用户名: 密码: 验证码:
新型铕、铽配合物荧光探针的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土配合物荧光探针与普通有机荧光探针相比具有水溶性好,Stokes位移大,发光寿命长等优点,在应用于生理分子或离子的时间分辨荧光检测时可以有效地消除复杂环境背景荧光的干扰,进而极大地提高检测的特异性与灵敏度。本学位论文在系统查阅文献的基础上,选取可与稀土离子形成稳定性强、发光量子产率高、水溶性好的联三吡啶衍生物2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸(TTA)作为稀土离子的发光天线基团,通过进行结构改进引入不同的识别基团,设计合成了如下几种对一些生理活性分子及离子具有特异性识别与传感功能的稀土配合物荧光探针,并考察了这些探针在时间分辨荧光生化分析中的应用性能。
     设计合成了一种可用于高活性氧组分(hROS,包括羟基自由基及次氯酸)比率型荧光传感测定的基于Eu3+和Tb3+双发射的时间分辨荧光探针AMTTA-Eu3+/Tb3+,并将其用于hROS的比率型时间分辨荧光测定。研究发现,两种稀土配合物AMTTA-Eu3+与AMTTA-Tb3+的混合物与hROS作用时,其荧光强度比值I540/I610与hROS的浓度呈现剂量依赖性增加,而且不受pH值和金属移位等的影响,为复杂生物样品中hROS的测定提供了一种兼具比率型及时间分辨功能的荧光测定新方法。
     利用分子内光诱导电子转移作用(PeT),通过在联三吡啶配位体中以醚键的方式引入3-硝基-4-氨基苯基基团的方法,设计合成了两种对次氯酸具有高度特异性识别与高灵敏度响应的时间分辨荧光探针ANMTTA-Eu3+和ANMTTA-Tb3+。通过考察探针用于水溶液及活细胞中次氯酸的荧光测定,证明了两种探针在用于次氯酸荧光检测时均具有稳定性及水溶性好、选择性及灵敏度高、响应迅速、pH适用范围宽等优点,可用于活细胞中外源性及内源性次氯酸的时间分辨荧光成像测定,为复杂生物样品中次氯酸的荧光检测提供了一种有实用价值的新方法。
     设计合成了一种对锌离子具有特异性识别与响应的时间分辨荧光探针PAMTTA-Tb3+,与已报道的基于稀土配合物的锌离子荧光探针相比,该探针独特的分子构型设计使其对锌离子响应的特异性显著提高。该探针除了具有水溶性好、选择性及灵敏度高、响应迅速等优点外,还可实现对锌离子的可逆响应及活细胞内锌离子的时间分辨荧光成像测定。
Compared with ordinary organic luminescent probes, the lanthanide complex-based luminescent probes have some advantages, such as high solubility and stability, large Stokes shift and long luminescence life time, which enable these complexes to be easily used for the time-resolved luminescence measurement to eliminate the interferences from auto-fluorescence and scattering lights. On the basis of results reported in previous literature, this doctoral dissertation chose (2,2':6',2"-terpyridine-6,6"-diyl)bis(methylenenitrilo)-tetrakis(acetic acid)(TTA) as a luminous antenna owing to the high luminescence quantum yield, stability, and water-solubility of its lanthanide complexes, and several lanthanide complex-based luminescent probes and chemosensors for specific detection of bioactive molecules have been designed and synthesized by introducing different recognizers to TTA ligand. The applicability of these probes for time-resolved luminescence bioassays were investigated.
     A unique ratiometric luminescent probe, AMTTA-Eu3+/Tb3+, has been designed and synthesized for highly sensitive detection of hROS (highly reactive oxygen species,·OH and HOC1). The ratio of the probe is based on the different variations of Tb3+emission at540nm and Eu3+emission at610nm. When the ratiometric probe was reacted with hROS, the dose-dependent increase of the ratio, I540/I610, displayed a double exponential correlation to the concentration of hROS. This unique luminescence response is pH-independent and does not affected by other ions and ROS/RNS, which provides a useful tool that can be used for luminescence detection of hROS with both time-resolved mode and ratiometric mode.
     Based on the photo-induced electron transfer (PeT), two novel lanthanide complex-based luminescent probes, ANMTTA-Eu3+and ANMTTA-Tb3+, have been designed and synthesized for the highly sensitive and selective time-resolved luminescence detection of hypochlorous acid (HOCl) in aqueous media. The luminescence of the probes increased remarkably after reaction with HOCl due to the elimination of the PeT process. The dose-dependent luminescence enhancements show good linearity to the concentration of HOCl. The luminescence responses of ANMTTA-Eu3+and ANMTTA-Tb3+to HOCl are pH-independent with excellent selectivity to other reactive oxygen/nitrogen species (ROS/RNS). In combination with a time-resolved luminescence microscope, the exogenous and endogenous HOCl in HeLa cells and RAW264.7macrophage cells were successfully monitored, respectively, which provides a new and valuable method for detection of HOCl in complicated biological samples.
     A new terbium complex-based luminescent probe, PAMTTA-Tb3+, has been designed and synthesized for the highly sensitive and selective detection of Zn2+ions. Compared with reported lanthanide complex-based luminescent probes for Zn2+ions, the selectivity of such "OFF-ON-OFF" time-resolved luminescent probe has been improved remarkably due to the unique probe design. The response of PAMTTA-Tb3+to Zn2+is reversible and can be used as an excellent time-resolved luminescent probe for the detection of intracellular Zn2+ions in HeLa cells.
引文
[1]汪尔康,陈义.生命分析化学[M].北京:科学出版社,2006.
    [2]鞠熀先,邱宗荫,丁世家,等.生物分析化学[M].北京:科学出版社,2007.
    [3]Albani J R. Principles and Applications of Fluorescence Spectroscopy. [M], Wiley-Blackwell, 2007.
    [4]Brand L, Johnson M L. Fluorescence Spectroscopy (Methods in Enzymology, Volume 450) [M], Academic Press,2008.
    [5]Hanaoka K, Kikuchi K, Kobayashi S, et al. Time-Resolved Long-Lived Luminescence Imaging Method Employing Luminescent Lanthanide Probes with a New Microscopy System [J]. J. Am. Chem. Soc.,2007,129:13502-13509.
    [6]赵美萍,张新祥,常文保.生化探针技术[J],大学化学,2004,2:8-16
    [7]Gell C, Brockwell D, Smith A. Handbook of Single Molecule Fluorescence Spectroscopy [M], Oxford University Press,2006.
    [8]Goldys E M, Fluorescence Applications in Biotechnology and Life Sciences [M], Wiley-Blackwell, 2009.
    [9]Stokes G G. Study on the Composition and Resolution of Streams of Polarized Light from Different Sources [J]. Trans. Cambridge Philos. Soc.,1852,9:399-416.
    [10]樊美公.光化学基本原理与光子学材料科学[M].北京科学出版社,2001,321-329
    [11]Goldys E M. Fluorescence Applications in Biotechnology and Life Sciences [M], Wiley-Blackwell,2009.
    [12]Berlman I B. Handbook of Fluorescence Spectra of Aromatic Molecules, Second Edition [M], Academic Press,1971.
    [13]Yang Y, Zhao Q, Feng W, Li F. Luminescent Chemodosimeters for Bioimaging [J]. Chem. Rev., 2013,113:192-270.
    [14]徐金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [15]Balasingham R G, Coogan M P, Thorp-Greenwood F L. Complexes in Context:Attempting to Control the Cellular Uptake and Localisation of Rhenium fac-Tricarbonyl Polypyridyl Complexes [J]. Dalton. Trans.,2011,40:11663-11674.
    [16]Koo C K, So L K, Wong K L, et al. A Triphenylphosphonium-Functionalised Cyclometalated Platinum(II) Complex as a Nucleolus-Specific Two-Photon Molecular Dye [J]. Chem. Eur. J., 2010,16:3942-3950.
    [17]Ulbricht C, Beyer B, Friebe C, et al. Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems [J]. Adv. Mater.,2009,21:4418-4441.
    [18]Yuan J L, Wang G L. Lanthanide-Based Luminescence Probes and Time-resolved Luminescence Bioassays [J]. Trends. Anal. Chem.,2006,25:490-500.
    [19]Evans W J, Davis B L. Chemistry of Tris(pentamethylcyclopentadienyl) f-Element Complexes, (C5Me5)3M [J]. Chem. Rev.,2002,102:2119-2136.
    [20]Edmonds D J, Johnston D, Procter D J. Samarium(II)-Iodide-Mediated Cyclizations in Natural Product Synthesis [J]. Chem. Rev.,2004,104:3371-3403.
    [21]Trawick B N, Daniher A T, Bashkin J K. Inorganic Mimics of Ribonucleases and Ribozymes: from Random Cleavage to Sequence-Specific Chemistry to Catalytic Antisense Drugs [J].1998 Chem. Rev.,98:939-960
    [22]Morrow J R, Buttrey L A, Shelton V M, et al. Efficient Catalytic Cleavage of RNA by Lanthanide(III) Macrocyclic Complexes:Toward Synthetic Nucleases for in vivo Applications [J]. J. Am. Chem. Soc.,114:1903-1905.
    [23]Parker D, Dickins R S, Puschmann H, et al. Being Excited by Lanthanide Coordination Complexes:Aqua Species, Chirality, Excited-State Chemistry, and Exchange Dynamics [J]. Chem. Rev.,2002,102:1977-2010.
    [24]Bunzli J-C G, Piguet C. Taking Advantage of Luminescent Lanthanide Ions [J]. Chem. Soc. Rev., 2005,34:1048-1077.
    [25]Wegh R T, Donker H, Oskam K D, et al. Visible Quantum Cutting in LiGdF4Eu3+ through Downconversion [J]. Science,1999,283:663-666.
    [26]Carnall W T. The Absorption and Fluorescence Spectra of Rare Earth Ions in Solution, Handbook on the Physics and Chemistry of Rare Earths, North Holland Publ. Co., Amsterdam,1979.
    [27]Tremblay M S, Halim M, Sames D. Cocktails of Tb3+ and Eu3+ Complexes:a General Platform for the Design of Ratiometric Optical Probes [J]. J. Am. Chem. Soc.,2007,129:7570-7577.
    [28]Bunzli J C G. Lanthanide Luminescence for Biomedical Analyses and Imaging [J]. Chem. Rev., 2010,110:2729-2755.
    [29]Nishioka T, Fukui K, Matsumoto K. Handbook on the Physicsand Chemistry of Rare Earths [M]. Elsevier Science BV,2007,37:171-179.
    [30]Scaff W L, Dyer D L, Mori K. J. Bacteriol. Fluorescent Europium Chelate Stain [J]. J. Bacteriol., 1969,98:246-248.
    [31]Soini E, Hemmila I. Fluoroimmunoassay:Present Status and Key Problems [J]. Clin. Chem., 1979,25:353-361.
    [32]Hemmila I, Stahlberg T, Mottram P. Bioanalytical Applications of Labelling Technologies [M], 2nd ed.; Wallac Oy:Turku, Finland,1995.
    [33]Hovinen J, Guy P M. Bioconjugation with Stable Luminescent Lanthanide(III) Chelates Comprising Pyridine Subunits [J]. Bioconjugate Chem.,2009,20:404-421.
    [34]Connally R E, Piper J A. Time-Gated Luminescence Microscopy [J]. Ann. N. Y. Acad. Sci.,2008, 1130:106-116.
    [35]Dos Santos C M G, Harte A J, Quinn S J, et al. Recent Developments in the Field of Supramolecular Lanthanide Luminescent Sensors and Self-Assemblies [J]. Coord. Chem. ReV., 2008,252:2512-2527.
    [36]Song B, Sivagnanam V, Vandevyver C D B, et al. Time-Resolved Lanthanide Luminescence for Lab-on-a-Chip Detection of Biomarkers on Cancerous Tissues [J]. Analyst,2009,134: 1991-1993.
    [37]Bunzli J C G, Chauvin A S, Vandevyver C D B, et al. Lanthanide Bimetallic Helicates for in Vitro Imaging and Sensing [J]. Ann. N. Y. Acad. Sci.,2008,1130:97-105.
    [38]Pettersson K, Siitari H, Hemmila I, et al. Time-Resolved Fluoroimmunoassay of HCG [J]. Clin. Chem.,1983,29:60-64.
    [39]Rulli M, Kuusisto A, Salo J, et al. Time-Resolved Fluorescence Imaging in Islet Cell Autoantibody Quantitation [J]. J. Immunol. Methods.,1997,208:169-179.
    [40]Bjartell A, Laine S, PeTtersson K, et al. Time-Resolved Fluorescence in Immunocytochemical Detection of Prostate-Specific Antigen in Prostatic Tissue Sections [J]. Histochem. J.,1999,31: 45-52.
    [41]Ye Z, Tan M, Wang G, et al. Novel Fluorescent Europium Chelate-Doped Silica Nanoparticles: Preparation, Characterization and Time-Resolved Fluorometric Application [J]. J. Mater. Chem., 2004,14:851-856.
    [42]Tan M, Ye Z, Wang G, et al. Preparation and Time-Resolved Fluorometric Application of Luminescent Europium Nanoparticles [J]. Chem. Mater.,2004,16:2494-2498.
    [43]Ye Z, Tan M, Wang G, et al. Preparation, Characterization, and Time-Resolved Fluorometric Application of Silica-Coated Terbium(III) Fluorescent Nanoparticles [J]. Anal. Chem.,2004,76: 513-518.
    [44]Tan M, Wang G, Hai X, et al. Development of Functionalized Fluorescent Europium Nanoparticles for Biolabeling and Time-Resolved Fluorometric Applications [J]. J. Mater. Chem., 2004,14:2896-2901.
    [45]Wu J, Wang G, Jin D, et al. Luminescent Europium Nanoparticles with a Wide Excitation Range from UV to Visible Light for Biolabeling and Time-Gated Luminescence Bioimaging [J]. Chem. Commun.,2008,3:365-367.
    [46]Wu J, Ye Z, Wang G, et al. Visible-Light-Sensitized Highly Luminescent Europium Nanoparticles:Preparation and Application for Time-Gated Luminescence Bioimaging [J]. J. Mater. Chem.,2009,19:1258-1264.
    [47]Thibon A, Pierre V C. A Highly Selective Luminescent Sensor for the Time-Gated Detection of Potassium [J]. J. Am. Chem. Soc.,2009,131:434-435.
    [48]Viguier R F H, Hulme A N. A Sensitised Europium Complex Generated by Micromolar Concentrations of Copper (I):Towards the Detection of Copper (I) in Biology [J]. J. Am. Chem. Soc,2006,128:11370-11371.
    [49]Leonard J P, Dos Santos C M G, Plush S E, et al. pH Driven Self-Assembly of a Ternary Lanthanide Luminescence Complex:the Sensing of Anions Using α β-Diketonate-Eu (III) Displacement Assay [J]. Chem. Commun.,2007,129-131.
    [50]Horrocks W D, Sudnick D R. Lanthanide Ion Probes of Structure in Biology. Laser-Induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-Coordinated Water Molecules [J]. J. Am. Chem. Soc.,1979,101:334-340.
    [51]Horrocks W D, Sudnick D R. Lanthanide Ion Luminescence Probes of the Structure of Biological Macromolecules [J]. Acc. Chem. Res.,1981,14:384-392.
    [52]Beeby A, Clarkson I M, Dickins R S, et al. Non-Radiative Deactivation of the Excited States of Europium, Terbium and Ytterbium Complexes by Proximate Energy-Matched OH, NH and CH Oscillators:an Improved Luminescence Method for Establishing Solution Hydration States [J]. J. Chem. Soc., Perkin Trans.2,1999,493-504.
    [53]Bretonniere Y, Cann M J, Parker D, et al. Ratiometric Probes for Hydrogencarbonate Analysis in Intracellular or Extracellular Environments Using Europium Luminescence [J]. Chem. Commun., 2002,17:1930-1931
    [54]Bretonniere Y, Cann M J, Parker D, et al. Design, Synthesis and Evaluation of Ratiometric Probes for Hydrogencarbonate Based on Europium Emission [J]. Org. Biomol. Chem.,2004,2: 1624-1632.
    [55]Lowe M P, Parker D. pH Switched Sensitisation of Europium(Ⅲ) by a Dansyl Group [J]. Inorg. Chim. Acta.,2001,317:163-173.
    [56]Pal R, Parker D. A Single Component Ratiometric pH Probe with Long Wavelength Excitation of Europium Emission [J]. Chem. Commun.,2007,5:474-476.
    [57]Harte A J, Jensen P, Plush S E, et al. A Paramagnetic MRI-CEST Agent Responsive to Lactate Concentration [J]. J. Am. Chem. Soc.,2002,124:9364-9365.
    [58]Cable M L, Kirby J P, Sorasaenee K, et al. Bacterial Spore Detection By [Tb3+ (Macrocycle)(Dipicolinate)] Luminescence [J]. J. Am. Chem. Soc.,2007,129:1474-1475.
    [59]Parker D. Taking Advantage of the pH and pO2 Sensitivity of a Luminescent Macrocyclic Terbium Phenanthridyl Complex [J]. Chem. Commun.,1998,2:245-246.
    [60]Hanaoka K, Kikuchi K, Kojima H, et al. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications [J]. J. Am. Chem. Soc.,2004,126: 12470-12476.
    [61]Kenmoku S, Urano Y, Kanda K, et al. Rational Design of Novel Photoinduced Electron Transfer Type Fluorescent Probes for Sodium Cation [J]. Tetrahedron,2004,60:11067-11073.
    [62]Terai T, Kikuchi K, Iwasawa S Y, et al. Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and its Application to a Long-Lived Protease Probe [J]. J. Am. Chem. Soc.,2006,128:6938-6946.
    [63]Weitz E A, Pierre V C. A Ratiometric Probe for the Selective Time-Gated Luminescence Detection of Potassium in Water [J]. Chem. Commun.,2011,47:541-543.
    [64]Cui G, Ye Z, Zhang R, et al. Design and Synthesis of a Terbium(Ⅲ) Complex-Based Luminescence Probe for Time-Gated Luminescence Detection of Mercury(Ⅱ) Ions [J]. J. Fluoresc.,2012,22:261-267.
    [65]Liu M, Ye Z, Wang G, et al. Development of a Novel Europium(III) Complex-Based Luminescence Probe for Time-Gated Luminescence Imaging of the Nitric Oxide Production in Neuron Cells [J]. Talanta,2012,99:951-958.
    [66]Chen Y, Guo W, Ye Z, et al. A Europium Chelate as an Efficient Time-Gated Luminescence Probe for Nitic Oxide [J]. Chem. Commun.,2011,47:6266-6268.
    [67]Cui G, Ye Z, Chen J, et al. Development of a Novel Terbium(III) Chelate-Based Luminescent Probe for Highly Sensitive Time-Resolved Luminescence Detection of Hydroxyl Radical [J]. Talanta,2011,84:971-976.
    [68]Ye Z, Chen J, Wang G, et al. Development of a Terbium Complex-Based Luminescent Probe for Imaging Endogenous Hydrogen Peroxide Generation in Plant Tissues [J]. Anal. Chem.,2011,83: 4163-4169.
    [69]Song C, Ye Z, Wang G, et al. A Lanthanide Complex-Based Ratiometric Luminescent Probe Specific for Peroxynitrite [J]. Chem. Eur. J.,2010,22:6464-6472.
    [70]Halliwell B. Reactive Oxygen Species and the Central Nervous System [J]. J. Neutrochem.,1992, 59:1609-1623.
    [71]Halliwell B, Gutterigge J M C. Free Radicals in Biology and Medicine [M]. Clarendon Press, Oxford,2nd edn.,1989,30-55.
    [72]Esplugas S, Gimenez J, Contreras S. Comparison of Different Advanced Oxidation Processes for Phenol Degradation [J]. Wat. Res.,2002,36:1034-1042.
    [73]Liu Z, Hider R. Design of Iron Chelators with Therapeutic Application [J]. Coord. Chem. Rev., 2002,232:151-171.
    [74]Barnham K J, Masters C L, Bush A I. Neurodegenerative Diseases and Oxidative Stress [J]. Nat. Rev. Drug Discov.,2004,3:205-214.
    [75]Jellinger, K. A. The Role of Iron in Neurodegeneration:Prospects for Pharmacotherapy of Parkinson's Disease [J]. Drugs Aging,1999,14:115-140.
    [76]Zecca L, Youdim M B H, Riederer P, et al. Iron, Brain Ageing and Neurodegenerative Disorders [J]. Nat. Rev. Neurosci.,2004,5:863-873.
    [77]Janzen E G. Spin Trapping [J]. Acc. Chem. Res.,1971,4:31-40.
    [78]Perkins M J. Spin Trapping [J]. Adv. Phy. Org. Chem.,1980,17:1-64.
    [79]Mason R P. In Spin Labelling in Pharmacology [M]. Academic Press:New York,1984,87-129.
    [80]Samuni A, Krishna C M, Riesz P, et al. Superoxide Reaction with Nitroxide Spin-Adducts [J]. Free Radical Biol. Med.,1989,6:141-148.
    [81]Janzen E G, Krygsman P H, Lindsay D A, et al. Detection of Alkyl, Alkoxyl, and Alkyperoxyl Radicals from the Thermolysis of Azobis(Isobutyronitrile) by ESR/Spin Trapping. Evidence for Double Spin Adducts from Liquid-Phase Chromatography and Mass Spectroscopy [J]. J. Am. Chem.Soc.,1990,112:8279-8284.
    [82]Kieber D J, Blough N V. Determination of Carbon-Centered Radicals in Aqueous Solution by Liquid Chromatography with Fluorencence Detection [J]. Anal. Chem.,1990,62:2275-2283.
    [83]Floyd R A, Watson J J, Wong P K. Sensitive Assay of Hydroxyl free Radical Formation Utilizing High Pressure Liquid Chromatography with Electrichemical Detection of Phenol and Salicylate Hydroxylation Products [J]. J. Biochim. Biophys. Methods,1984,10:221-235.
    [84]Kaur H, Halliwell B. Detection of Hydroxyl Radicals by Aromatic Hydroxylation [J]. Methods Enzymol.,1994,233:67-82.
    [85]Coudray C, Talla M, Martin S, et al. High-Performance Liquid Chromatography-Electrochemical Determination of Salicylate Hydroxylation Products as an in vivo Marker of Oxidative Stress [J]. Anal. Biochem.,1995,227:101-111.
    [86]Li B, Gutierrez P L, Blough N V. Trace Determination of Hydroxyl Radical in Biological Systems [J]. Anal. Chem.,1997,69:4295-4302.
    [87]Li L, Zhu A, Tian Y. An Electrochemical Strategy For Fast Monitoring Of OH Released From Live Cells at an Electroactive Fcht-Functional Surface Amplified By Au Nanoparticles [J]. Chem. Commun.,2013,49:1279-1281.
    [88]Veltwisch D, Janata E, Asmus K D. Primary Processes in the Reaction of OH-Radicals with Sulphoxides [J]. J. Chem. SOC., Perkin Trans.,1980,2:146-153.
    [89]Eberhardt M K, Colina R. The Reaction of OH Radicals with Dimethyl Sulfoxide. a Comparative Study of Fenton's Reagent and the Radiolysis of Aqueous Dimethyl Sulfoxide Solutions [J]. J. Org. Chem.,1988,53:1071-1074.
    [90]Li B, Gutierrez P L, Amstad P, et al. Hydroxyl Radical Production by Mouse Epidermal Cell Lines in the Presence of Quinone Anti-Cancer Compounds [J]. Chem. Res. Toxicol.,1999,12: 1042-1049.
    [91]Yang X, Guo X. Study of Nitroxide-Linked Naphthalene as a Fluorescence Probe for Hydroxyl Radicals [J]. Anal. Chim. Acta.,2001,434:169-177.
    [92]Yang X, Guo X. Investigation of the Anthracene-Nitroxide Hybrid Molecule as a Probe For Hydroxyl Radicals [J]. Analyst,2001,126:1800-1804.
    [93]Maki T, Soh N, Fukaminato T, et al. Perylenebisimide-Linked Nitroxide for the Detection of Hydroxyl Radicals [J]. Anal. Chim. Acta.,2009,639:78-82.
    [94]Li P, Xie T, Duan X, et al. A New Highly Selective and Sensitive Assay for Fluorescence Imaging of·OH in Living Cells:Effectively Avoiding the Interference of Peroxynitrite [J]. Chem Eur. J.,2010,16:1834-1840.
    [95]Yapici N B, Jockusch S, Moscatelli A, et al. New Rhodamine Nitroxide Based Fluorescent Probes for Intracellular Hydroxyl Radical Identification in Living Cells [J]. Org. Lett.,2012,14: 50-53.
    [96]Mello Filho A C, Meneghini R. In vivo Formation of Single-Strand Breaks in DNA by Hydrogen Peroxide is Mediated by the Haber-Weiss Reaction [J]. Biochim. Biophys. Acta.,1984,781: 56-63.
    [97]Moser H E, Dervan P B, Sequence-Specific Cleavage of Double Helical DNA by Triple Helix Formation [J]. Science,1987,238:645-650.
    [98]Soh N, Makihara K, Sakoda E, et al. A Ratiometric Fluorescent Probe for Imaging Hydroxyl Radicals in Living Cells [J]. Chem. Commun.,2004,40:496-497.
    [99]Tang B, Zhang N, Chen Z, et al. Probing Hydroxyl Radicals and Their Imaging in Living Cells by Use of FAM-DNA-Au Nanoparticles [J]. Chem. Eur. J.,2008,14:522-538.
    [100]Huang W, Xie W, Shi Y, et al. A Simple and Facile Strategy Based on Fenton-Induced DNA Cleavage for Fluorescent Turn-On Detection of Hydroxyl Radicals and Fe2+ [J]. J. Mater. Chem., 2012,22:1477-1481.
    [101]Perry C C, Tang V J, Konigsfeld K M, et al. Use of a Coumarin-Labeled Hexa-Arginine Peptide as a Fluorescent Hydroxyl Radical Probe in a Nanopart Iculate Plasmid DNA Condensate [J]. J. Phys. Chem. B,2011,115:9889-9897.
    [102]Page S E, Wilke K T, Pierre V C. Sensitive and Selective Time-Gated Luminescence Detection of Hydroxyl Radical in Water [J]. Chem. Commun.,2010,46:2423-2425.
    [103]Yuan L, Lin W, Song J. Ratiometric Fluorescent Detection of Intracellular Hydroxyl Radicals Based on a Hybrid Coumarin-Cyanine Platform [J]. Chem. Commun.,2010,46:7930-7932.
    [104]Kettle A J, Winterbourn C C. Myeloperoxidase:a Key Regulator Of Neutrophil Oxidant Production [J]. Redox Rep.,1997,3:3-15.
    [105]Aokl T, Munemorl M. Continuous Flow Determination of Free Chlorine in Water [J]. Anal. Chem.,1983,55:209-212.
    [106]Ozben T. Oxidative Stress and Apoptosis:Impact on Cancer Therapy [J]. J. Pharm. Sci.,2007, 96:2181-2196.
    [107]Winterbourn C C. Reconciling the Chemistry and Biology of Reactive Oxygen Species [J]. Nat. Chem. Biol.,2008,4:278-286.
    [108]Yap Y W, Whiteman M, Cheung N S. Chlorinative Stress:an under Appreciated Mediator of Neurodegeneration [J]. Cell Signal,2007,19:219-228.
    [109]Pattison D I, Davies M J. Evidence for Rapid Inter-and Intramolecular Chlorine Transfer Reactions of Histamine and Carnosine Chloramines:Implications for the Prevention of Hypochlorous-Acid-Mediated Damage [J]. Biochemistry,2006,45:8152-8162.
    [110]Daugherty A, Dunn J L, Rateri D L, et al. Myeloperoxidase, a Catalyst for Lipoprotein Oxidation, is Expressed in Human Atherosclerotic Lesions [J]. J. Clin. Invest.,1994,94: 437-444.
    [111]Muijsers R B R, Van den Worm E, Folkerts G, et al. Apocynin Inhibits Peroxynitrite Formation By Murine Macrophages [J]. Br. J. Pharmacol.,2000,130:932-936.
    [112]Lapenna D, Cuccurullo F. Hypochlorous Acid and its Pharmacological Antagonism:An Update Picture [J]. Gen. Pharmacol.,1996,27:1145-1147.
    [113]Adam L C, Gordon G. Direct and Sequential Potentiometric Determination of Hypochlorite, Chlorite, and Chlorate Ions When Hypochlorite ion is Present in Large Excess [J]. Anal. Chem., 1995,67:535-540.
    [114]Hammerschmidt S, Buchler N, Wahn H. Tissue Lipidperoxidation and Reduced Glatathione Depletion in Hypo-Chlorite-Induced Lung Injury [J]. Chest,2002,121:573-581.
    [115]Zhang R, Brennan M L, Fu X, et al. Association Between Myeloperoxidase Levels and Risk of Coronary Artery Disease [J]. J. Am. Med. Assoc.,2001,286:2136-2142.
    [116]Wu S M, Pizzo S V.2-Macroglobulin from Rheumatid Arthritis Synovial Fluid:Functional Analysis Defines a Role for Oxidation in Inflammation [J]. Arch. Biochem. Biophys.,2001,391: 119-126.
    [117]Khurana J M, Ray A, Sahoo P K. Oxidative Deoximation with Sodium Hypochlorite [J]. Bull. Chem. Soc. Jpn.,1994,67:1091-1093.
    [118]Stevens R V, Gaeta F C A, Lawrence D S. Camphorae:Chiral Intermediates for the Enantiospecific Total Synthesis of Steroids.1 [J]. J. Am. Chem. Soc.,1983,105:7713-7719.
    [119]Lin W, Long L, Chen B, et al. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction [J]. Chem. Eur. J.,2009,15:2305-2309.
    [120]Cheng X, Jia H, Long T, et al. A "Turn-on" Fluorescent Probe for Hypochlorous Acid: Convenient Synthesis, Good Sensing Performance, and a New Design Strategy by the Removal of C=N Isomerization [J]. Chem. Commun.,2011,47:11978-11980.
    [121]Zhao N, Wu Y, Wang R, et al. An Iridium(Ⅲ) Complex of Oximated 2,2'-Bipyridine as a Sensitive Phosphorescent Sensor for Hypochlorite [J]. Analyst,2011,136:2277-2282.
    [122]Yuan L, Lin W, Song J, et al. Development of an ICT-Based Ratiometric Fluorescent Hypochlorite Probe Suitable for Living Cell Imaging [J]. Chem. Commun.,2011,47: 12691-12693.
    [123]Kenmoku S, Urano Y, Kojima H, et al. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and its Application to Real-Time Imaging of Phagocytosis [J]. J. Am. Chem.Soc.,2007,129:7313-7318.
    [124]Koide Y, Urano Y, Hanaoka K, et al. Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and its Applications for Biological Imaging [J]. J. Am. Chem. Soc.,2011,133:5680-5682.
    [125]Yang Y, Cho H, Lee J, et al. A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and its Applications to Biological Imagings [J]. Org. Lett.,2009,11: 859-861.
    [126]Zhan X, Yan J, Su J, et al. Thiospirolactone as a Recognition Site:Rhodamine B-Based Fluorescent Probe For Imaging Hypochlorous Acid Generated in Human Neutrophil Cells [J]. Sensors and Actuators B:Chemical,2010,150:774-780.
    [127]Chen X, Lee K, Ha E, et al. A Specific and Sensitive Method for Detection of Hypochlorous Acid for the Imaging of Microbe-Induced Hocl Production [J]. Chem. Commun.,2011,47: 4373-4375.
    [128]Chen X, Wang X, Wang S, et al. A Highly Selective and Sensitive Fluorescence Probe for the Hypochlorite Anion [J]. Chem. Eur. J.,2008,14:4719-4724.
    [129]Koide Y, Urano Y, Kenmoku S, et al. Design and Synthesis of Fluorescent Probes for Selective Detection of Highly Reactive Oxygen Species in Mitochondria of Living Cells [J]. J. Am. Chem. Soc.,2007,129:10324-10325.
    [130]Sun Z, Liu F, Chen Y, et al. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid [J]. Org. Lett.,2008,10:2171-2174.
    [131]Chen S, Lu J, Sun C, et al. A Highly Specific Ferrocene-based Fluorescent Probe for Hypochlorous Acid and Its Application to Cell Imaging [J]. Analyst.,2010,135,577-582.
    [132]Maret W, Li Y. Coordination Dynamics of Zinc in Proteins [J]. Chem. Rev.,2009,109: 4682-4707.
    [133]Eide D J. Zinc Transporters and the Cellular Trafficking of Zinc [J]. Biochim. Biophys. Acta., 2006,1763:711-722.
    [134]于旻,王福俤.锌转运蛋白家族SLC39A/ZIP和SLC30A/ZnT的研究进展[J].中国细胞生物学学报,2010,32:176-188.
    [135]Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease [J]. Nat. Rev. Neurosci.,2005,6:449-462.
    [136]Taylor C G. Zinc, the Pancreas, and Diabetes:Insights from Rodent Studies and Future Directions [J]. Biometals,2005,18:305-312.
    [137]Costello L C, Franklin R B, The Clinical Relevance of the Metabolism of Prostate Cancer; Zinc and Tumor Suppression:Connecting the Dots [J]. Mol. Cancer.,2006,15:5-17.
    [138]Franklin R B, Costello L C. The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers [J]. J. Cell. Biochem.,2009,106:750-757.
    [139]Maret W. Molecular Aspects of Human Cellular Zinc Homeostasis:Redox Control of Zinc Potentials and Zinc Signals [J]. Biometals,2009,22:149-157.
    [140]Hirano T, Kikuchi K, Urano Y, et al. Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications [J]. J. Am. Chem. Soc.,2000,122:12399-12400.
    [141]Komatsu K, Kikuchi K, Kojima H, et al. Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices [J]. J. Am. Chem. Soc.,2005,127:10197-10204.
    [142]Hirano T, Kikuchi K, Urano K, et al. Improvement and Biological Applications of Fluorescent Probes For Zinc, Znafs [J]. J. Am. Chem. Soc.,2002,124:6555-6562.
    [143]Koide Y, Urano Y, Hanaoka K, et al. Evolution of Group 14 Rhodamines as Platforms for Near-Infrared Fluorescence Probes Utilizing Photoinduced Electron Transfer [J]. Chem. Biol., 2011,6:600-608.
    [144]Koutaka H, Kosuge J, Fukasaku N, et al. A Novel Fluorescent Probe for Zinc Ion Based on Boron Dipyrromethene (BODIPY) Chromophore [J]. Chem. Pharm. Bull.,2004,52:700-703.
    [145]Wu Y, Peng X, Guo B, et al. Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(II) in Living Cells [J]. Org. Biomol. Chem.,2005,3,1387-1392.
    [146]Du P, Lippard S J. A Highly Selective Turn-On Colorimetric, Red Fluorescent Sensor for Detecting Mobile Zinc in Living Cells [J]. Inorg. Chem.,2010,49:10753-10755.
    [147]Hanaoka K, Kikuchi K, Kojima H, et al. Selective Detection of Zinc Ions with Novel Luminescent Lanthanide Probes [J]. Angew. Chem. Int. Ed.,2003,42:2996-2999.
    [148]Kiyose K, Aizawa S, Sasaki E, et al. Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties of Aminocyanines [J]. Chem. Eur. J., 2009,15:9191-9200.
    [149]Tang B, Huang H, Xu K, et al. Highly Sensitive and Selective Near-Infrared Fluorescent Probe for Zincand its Application to Macrophage Cells [J]. Chem. Commun.,2006,3609-3611.
    [150]Xue L, Li G, Yu C, et al. A Ratiometric and Targetable Fluorescent Sensor for Quantification of Mitochondrial Zinc Ions [J]. Chem. Eur. J.,2012,18:1050-1054.
    [151]Liu Z, Zhang C, Chen Y, et al. An Excitation Ratiometric Zn2+ Sensor with Mitochondria-Targetability for Monitoring of Mitochondrial Zn2+ Release upon Different Stimulations [J]. Chem Commun.,2012,48:8365-8367.
    [152]Komatsu K, Urano Y, Kojima H, et al. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc [J]. J. Am. Chem. Soc.,2007, 129:13447-13454.
    [153]Xu Z, Baek K, Kim H, et al. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+ Selective, Cell-Permeable and Ratiometric Fluorescent Sensor [J]. J. Am. Chem. Soc.,2010, 132:601-610.
    [154]Frederickson C J, Kasarskis E J, Ringo D, et al. A Quinoline Fluorescence Method for Visualizing and Assaying the Histochemically Reactive Zinc (Bouton Zinc) in the Brain [J]. J. Neurosci. Methods,1987,20:91-103.
    [155]Zalewski P D, Millard S H, Forbes I J, et al. Video Image Analysis of Labile Zinc in Viable Pancreatic Islet Cells Using a Specific Fluorescent Probe for Zinc [J]. J. Histochem. Cytochem., 1994,42:877-884.
    [156]Nolan E M, Jaworski J, Okamoto K I, et al. QZ1 and QZ2:Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(II) [J]. J. Am. Chem. Soc.,2005, 127:16812-16823.
    [157]Wang H, Gan Q, Wang X, et al. A Water-soluble, Small Molecular Fluorescent Sensor with Femtomolar Sensitivity for Zinc Ion [J]. Org. Lett.,2007,9:4995-4998.
    [158]Mello J V, Finney N S. Dual-Signaling Fluorescent Chemosensors Based on Conformational Restriction and Induced Charge Transfer [J]. Angew. Chem., Int. Ed.,2001,40:1536-1538.
    [159]Dennis A E, Smith R C. "Turn-on" Fluorescent Sensor for the Selective Detection of Zinc Ion by a Sterically-Encumbered Bipyridyl-Based Receptor [J]. Chem. Commun.,2007,4641-4643.
    [160]Zhang L, Clark R J, Zhu L. A Heteroditopic Fluoroionophoric Platform for Constructing Fluorescent Probes with Large Dynamic Ranges for Zinc Ions [J]. Chem. Eur. J.,2008,14: 2894-1903.
    [161]Hong Y, Chen S, Leung C W, et al. Fluorogenic Zn(Ⅱ) and Chromogenic Fe(II) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics [J]. Appl. Mater. Interfaces,2011,3:3411-3418.
    [162]Huston M E, Haider K W, Czarnik A W. Chelation-Enhanced Fluorescence in 9,10-Bis(TMEDA)anthracene [J]. J. Am. Chem. Soc.,1988,110:4460-4462.
    [163]Koike T, Watanabe T, Aoki S, et al. A Novel Biomimetic Zinc(II)-Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1,4,7,10-Tetraazacyclododecane (Cyclen) [J]. J. Am.Chem. Soc.,1996,118:12696-12703.
    [164]Kimura E, Aoki S, Kikuta E, et al. A Macrocyclic Zinc(II) Fluorophore as a Detector of Apoptosis [J]. Proc. Natl. Acad. Sci.,2003,100:3731-3736.
    [165]Hirano T, Kikuchi K, Urano Y, et al. Novel Zinc Fluorescent Probes Excitable with Visible Light for Biological Applications [J]. Angew. Chem. Int. Ed.,2000,39:1052-1054.
    [166]Gee K R, Zhou Z L, Qian W J, et al. Detection and Imaging of Zinc Secretion from Pancreatic β-Cells Using a New Fluorescent Zinc Indicator [J]. J. Am. Chem. Soc.,2002,124:776-778.
    [167]Roussakis E, Voutsadaki S, Pinakoulaki E, et al. ICPBCZin:a Red Emitting Ratiometric Fluorescent Indicator with Nanomolar Affinity for Zn2+ Ions [J]. Cell Calcium,2008,44: 270-275.
    [168]Kolb H C, Finn M G, Sharpless K B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed.,2001,40:2004-2021.
    [169]Zhou Y, Kim H N, Yoon J. A Selective "off-on" Fluorescent Sensor for Zn2+ Based on Hydrazone-Pyrene Derivative and its Application for Imaging of Intracellular Zn2+ [J]. Bioorg. Med. Chem. Lett.,2010,20:125-128.
    [170]Wiseman H, Halliwell B. Damage to DNA by Reactive Oxygen and Nitrogen Species:Role in Inflammatory Disease and Progression to Cancer [J]. Biochem. J.,1996,313:17-29.
    [171]McCord J M. Free Radicals and Inflammation:Protection of Synovial Fluid by Superoxide Dismutase [J]. Science,1974,185:529-531.
    [172]Dobashi K, Ghosh B, Orak J K, et al. Kidney Ischemia-Reperfusion:Modulation of Antioxidant Defenses [J]. Mol. Cell. Biochem.,2000,205:1-11.
    [173]Setsukinai K, Urano Y, Kakinuma K, et al. Development of Novel Fluorescence Probes that can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species [J]. J. Biol. Chem., 2003,278:3170-3175.
    [174]Izumi S, Urano Y, Hanaoka K, et al. A Simple and Effective Strategy to Increase the Sensitivity of Fluorescence Probes in Living Cells [J]. J. Am. Chem. Soc.,2009,131:10189-10200.
    [175]Parker D, Yu J. A pH-Insensitive, Ratiometric Chemosensor for Citrate Using Europium Luminescence [J]. Chem. Commun.,2005,25:3141-3143.
    [176]Duimstra J A, Femia F J, Meade T J. A Gadolinium Chelate for Detection of B-Glucuronidase: A Self-Immolative Approach [J]. J. Am. Chem. Soc.,2005,127:12847-12855.
    [177]Manning H C, Goebel T, Thompson R C, et al. Targeted Molecular Imaging Agents for Cellular-Scale Bimodal Imaging [J]. Bioconjugate Chem.,2004,15:1488-1495.
    [178]Liu M, Ye Z, Wang G, et al. Synthesis and Time-Gated Fluorometric Application of a Europium(III) Complex with a Borono-Substituted Terpyridine Polyacid Ligand [J]. Talanta, 2012,91:116-121.
    [179]Fallahpour R A. Carboxylate Derivatives of Oligopyridines [J]. Synthesis,2000,8:1138-1142.
    [180]Schubert U S, Eschbaumer C, Heller M. Stille-Type Cross-Coupling an Efficient Way to Various Symmetrically and Unsymmetrically Substituted Methyl-Bipyridines:Toward New ATRP Catalysts [J]. Org. Lett.,2000,2:3373-3376.
    [181]Diamandis E P, Christopoulos T K. Europium Chelate Labels in Time-Resolved Fluorescence Immunoassays and DNA Hybridization Assays [J]. Anal. Chem.,1990,62:1149-1157.
    [182]宋翠红,长寿命荧光金属配合物的合成及其在时间分辨荧光生化分析中的应用[D].博士学位论文,中国科学院大连化学物理研究所,大连,2010。
    [183]Latva M, Takalo H, Mukkala V M, et al. Correlation Between the Lowest Triplet State Energy Level of the Ligand and Lanthanide(III) Luminescence Quantum Yield [J]. J. Lumin.,1997,75: 149-169.
    [184]Charkoudian L K, Pham D M, Franz K J. A Pro-Chelator Triggered by Hydrogen Peroxide Inhibits Iron-Promoted Hydroxyl Radical Formation [J]. J. Am. Chem. Soc.,2006,128: 12424-12425.
    [185]Lei B P, Adachi N, Arai T. Measurement of the Extracellular H2O2 in the Brain by Microdialysis [J]. Brain Res. Protoc.,1998,3:33-36.
    [186]Hrabie J A, Klose J R, Wink D A, et al. New Nitric Oxide-Releasing Zwitterions Derived from Polyamines [J]. J. Org. Chem.,1993,58,1472-1476.
    [187]Song B, Wang G, Tan M, et al. A Europium(III) Complex as an Efficient Singlet Oxygen Luminescence Probe [J]. J. Am. Chem. Soc.,2006,128:13442-13450.
    [188]Li X, Zhang G, Ma H, et al.4,5-Dimethylthio-4'-[2-(9-anthryloxy) ethylthio]tetrathiafulvalene, a Highly Selective and Sensitive Chemiluminescence Probe for Singlet Oxygen [J]. J. Am. Chem. Soc.,2004,126:11543-11548.
    [189]Xu K, Liu X, Tang B, et al. Design of a Phosphinate-Based Fluorescent Probe for Superoxide Detection in Mouse Peritoneal Macrophages [J]. Chem. Eur. J.,2007,13:1411-1416.
    [190]Hidalgo E, Bartolome R, Dominguez C. Cytotoxicity Mechanisms of Sodium Hypochlorite in Cultured Human Dermal Fibroblasts and its Bactericidal Effectiveness [J]. Chem. Biol. Int.,2002, 139:265-282.
    [191]Kuruvilla J R, Kamath M P. Antimicrobial Activity of 2.5% Sodium Hypochlorite and 0.2% Chlorhexidine Gluconate Separately and Combined, as Endodontic Irrigants [J]. J. Endodont., 1998,24:472-476.
    [192]Dickinson B C, Srikunand D, Chang C J. Mitochondrial-Targeted Fluorescent Probes for Reactive Oxygen Species [J]. Curr. Opin. Chem. Biol.,2010,14:50-56.
    [193]Dickinson B C, Chang C J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress Responses [J]. Nat. Chem. Biol.,2011,7:504-511.
    [194]Panizzi P, Nahrendorf M, Wildgruber M, et al. Oxazine Conjugated Nanoparticle Detects In Vivo Hypochlorous Acid And Peroxynitrite Generation [J]. J. Am. Chem. Soc.,2009,131: 15739-15744.
    [195]Shepherd J, Hilderbrand S A, Waterman P, et al. A Fluorescent Probe for the Detection of Myeloperoxidase Activity in Atherosclerosis-Associated Macrophages [J]. Chem. Bio.,2007,14: 1221-1231.
    [196]Yuan L, Lin W, Yang Y, et al. A Unique Class of Near-Infrared Functional Fluorescent Dyes with Carboxylic-Acid-Modulated Fluorescence ON/OFF Switching:Rational Design, Synthesis, Optical Properties, Theoretical Calculations, and Applications for Fluorescence Imaging in Living Animals [J]. J. Am. Chem. Soc.,2012,134:1200-1211.
    [197]Chen S, Lu J, Sun C, et al. A Highly Specific Ferrocene-Based Fluorescent Probe for Hypochlorous Acid and its Application to Cell Imaging [J]. Analyst,2010,135:577-582.
    [198]Sun Z, Liu F, Chen Y, et al. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid [J]. Org. Lett.,2008,10:2171-2174.
    [199]New E J, Parker D, Smith D G, et al. Development of Responsive Lanthanide Probes for Cellular Applications [J]. Curr. Opin. Chem. Biol.,2010,14:238-246.
    [200]Moore E G, Samuel A P S, Raymond K N. From Antenna to Assay:Lessons Learned in Lanthanide Luminescence [J]. Acc. Chem. Res.,2009,42:542-552.
    [201]Montgomeny C P, Murray B S, New E J, et al. Cell-penetrating Metal Complex Optical Probes: Targeted and Responsive Systems Based on Lanthanide Luminescence [J]. Acc. Chem. Res., 2009,42:925-937.
    [202]Tsien R Y. A Non-Disruptive Technique for Loading Calcium Buffer and Indicators Into Cells [J]. Nature,1981,290:527-528.
    [203]Mallory F B, Cairns T L, Simmons H E. Benzofurazan-1-oxide [J]. Org. Synth.,1963,4:74-78.
    [204]Hou C, Chen X, Liu J, et al. DFT Study of Benzofuroxan Synthesis Mechanism Mechanism from a-Nitroaniline via Sodium Hypochlorite [J]. Chin. J. Chem. Phys.,2010,23:387-392.
    [205]Mocak J, Bond A M, Mitchell S, et al. A Statistical Overview of Standard (IUPAC And ACS) and New Procedures for Determining the Limits of Detection and Quantification:Application to Voltammetric and Stripping Techniques [J]. Pure. Appl. Chem.,1997,69:297-328.
    [206]Adachi Y, Kindzelskii A L, Petty A R, et al. IFN-y Primes RAW264 Macrophages and Human Monocytes for Enhanced Oxidant Production in Response to CpG DNA via Metabolic Signaling: Roles of TLR9 and Myeloperoxidase Trafficking [J]. J. Immunol,2006,176:5033-5040.
    [207]Zava O, Zakeeruddin S M, Danelon C, et al. A Cytotoxic Ruthenium Tris(Bipyridyl) Complex that Accumulates at Plasma Membranes [J]. ChemBioChem,2009,10:1796-1800.
    [208]Schatzschneider U, Niesel J, Ott I, et al. Cellular Uptake, Cytotoxicity, and Metabolic Profiling of Human Cancer Cells Treated with Ruthenium(II) Polypyridyl Complexes [Ru(bpy)2 (N-N)]C12 with N-N=bpy, phen, dpq, dppz, and dppn [J]. Chemmedchem,2008,3:1104-1109.
    [209]Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival:Application to Proliferation and Cytotoxicity Assays [J]. J. Immunol. Methods.,1983,65:55-63.
    [210]Frederickson C J. Neurobiology of Zinc and Zinc-Containing Neurons [J]. Int. Rev. Neurobiol., 1989,31:145-238.
    [211]Tomat E, Lippard S J. Imaging Mobile Zinc in Biology [J]. Curr. Opin. Chem. Biol.,2010,14: 225-230.
    [212]Sasaki H, Hanaoka K, Urano Y, et al. Design and Synthesis of a Novel Fluorescence Probe for Zn2+ Based on the Spirolactam Ring-Opening Process of Rhodamine Derivatives [J]. Bioorg. Med. Chem.,2010,19:1072-1078.
    [213]Que E L, Domaille D W, Chang C J. Metals in Neurobiology:Probing their Chemistry and Biology with Molecular Imaging [J]. Chem. Rev.,2008,108:1517-1549.
    [214]Bush A I, PeTtingel W H, Multhaup G, et al. Rapid Induction of Alzheimer a beta Amyloid Formation by Zinc [J]. Science,1994,265:1464-1467.
    [215]Xu Z, Liu X, Pan J, et al. Coumarin-Derived Transformable Fluorescent Sensor for Zn2+[J]. Chem. Commun.,2012,48:4764-4766.
    [216]Cao J, Zhao C, Wang X, et al. Target-Triggered Deprotonation of 6-Hydroxyindole-Based BODIPY:Specially Switch on NIR Fluorescence upon Selectively Binding to Zn2+[J]. Chem. Commun.,2012,48:9897-9899.
    [217]Xu Z, Yoon J, Spring D R. Fluorescent Chemosensors for Zn(2+) [J]. Chem. Soc. Rev.,2010, 39:1996-2006.
    [218]Reany O, Gunnlaugsson T, Parker D. Selective Signalling of Zinc Ions by Modulation of Terbium Luminescence [J]. Chem. Commun.,2000,6:473-474.
    [219]Ye Z, Wang G, Chen J, et al. Development of a Novel Terbium Chelate-Based Luminescent Chemosensor for Time-Resolved Luminescence Detection of Intracellular Zn2+ Ions [J]. Biosens. Bioelectron.,2010,26:1043-1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700