemistry and origin of high sulfidationCu-Au mineralization in the Nansatsu district, Japan[J]. Economic Geology,1994,89,1–30.
    [21].Heinrich C. A. Magmatic vapour condensation and the relation between porphyries and epithermalAu-(Cu-As) mineralization: Thermodynamic constraints. Eliopoulos, et al. Proceedings of the SeventhBiennial SGA Meeting—Mineral Exploration and Sustainable Development. Rotterdam: MillpressScience Publishers,2003,279–282.
    [22].Hong, D.W., Huang, H.Z., Xiao, Y.J. Permian alkaline granites in central Inner Mongolia and theirgeodynamic significance[J]. Acta Geologica Sinica,1995,8,27–39.
    [23].Hsu, K.J., Wang, Q.C., Li, J.L., Hao, J. Geological evolution of the Neimonides: a working hypothesis[J].Ecolgae Geologicae Helvetiae,1991,84,1–31.
    [24].Ingle S., Scoates J.S., Weis D., et al. Origin of Cretaceous continental tholeiites in southwestern Australiaand eastern India: insights from Hf and Os isotopes[J]. Chemical Geology.,2004,209:83–106.
    [25].Jian, P., Liu, D.Y., Kr ner, A., et a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogenin southwest China (II): insights fromzircon ages of ophiolites, arc/back-arc assemblages and withinplateigneous rocks and generation of the Emeishan CFB province[J]. Lithos,2009,113:767–784.
    [26].Jian, P., Liu, D.Y., Kr ner, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-livedCentral Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth[J]. Lithos,2008,101:233–259.
    [27].Jinggui Sun, Shijiong Han, et al. Diagenesis and metallogenetic mechanisms of the Tuanjiegou golddeposit from the Lesser Xing'an Range, NE China: zircon U-Pb geochronology and Lu-Hf isotopicconstraints[J]. Journal of Asian Earth Sciences,2013,62:373–388.
    [28].Jinping Qi, Yanjing Chen, Franco Pirajno. Tectonic setting of epithermal deposits in mainland China,Mineral deposit research: Meeting the global challenge[J],2005:577–580.
    [29].John D A. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin,western United States: Characteristics, distribution, and relationship to magmatism[J]. Economic Geology,2001,96:1827–1853.
    [30].John D.A., Wallace, A.R., Ponce, D.A., et al. New perspectives on the geology and origin of the northernNevada Rift, in Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds.,Geology and Ore Deposits2000: The Great Basin and Beyond: Geological Society of NevadaSymposium Proceedings, May15-18,2000, p.127–154.
    [31].Junlai Liu, Xiangdong Bai, Shengjin Zhao, MyDung Tran, Zhaochong Zhang, Zhidan Zhao, Haibin Zhaoand Jun Lu. Geology of the Sandaowanzi telluride gold deposit of the northern Great Xian’an Range, NEChian: Geochronology and tectonic controls[J]. Journal of Asian Earth Science,2011,41(2):107–118.
    [32].Kerrich R, Goldfarb RJ, Groves DI, et al. The characteristics, origins and geodynamic settings ofsupergiant gold metallogenic provinces[J]. Sci China Ser D,2000,43(suppl):1–68.
    [33].Khain EV, Bibikova EV, Kroner A, et al. The most ancient ophiolite of the Central Asian fold belt: U-Pband Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamicimplications[J]. Earth and Planetary Science Letters,2002,199:311–325.
    [34].Li J Y. Permian Geodynamics setting of northeast China and adjacent regions: Closure of the Paleo-AsianOcean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences,2006,26:207–224.
    [35].Lindgren W. A suggestion for a terminology of certain mineral deposits[J]. Economic Geology,1922,17(4):292–294.
    [36].Lindgren W. Mineral Deposits,4th Ed[M]. McGraw-Hill Book Company, INC., New York and LondonMcGraw Hill,1933,1–930.
    [37].MacDonald, R., Hawkesworth, C.J., Heath, E., The Lesser Antilles volcanic chain: a study in arcmagmatism[J]. Earth Science Reviews,2000,49:1–76.
    [38].Mao Jingwen, Pirajno F., Cook N., Mesozoic metallogeny in East China and corresponding geodynamicsettings—An introduction to the special issue. Ore Geology Reviews,2011,43:1–7.
    [39].Maruyama S, Seno T.Orogeny and relative plate motion:example of the Japanese islands [J].Tectonophysics,1986,127:305–329.
    [40].Meng, Q.R. What drove late Mesozoic extension of the northern China–Mongolia tract?[J].Tectonophysics,2003,369:155–174.
    [41].Miao, L.C., Fan, W.M., Liu, D.Y., et al. Geochronology and geochemistry of the Hegenshan ophioliticcomplex: implications for late-stage tectonic evolution of the Inner Mongolia–Daxinganling orogenicbelt, China[J]. Journal of Asian Earth Sciences,2008,32,348–370.
    [42].Misra K C. Understanding Mineral Deposit, Dordrecht, Netherlands: Kluwer Academic[M],2000,698–759.
    [43].Moritz R, Chambefort I, Georgieva S, et al. The Chelopech high-sulphidation epithermal Cu–Audeposit[J]. Ore Geol Rev,2005,27:130–131.
    [44].Morris, J.D., Leeman, W.P., Tera, F., The subducted component in island arc lavas: constraints from Beisotopes and B–Be systematics[J]. Nature,1990,344:31–36.
    [45].Muller D, Kaminski K, Uhlig S, et al. The transition from porphyry-to epithermal-style goldmineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study[J]. Miner Deposita,2002,37:61–74.
    [46].Muller, J.F., Rogers, J.J.W., Jin, Y.G., et al. Late Carboniferous to Permian sedimentation in InnerMongolia, China, and tectonic relationships between North China and Siberia[J]. Journal of Geology,1991,99,251–263.
    [47].Newton R C, Smith J V, Windley B. Carbonic metamporphism, granulite and crustal growth[J]. Nature,1980,288:45–52.
    [48].Nguyen Hoang and Kozo Uto.2003. Geochemistry of Cenozoic basalts in the Fukuoka district (northernKyushu, Japan): implications for asthenosphere and lithospheric mantle interaction[J]. Chemical Geology,2003,198(3-4):249–268
    [49].Phillips G N, Evans K A. Role of CO2in the formation of gold deposit[J]. Nature,2004,429:860–863.
    [50].Pirajno F. Hydrothermal Processes and Mineral Systems[M]. Springer, Berlin, Germany,2009,1–1250.
    [51].Pirajno F. Ore deposits and mantle plumes[M]. Printed in Netherland,Published by Kluwer Academicpublisher,2000, p.1–1250.
    [52].Richards JP. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. EconomicGeology,2003,98:1515–1533.
    [53].Richards, J P. Alkalic-type epithermal gold deposits-a review, in Magmas, Fluids, and Oredeposits MinAssoc Canada, Short Course23:367–400.
    [54].Robinson, P.T., Zhou, M., Hu, X., Geochemical constraints on the origin of the Hegenshan Ophiolite,Inner Mongolia, China[J]. Journal of Asian Earth Sciences,1999,17:423–442.
    [55].Robinson, P.T., Zhou, M.F., Hu, X.F., et al. Geochemical constraints on the origin of the Hegenshanophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences,1999,17,423–442.
    [56].Rollinson H. R. Using geochemical data: evaluation, presentation, interpretation[M]. London: LongmanScientific&Technical,1993.237–247.
    [57].Salters VJM, Hart SR. The mantle sources of ocean ridges, islands and arcs: the Hf isotope connection[J].Earth Planet. Sci. Lett.,1991,104:364–380.
    [58].Sengor AMC, Natal’in BA (1996) Paleotectonics of Asia: fragments of synthesis[C]. In: Yin A, HarrisonTM (eds) The tectonic evolution of Asia. Cambridge University Press, Cambridge,pp486–640.
    [59].S ngor, A.M.C., Natal'in, B.A., Burtman, V.S., Evolution of the Altaid tectonic collage and Paleozoiccrustal growth in Eurasia[J]. Nature,1993,364:299–307.
    [60].S ngor, A.M.C., Natal'in, B.A., Paleotectonics in Asia: fragments of a synthesis[C]. In: Yin, A., Harrison,M.(Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge,1996, pp.486–640.
    [61].Shao J A, Zang S X, Mou B L. Extensional tectonics and asthenospheric upwelling in the Orogenic belt: acase study from Hinggan-Mongolia Orogenic belt[J]. Chin. Sci. Bull,1994,39:533–537.
    [62].Shimoda, G., Tatsumi, Y., Nohda, S., et al. Setouchi high-Mg andesites revisited: geochemical evidencefor melting of subducting sediments[J]. Earth. Planet. Sci. Lett.,1998,160,479–492.
    [63].Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the circum-Pacific region[J]. Aust J Earth Sci,1997,44:373–388.
    [64].Sillitoe R H. Major gold deposits and belts of the North and South American Cordillera: distribution,tectonomagmatic settings, and metallogenic considerations[J]. Economic geology,2008,103:663–687.
    [65].Sillitoe R H. Porphyry copper systems[J]. Economic geology,2010,150:3–41.
    [66].Simmons SF, Brown KL. Gold in magmatic hydrothermal solutions and the rapid formation of a giant oredeposit[J]. Science,2006,314:288–291.
    [67].Sun S S and McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications formantle composition and process[C]. In: Sauders A D and Norry M J (eds.). Magmatism in the OceanBasins.Geological Society Special Publication,1989,42:313–345.
    [68].Sun, S.S., McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes. In: Saunders, A.D., Norry, M.J.(Eds.), Magmatism in ocean basins[C].Geological Society of Special Publication,1989, London42,313–345.
    [69].Takahiro, N., Y. Nishiba, T. Sato, and I. Suda. Properties of starches from several low-amylose ricecultivars[J]. Cereal Chem,2003,80:193–197.
    [70].Tang K. D., Tectonic development of Palaeozoic fold belts at the north margin of the Sino-Korean Craton[J]. Tectonics,1990,9:249–260.
    [71].Treuil M and Joron J L. Utilisation des elements hygromagmatophiles pour la simplification de lamodelisation quantitative des processus magmatiques: Exemples de I'Afar et de la dorsalemedioatlantique[J]. Soc.Ital.Mineral.Petrol.1975,31:125–174.
    [72].Vervoort JD, Patchett PJ, Gehrels GE et al. Constrains on early Earth differentiation from hafnium andneodymium isotopes[J]. Nature,1996,379:624–627.
    [73].Wang F, Xu W L, Meng E, et al. Early Paleozoic amalgamation of the Songnen-Zhangguangcai RangeJiamusi massifs in the eastern segment of the central Asian Orogeinc Belt: Geochronological andgeochemical evidence from grantoids and rhyolites[J]. Journal of Asian Earth Science,2012,49:234–248.
    [74].Wang F, Xu W L, Meng E, et al. Late Triassic bimodal magmatism in the Lesser Xing’an-ZhangguangcaiRange, NE China: Constraints on the timing of transformation of Paleo-Asian ocean into circum-Pacificocean tectonic systems[J]. Mineralogical Magazine,2011,75:211.
    [75].Wang, F., Zhou, X.H., Zhang, L.C., et al. Late Mesozoic volcanism in the Great Xing'an Range (NEChina): timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary ScienceLetters,2006,251,179–198.
    [76].Wang, F., Zhou, X.H., Zhang, L.C., et al. Late Mesozoic volcanism in the Great Xing'an Range (NEChina): timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters,2006,251:179–198.
    [77].Wang, P.J., Liu, Z.J., Wang, S.X., et al.40Ar/39Ar and K/Ar dating of the volcanic rocks in the Songliaobasin, NE China: constraints on stratigraphy and basin dynamics[J]. International Journal of EarthSciences,2002,91:331–340.
    [78].White N C, Hedenquist J W. Epithermal gold deposits: Styles, characteristics and exploration[J]. Societyof Economic Geology Newsletter,1995,23:9–13.
    [79].Wilde S A, Dorsett-Bain H L and Lennon R G. Geological setting and controls on the development ofgraphite, sillimanite and phosphate mineralization within the Jiamusi Massif: An exotic fragment ofGondwana land located in north-eastern China?[J] Gondwana Research,1999,2(1):21–46.
    [80].Wilde S A, Dorsett-Bain H L, Liu J L. The identication of a Late Pan-African granulite facies event innortheastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liu Mao, HeilongjiangProvince, China[C]. In: Qian X L and You Z D (eds.). Precambrian Geology Metamorphic Petrology,Proceedings of the30thInternational Geological Congress, Beijing.1996. vol.17. Vtrecht, Netherlands:VSP International Science Publishers.59–74.
    [81].Wilde S A, Wu F Y, Zhang X Z. Late Pan-African metamorphic in northeast China:SHRIMP U-Pb zirconevidence from grantioids in the Jiamusi Massif[J]. Precambrian Research.2003,122:311–327.
    [82].Wilde S A, Zhang X Z and Wu F Y. Extension of a newly identified500Ma metamorphic terrane in NorthEast China: Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115–130.
    [83].Wilde S A, Zhang X Z,Wu F Y. Extension of a newly-identified500Ma metamorphic terrain in North EastChina: further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115–130.
    [84].Wilde, S.A., Zhou, X.H., Wu, F.Y. Extension of a newly identified500Ma metamorphic terrane in NorthEast China: further U±Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115–130.
    [85].Wilson M. Igneous petrogenesis a global tectonic approach[M]. Chapman and Hall, London,1989,466.
    [86].Wu F Y, Yang J H, Lo C H, et al. Jiamusi Massif in China: A Jurassic accretionary terrane in the westernPacific [J]. The island arc,1990,16:156–172.
    [87].Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: A Jurassic accretionary complex in the JiamusiMassif at the western Pacific margin of northeastern China[J]. Island Arc,2007,16:156–172.
    [88].Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its role in the evolution of the central asianorogenic belt of NE China [J]. Journal Asian Earth Science,2007,30:542–556.
    [89].Wu FY, Sun DY, Ge WC, Zhang YB, et al. Geochronology of the Phanerozoic granitoids in northeasternChina[J]. Journal of Asian Earth Sciences,2011,41:1–30.
    [90].Wu, F.Y., Jahn, B.M., Wilde, S., et al. Phanerozoic continental crustal growth: Sr–Nd isotopic evidencefrom the granites in northeastern China[J]. Tectonophysics,2000,328:89–113.
    [91].Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., Sun, D.Y.,2003. Highlyfractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos66,241–273.
    [92].Wu, F.Y., Sun, D.Y., Li, H.M., et al. A-type granites in northeastern China: age and geochemicalconstraints on their petrogenesis[J]. Chemical Geology,2002,187:143–173.
    [93].Wu, F.Y., Sun, D.Y., Li, H.M., et al. The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints[J]. Physics and Chemistry of the Earth (Part A),2001,26:793–803.
    [94].Wu, F.Y., Yang, J.H., Lo, C.H., et al., The Heilongjiang Group: a Jurassic accretionary complex in theJiamusi Massif at the western Pacific margin of northeastern China[J]. The Island Arc,2007,16:156–172.
    [95].Xiao, W.J., Windley, B.F., Hao, J., et al. Accretion leading to collision and the Permian Solonker suture,Inner, Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics,2003,22,1069.doi:10.1029/2002TC001484.
    [96].Y. Morishita, N. Shimada, K. Shimada. Invisible gold and arsenic in pyrite from the high-grade Hishikarigold deposit, Japan. Applied Surface Science,2008,255:1451–1454.
    [97].Ying, J.F., Zhou, X.H., Zhang, L.C., et al. Geochronological and geochemical investigation of the lateMesozoic volcanic rocks from the Northern Great Xing'an Range and their tectonic implications[J].International Journal of Earth Sciences,2010,99:357–378.
    [98].Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'anRange, northeastern China: Implications for subduction-induced delamination[J]. Chemical Geology,2010,276:144–165.
    [99].Zhang Z C, Mao J W, Wang Y B, et al. Geochemistry and geochronology of the volcanic rocks associatedwith the Dong'an adularia–sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiangprovince, NE China: Constraints on the metallogenesis[J]. Ore Geology Reviews,2010,37:158–174.
    [100]. Zhang, D.Q., Bao, X.W.,et al. A study on the petrology, geochemistry and genesis of the Bayannurintermediate-acidic volcano-plutonic complex in eastern inner Mongolia[J]. Geological Reviews,1990,36:289–297.
    [101]. Zhao, D.P., Multiscale seismic tomography and mantle dynamics[J]. Gondwana Research,2009,15:297–323.
    [102]. Zhao, X.X., Coe, R.S., Zhou, Y.S., et al., New palaeomagnetic results from northern China: collisionand suturing with Siberia and Kazakhstan. Tectonophysics,1990,181,43–81.
    [103]. Zhou J B, Wilde S A, Zhang X Z, et al. The on set of Pacific margin accretion in NE China:Evidence from the Heilongjiang High-pressure metamorphic belt [J]. Tectonophysics,1999,478:230–246.
    [104]. Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics,2009,478,230–246.
    [105]. Wilde S A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35-50.
    [106].安芳,朱永峰,新疆阿希金矿矿床地质和地球化学研究[J].矿床地质,2009,28(2):143-156.
    [107].敖贵武,薛明轩,周辑,等.黑龙江东安金矿床成因探讨[J].矿产与地质,2004,102(18):118-121.
    [108].曹生儒.对内蒙古板块构造轮廓的新认识[J],中国区域地质,1993,3:211-215.
    [109].曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992,1-244.
    [110].曹熹,刘正宏.糜棱岩形成机制的显微构造证据[J],长春地质学院学报,1988,18(2):45-48.
    [111].陈静.黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用[D].长春:吉林大学博士学位论文,1-150.
    [112].陈美勇,刘俊来,胡建江,等.大兴安岭北段三道湾子碲化物型金矿床的发现及意义,地质通报,2008,27(4):584-587.
    [113].陈衍景,倪培,范宏瑞,等.2005.不同类型热液金矿系统的流体包裹体特征,岩石学报[J],2005,23(9):2085-2108.
    [114].陈毓川,朱裕生,等.中国矿床成矿模式[M].1993,北京:地质出版社,8-97.
    [115].樊祺诚,赵勇伟,隋建立,等.2012.大兴安岭诺敏河第四纪火山岩分期:岩石学、年代学与火山地质特征,岩石学报,28(4):1092-1098.
    [116].高福红,王枫,许文良,等.小兴安岭“古元古代”东风山群的形成时代及其构造意义:锆石U-Pb年代学证据[J].吉林大学学报(地球科学版),2013,43(2):440-456.
    [117].葛文春隋振民吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007a,23(2):423-440.
    [118].葛文春,林强,李献华,等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石,2000b,20(3):14-18.
    [119].葛文春,林强,孙德有,等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学(中国地质大学学报),2000,25(2):172-178.
    [120].葛文春,林强,孙德有,等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学(中国地质大学学报),2000a,25(2):172-178.
    [121].葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):397-407.
    [122].葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007b,52(20):2407-2417.
    [123].郭锋,范蔚茗等,大兴安岭南段中生代双峰式火山作用[J].岩石学报,2001,17(1):161-168.
    [124].韩振新,徐衍强,郑庆道,等.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004:150-160.
    [125].韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004:5-40.
    [126].韩振哲,赵海玲,李娟娟,等.小兴安岭东南伊春一带早中生代花岗岩与多金属成矿作用[J].中国地质,2010,37(1):74-87.
    [127].韩振哲.小兴安岭东南端早古生代花岗岩类时空演化特征与多金属成矿[D].北京:中国地质大学(北京)学位论文,2011
    [128].黑龙江省地质矿产局.黑龙江省区域地质志[M],北京:地质出版社,1993,347-418.
    [129].黑龙江省地质矿产局.黑龙江省岩石地层[M].北京:中国地质大学出版社,2008.
    [130].胡华斌.鲁西平邑地区浅成低温热液金矿床成矿流体及成矿作用[D].北京:中国地质大学博士学位论文,2005,1-126..
    [131].霍亮,孙丰月.黑龙江东安金矿床流体包裹体特征及矿床成因研究[J].黄金,2010,31(3):8-14.
    [132].吉林省地质矿产局.吉林省区域地质志[M],北京:地址出版社,1988,698.
    [133].江思宏,聂凤军,张义,等.浅成低温热液性金矿床研究最新进展[J].地学前缘(中国地质大学,北京),2004,11(2):401-411.
    [134].江雄新,韦永福,王炳训,等.团结沟金矿床主要地质特征及其成矿作用[A]//沈阳地质矿产研究所编.金矿地质论文集[C].//.北京:地质出版社,1986:71-83.
    [135].姜信顺.团结沟金矿含金黄铁矿、白铁矿及胶黄铁矿的标型特征[C].//.《金矿地质论文集》,沈阳地质矿产所,1982.
    [136].蒋国源,权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所刊,1988,17,23–100.
    [137].颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250.
    [138].李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,74-90.
    [139].李红霞,郭锋,李超文,等.晚古生代古亚洲洋俯冲作用:来自珲春前山镁铁质侵入岩的年代学和地球化学记录[J].岩石学报,2010,26(5):1530-1540.
    [140].李锦铁,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社.
    [141].李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565-582.
    [142].李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999:32-50.
    [143].李景强,周坤,金同和.黑龙江团结沟金矿床地质特征及矿床成因探讨[D],黄金,2008,6(29):19-24
    [144].李军敏.四平—长春地区新构造运动[D].长春:吉林大学硕士论文,2004.
    [145].连长云,尹冰川.大兴安岭西坡中生代火山岩形成机制[J],地质地球化学,2000,28(2):26-37.
    [146].林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J],地球化学,2003,32(3):208-222.
    [147].林强,葛文春等.东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):129-139.
    [148].刘宝山,吕军.黑河市三道湾子金矿床地质、地球化学和成因探讨[J].大地构造与成矿学,2006,4(30):481-485.
    [149].刘洪林,董连慧.阿希金矿地质特征及成因初探.新疆地质[J],1994,10(2):110-119.
    [150].刘建峰,迟效国,周燕,等.小兴安岭东北部金林岩体全岩角闪石Rb-Sr年龄[J].吉林大学学报(地球科学版),2005,35(6):690-693.
    [151].刘静兰.佳木斯中间地块绿岩带特征及其大地构造环境浅析[J].黑龙江地质,1991,2(1):33-48.
    [152].刘静兰.佳木斯中间地块前寒武纪地质研究[J],长春地质学院学报,1988,18(2),6-11.
    [153].刘茂强,杨丙中,等.伊通—舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993.
    [154].刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J],中国地质,2010,37(4):944-951.
    [155].吕军,赵志丹,曹亚平.黑龙江三道湾子金矿床地质特征及成因探讨[J].中国地质,36(4):853-860
    [156].马芳芳,孙丰月,李碧乐,等.黑龙江东安金矿床锆石U-Pb年龄及其地质意义[J].地质与资源,21(3):277-280.
    [157].毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质,2000,19(4):289-296.
    [158].毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [159].内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M],北京:地址出版社,1991,725.
    [160].聂喜涛.黑龙江省团结沟金矿床成矿地质背景与成矿模式研究[D].长春:硕士学位论文,2010,1-58.
    [161].牛雪,卢造勋,姜德禄.郯庐断裂北带地区主要构造单元壳幔结构特征与地震活动性[J].地震学报,2000,22(2):145-150.
    [162].彭玉鲸,陈跃军.吉黑造山带与华北地台开原-山城镇段构造边界位置[J].世界地质,26(1):1-6.
    [163].彭玉鲸,齐成栋,周晓东,等.吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J].地质与资源,21(3):261-265.
    [164].祁进平,陈衍景, Franco Pirajno.东北地区浅成低温热液矿床的地质特征和构造背景.矿物岩石,2005,25(2):47-59.
    [165].任纪舜,王作勋,陈炳蔚.从全球看中国大地构造—中国及邻区大地构造图及简要说明[M].北京:地质出版社,1999.
    [166].沙德铭,苑丽华.浅成低温热液型金矿特点、分布和找矿前景[J].地质与资源,2003,12(2):115-124.
    [167].邵济安,牟保磊,何国琦等.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用.中国科学D辑,1997,27:390-394.
    [168].邵济安,张履桥,牟堡磊..大兴安岭重难断中生代的构造热演化[J].中国科学D辑,1998,28:194-200.
    [169].宋彪,李锦铁,牛宝贵,等.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    [170].孙德有,吴福元,高山,等.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004b,25(2):213-218.
    [171].孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),34(2):174-181.
    [172].孙德有.张广才岭中生代花岗岩成因及其地球动力学意义[D].长春:吉林大学博士学位论文,2001.
    [173].孙凤兴,吴国学,杨鹏,团结沟金矿床地质模型[J],吉林地质,1996,15(2):52-60
    [174].唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.
    [175].唐文龙.黑龙江省前进地区岩浆岩地球化学特征与成矿预测[D].长春:吉林大学硕士学位论文.2007.
    [176].王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    [177].王建新,张俊华,王超,等.东北地区中生代火山岩成分空间变异及其成矿规律[J],吉林大学学报(地球科学版),2010,40(4):752-763.
    [178].王可勇,任云生,程新民等.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学,2004,28(2):171-178.
    [179].王听渡,张秀棋,徐永生.内蒙古昭乌达盟地区中生代火山岩岩石特征及成因探讨[J].岩石学报,1985,1(2):74–87.
    [180].王小凤,李中坚.陈柏林等郯庐断裂带[M].北京:地质出版社,2000.
    [181].王永彬,刘建明,孙守恪,等.黑龙江省乌拉嘎金矿赋矿花岗闪长斑岩锆石U-Pb年龄、岩石成因及其地质意义[J],岩石学报,2012,28(2):557-570.
    [182].王永彬,曾庆栋,刘建明,等.乌拉嘎金矿含矿花岗闪长斑岩锆石U-Pb年龄、岩石成因其地质意义[J].岩石学报,2012,28(2):557-570.
    [183].王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报,1997,36:58-69.
    [184].吴根耀,梁兴,陈焕疆.试论郯城—庐江断裂带的形成、演化及其性质[J].地质科学,2007,42(1):160-175.
    [185].吴河勇,杨建国,黄清华,等.漠河盆地中生代地层层序及时代[J].地层学杂志,2003,27(3):193-198.
    [186].吴美德,刘曼华,楼亚儿.国外火山岩区金矿床[M].地质矿产部情报研究所,1991.
    [187].吴尚全.黑龙江省团结沟斑岩金矿地质[M].中国人民武装警察部队黄金指挥部编著,北京:地震出版社,1995:1-134.
    [188].吴尚全.团结沟斑岩金矿床多源成因的同位素地质学证据[J].地质与勘探,1984,02:28-31.
    [189].吴尚全.团结沟斑岩型金矿床硫、氢氧、碳、铅的同位素地质学研究[C].//.全国金矿床矿物成因矿物学会议文选集,1984.
    [190].武广,孙丰月,额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [191].武子玉,王洪波,徐东海,等.黑龙江黑河三道湾子金矿床地质地球化学研究[J].地质论评,2005,51(3):264-267.
    [192].徐九华,魏浩,王燕海,等.毛骞黑龙江乌拉嘎金矿的次火山岩浆-热液成矿:熔体-流体包裹体证据[J].岩石学报,2012,28(4):1305-1306.
    [193].徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J],岩石学报,2013,29(2):354-368.
    [194].徐岩.晚中生代中国东北岩浆事件的时空特征及其地质意义[D].浙江:浙江大学博士学位论文,2010,1-65.
    [195].许文良,孙德有,周燕,等.满洲里-绥芬河地学断面:岩浆作用和地壳结构[M].北京:地质出版社,1994:94.
    [196].许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
    [197].薛明轩.黑龙江省内生金矿成矿作用研究[D].长春:吉林大学博士学位论文,1-163.
    [198].杨天奇,魏仪方,何高文.中国陆相火山岩区特大型金矿床模型[M].北京:冶金工业出版社,1992:1-200.
    [199].杨铁铮.小兴安岭地区东安金矿区火山岩及其与金矿关系研究[D].2008,北京:中国地质大学硕士学位论文,2008,1-84.
    [200].杨言辰,王可勇,马志红,等.黑龙江省小兴安岭—张广才岭成矿带金多金属矿床成矿规律与成矿预测[R].2005.
    [201].姚振凯,苏联把列依金矿田考察报告[J].黄金科技动态,1992,(6):22-28.
    [202].尹冰川,冉清昌.小兴安岭-张广才岭地区区域成矿演化[J].矿床地质,1997,16(3):235-242.
    [203].于建波,苏仁奎,刘智明.东安金矿床控矿因素及成矿物质来源浅析[J].黄金科学技术,2005,13(6):8-11.
    [204].张春晖,康庄,张广宇,刘英才.东北地区中生代区域成矿与岩浆活动时序特征[J],地质与资源,2009,18(2):87-99.
    [205].张颉衡.大兴安岭中生代火山岩的年代学格架[D],长春:吉林大学,2005:1-89.
    [206].张炯飞,李之彤,金成洙.中国东北部地区埃达克岩及其成矿意义[J],岩石学报,2004,20(2):361-368.
    [207].张连昌,陈志广,吴华英,等.蒙古-鄂霍茨克造山带得尔布干多金属成矿带构造-岩浆成矿作用及动力学背景[J],矿床地质,2010,29:125-126.
    [208].张连昌,陈志广,周新华,等.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制[J].岩石学报,2007,23(11):2823-2835.
    [209].张兴洲.黑龙江岩系:古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992b,22(增刊):94-101.
    [210].张兴洲.佳木斯地块的早起碰撞史-黑龙江岩系的构造-岩石学证据[D].长春:长春地质学院博士学位论文,1992a.
    [211].张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学博士论文,2002,1-132.
    [212].张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].吉林大学博士论文[D],2002,1-132.
    [213].赵国龙,杨桂林,傅嘉友,等.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989.
    [214].赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化[D],北京:中国地质大学(北京)博士学位论文,2009,1-100.
    [215].赵胜金.黑龙江三道湾子碲化物型金矿床矿物学及流体包裹体研究[D].北京:中国地质大学硕士学位论文,2009,1-71.
    [216].赵芝,迟效国,潘世语,刘建峰,孙巍,胡兆初.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J].岩石学报,2010,26(8):2452-2464.
    [217].周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,200521(3):763-775.
    [218].周伏洪.关于郯庐断裂和东北南部主要断裂的关系[J].地震地质,1985,7(2):1-9.
    [219].周建波,曾维顺,曹嘉麟,等.中国东北地区的构造格局与演化:从500Ma到180Ma[J].吉林大学学报(地球科学版),2012,42(5):1298-1329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700