用户名: 密码: 验证码:
基于唑类二羧酸配体的配位聚合物的合成,结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配位聚合物作为一种新型的功能材料,近年来受到各国学者的广泛关注,其独特的结构和功能可设计性等特点,使这类材料在气体储存、催化、光学、磁学、气体选择性吸附与分离等方面都有着潜在的应用价值。随着人们对该类材料的结构进行不同功能基团的修饰,其化学性质和物理性质发生相应改变,或同时兼具多种功能,使其应用范围逐渐扩大,如近些年在药物释放,生物传感方面等都展现出一定的应用价值。因此,通过研究配位聚合物的结构特点及合成规律,合理的设计不同的基团,由此导致丰富的性质,对构筑功能型金属有机配位聚合物材料具有一定的科学研究意义。
     金属-有机配位聚合物主要由金属及有机配体构成,因此,选择合适的金属中心和设计不同的有机配体对配位聚合物的构筑至关重要。本文设计合成含N,O,S等元素的唑类羧酸1,2,3-三氮唑-4,5-二羧酸(H_3tzdc)和1,2,5-噻二唑-3,4-二羧酸(H_2tdc)作为有机配体,与不同族数的金属原子(主族金属In、镧系稀土金属、过渡金属)配位,在溶剂热的条件下,通过改变溶剂的极性,pH值,反应温度,以及引入不同有机胺等反应条件,构筑了19个金属-有机配位聚合物,并根据其结构特点,对部分化合物进行了气体吸附和荧光性质的研究。本论文的主要研究工作如下:
     1.在溶剂热条件下,以H_3tzdc和H_2tdc作为有机配体,铟离子作为金属源,通过引入三种不同的有机胺,得到了四种配位聚合物1-4。化合物1-3均是以H_3tzdc为有机配体构筑的In-MOFs,化合物4是利用H_2tdc为有机配体构筑的In-MOFs。化合物1结构中引入了端基螯合配体1,2-环己二胺(1,2-DACH)与硝酸铟配位形成了一个具有4个金属中心,4个有机配体及4个有机胺的金属有机四边形,通过K+及氢键作用连接成了3D网状结构。该结构中每个零维的金属有机四边形通过分子间氢键作用连接成具有类分子筛rho拓扑学结构的3D超分子化合物。化合物2和3均是在有机胺分子TMDP的存在下,获得的MOFs材料。化合物2中,三个有机配体与三个甲酸分子和六个In~(3+)连接形成了一个六核铟簇,并以此作为无机结构基元,通过tzdc_(3-)作为有机连接体,组装了具有22A的纳米级孔道的3D骨架化合物,并展现出新颖的具有(4,6)-连接的拓扑学结构。化合物3中,12个有机配体与8个金属形成了一个金属有机立方体,每个零维的立方体与有机胺分子通过氢键作用形成了具有四重互穿结构的3D超分子骨架化合物,单重结构具有27.9×13.8A的孔道,并展现出pcu拓扑学结构。化合物4结构中,通过引入有机胺分子邻菲罗啉,与In~(3+)配位形成了一个由2个铟离子,2个有机配体以及4个有机胺分子构成的金属有机四边形,并通过氢键作用相互连接形成了2D层状结构。化合物1-4都具有较高的热稳定性,同时化合物1和2展现出一定的气体吸附性质,化合物2和3在可见光区域展现了一定的荧光性质。
     2.在溶剂热体系下,我们以H_2tdc为有机配体,与镧系稀土金属构筑了12个化合物5-16。化合物5-16是在相似的反应条件下,通过改变反应溶剂的极性,有机配体与金属源的比例,以及引入了线型的第二有机配体反丁烯二酸的情况下,展现出三种不同的3D结构,实现了化合物由致密结构到微孔结构的转变。化合物5-12是以镧,铈,鐠,钕,钐,铕,钆,铽为金属源进行构筑的化合物,金属中心与配体连接成为1D zigzag链状结构,并通过钾离子和水分子连接成三维的具有moc拓扑学结构的化合物。13-14是以镧和铈为金属源,引入反丁烯二酸作为桥连配体,通过金属中心与tdc~(2-)形成了一个与化合物5-12相似的1D链状结构,利用反丁烯二酸连接成了具有dia拓扑学结构的3D网状结构。15和16同样是以镧和铈为金属源构筑的化合物,该结构中,有机配体与金属中心形成了左/右手螺旋链,链与链之间相互连接成为具有(3,4,5)-连接的新颖拓扑学结构的3D骨架化合物。由于有机配体具有良好的“天线效应”,基于钐,铕,铽为金属中心的Ln-MOFs具有良好的发光性质,分别展现出橙色,红色和绿色的荧光性能。
     3.在溶剂热的条件下,以H_3tzdc为有机配体,过渡金属镉,铜为金属源构筑了3个新颖结构的化合物17-19。化合物17是以镉为金属源,与有机配体螯合配位形成了一个四核镉簇,并以此为次级结构基元,通过有机配体相连形成了一个具有单节点5-连接的bnn拓扑学结构的3D网络化合物。18和19是以铜为金属源构筑的MOFs材料,化合物18中,4个铜原子与4个有机配体相连形成一个类卟啉环的四边形,并以此为次级结构基元通过铜离子相连形成了具有pto拓扑学结构的3D网络化合物。化合物19中,6个配体和12个金属中心形成了一个类Kagomé层,彼此相连形成2D层状结构,通过引入有机胺4,4’-联吡啶将其柱支撑为3D新颖的(3,4)-连接的拓扑学结构。化合物17和19具有较高的热稳定性,17除了具有气体吸附性质外,还展现出荧光响应有机小分子的性质。
     本论文中,利用次级结构单元法,合成了19个金属-有机配位聚合物,并对其进行了详细的表征,通过其特有的结构特点,讨论了配体与金属之间的配位模式对其结构的影响,丰富了配位聚合物材料的种类及拓扑学信息,部分化合物展现出的气体吸附和荧光性质也为这类材料的进一步应用提供了一定的实验依据。
Coordination Polymers (CPs), as a novel functional material, arouse extensive attentionrecently. Their permanent porosity, high surface areas, fine-tunable pore structures, andadjustable chemical functionalities make them possessing potential applications in gas storage,catalysis, gas adsorption and separation, luminescence, and magnetism. As diverse organicligands were explored, and postsynthesis or modification for MOFs materials, the chemicaland physical properties would be improved and expanded the application scope. Recently, italso possessed the applications in drug release and sensor in biology. Therefore, assemblingMOFs with unique structures and tailor-making properties by rational design have a greatsignificance in developing novel materials.
     Herein, we utilize two organic ligands,1,2,3-triazole-4,5-dicarboxylic acid (H_3tzdc) and1,2,5-thiadiazole-3,4-dicarboxylic acid (H_2tdc) coordinated with different types of metalcenters (indium, lanthanide, and transition metal) to construct novel MOFs materials undersolvothermal conditions.19compounds were synthesized by changing the solvent polarity,pH value, temperature, and inducing different organic amine. The properties such as gasadsorption, luminescence for some compounds were investigated. We get the following threeaspects results:
     1. Four indium-organic frameworks1-4were solvothermally synthesized based on H_3tzdcand H_2tdc ligands, respectively, by inducing three types of organic amine. In compound1,four1,2-DACH molecules serving as terminal ligands in combination with four In~(3+)ions andfour tzdc_(3-)ligands generate a metal-organic square (MOS), and MOS was linked via K+toform a3D framework. Each MOS connected each other via16hydrogen bonds to produce azeolite-like rho topology. Compounds2and3have a similar reaction conditions with H_3tzdcligand and TMDP molecules. In compound2, three tzdc_(3-)ligands and three formic acidmolecules, as well as six In~(3+)composed a hexanuclear cluster, and the ligand linked to thehexanuclear cluster to form a3D framework with a22A hexagonal-shaped nanopores. The ~framework exhibited a novel (4,6)-connected net. In compound3, twelve tzdc_(3-)ligandscoordinated with eight In~(3+)to generate a metal-organic cubic (MOC), and each MOCconnected each other by hydrogen bonds to form a3D supramolecular structure with four-foldInterpenetration. Each single fold structure possessing a pcu topology has a channel withdiameter of27.9×13.8A. Compound4based on H_2tdc ligand was obtained by inducingorganic amine Phen. In compound4, each MOS, constructed by two In~(3+), two tdc~(2-)ligandsand four Phen molecules, as the secondary building unit, connected each other via hydrogenbonds to form a2D layer structure. Compounds1-4with high thermal stability werecharacterized and formulated by elemental analysis, thermogravimetric analysis andsingle-crystal X-ray diffraction. Compounds1and2exhibited gas adsorption properties, andcompounds2and3displayed luminescent properties.
     2. Twelve novel three-dimensional (3D) lanthanide metal-organic frameworks5-16withformula [LnK(C_4N_2O_4S)2(H_2O)_2](H_2O)_(0.5)(Ln=La (5), Ce (6), Pr (7), Nd (8), Sm (9), Eu (10),Gd (11), Tb (12)),[LnK(C_4N_2O_4S)(C_4O_4)(H_2O)_2](H_2O)_(0.5)(Ln=La (13), Ce (14)), and[Ln_2(C_4N_2O_4S)_3(H_2O)](H_2O)(Ln=La (15), Ce (16)), were solvothermally synthesized by2,1,3-thiadiazole-4,5-dicarboxylate (H_2tdc) ligand with corresponding lanthanide nitrate.Three types of the structure from nonporous to microporous frameworks were exhibited withthe changing of solvent polarity, the ratio of ligand and metal center, and inducing the secondliner ligand fumaric acid. Compounds5-12with the isostructure (structure I) contain a1Dzigzag chain along the b axis, which connected by K~+and pillared water molecules to form3D frameworks with moc topology. Compounds13and14are isomorphous coordinationpolymers (structure II) possessing a similar zigzag chain, which linked via the coligandfumaric acid to construct3D frameworks with dia topology, while compounds15-16(structure III) are isomorphous coordination polymers. They possess a1D right-left helicalchains along the b axis, and the right-left helical chains alternatively linked to form a3Dframework with a new (3,4,5)-connected topology. As the antenna effect of the H_2tdc ligand,the luminescent property shows that compounds9,10,12displays intense orange, red andgreen luminescence and exhibits the typical Sm~(3+), Eu~(3+)and Tb~(3+)ion emission, respectively.
     3. Three transition metal-organic frameworks17-19were solvothermally synthesized byH_3tzdc ligand. Compound17based on Cd~(2+), contained a tetranuclear cadmium cluster, and the cluster was connected via ligand to form a3D framework with bnn topology. Bothcompounds18and19were obtained by Cu~(2+). In compound18, four Cu~(2+)and four ligandscomposed a unique metalloporphyrin-like plane, resulting in a3D framework with ptotopology. In compound19, twelve Cu~(2+)and six tzdc~(2-)ligands form a Kagomé-like plane,leading to a2D layer, thus4,4’-bpy was induced as the pillers to hold the layers to generatethe3D framework, and the structure possessed a new topology with the (3,4)-connected net.Compounds17-19were characterized and formulated by elemental analysis,thermogravimetric analysis and single-crystal X-ray diffraction. Compound17, with highhydrothermal stability and open Cd sites, has been found to exhibit luminescent responsetoward different organic solvents, and it also displayed gas adsorption property.
     In summary, we utilized secondary building unit approach to synthesized19coordinationpolymers in solvothermal conditions. The results described here illustrate the influence of thevarious coordination modes to the unique structures, and the experimental data enriched thestructure and topology information of MOFs materials. The gas adsorption properties andluminescent properties provide value for the continuous development of functional MOFs.
引文
[1] CHAMPNESS N R, SCHR DER M. Extended networks formed by coordinationpolymers in the solid state [J]. Current Opinion in Solid State and Materials Science,1998,3(4):419-24.
    [2] YAGHI O M, LI H, DAVIS C, et al. Synthetic Strategies, Structure Patterns, andEmerging Properties in the Chemistry of Modular Porous Solids [J]. Accounts ofChemical Research,1998,31(8):474-84.
    [3] HOLLIDAY B J, MIRKIN C A. Strategies for the Construction of SupramolecularCompounds through Coordination Chemistry [J]. Angewandte Chemie InternationalEdition,2001,40(11):2022-43.
    [4] JAMES S L. Metal-organic frameworks [J]. Chemical Society Reviews,2003,32(5):276-88.
    [5] KITAGAWA S, KITAURA R, NORO S-I. Functional Porous Coordination Polymers [J].Angewandte Chemie International Edition,2004,43(18):2334-75.
    [6] ZHANG J-P, ZHANG Y-B, LIN J-B, et al. Metal Azolate Frameworks: From CrystalEngineering to Functional Materials [J]. Chemical Reviews,2011,112(2):1001-33.
    [7] WELLS A F. Three-Dimensional Nets and Polyhedra [J]. Wiley Interscience,1977.
    [8] WELLS A F. Further Studies of Three Dimensional Nets [J]. American CrystallographicAssociation: Knoxville, TN,1979.
    [9] WELLS A F. Structural Inorganic Chemistry [J]. Oxford University Press: Oxford, UK,1984.
    [10] HOSKINS B F, ROBSON R. Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments [J]. Journal of the American Chemical Society,1989,111(15):5962-4.
    [11] HOSKINS B F, ROBSON R. Design and construction of a new class of scaffolding-likematerials comprising infinite polymeric frameworks of3D-linked molecular rods. Areappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis andstructure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] andCuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. Journal of theAmerican Chemical Society,1990,112(4):1546-54.
    [12] YAGHI O M, DAVIS C E, LI G, et al. Selective Guest Binding by Tailored Channels ina3-D Porous Zinc(II) Benzenetricarboxylate Network [J]. Journal of the AmericanChemical Society,1997,119(12):2861-8.
    [13] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the designof new materials [J]. Nature,2003,423(6941):705-14.
    [14] OCKWIG N W, DELGADO-FRIEDRICHS O, O'KEEFFE M, et al. ReticularChemistry: Occurrence and Taxonomy of Nets and Grammar for the Design ofFrameworks [J]. Accounts of Chemical Research,2005,38(3):176-82.
    [15] O’KEEFFE M, PESKOV M A, RAMSDEN S J, et al. The Reticular ChemistryStructure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J]. Accounts ofChemical Research,2008,41(12):1782-9.
    [16] TRANCHEMONTAGNE D J, NI Z, O'KEEFFE M, et al. Reticular Chemistry ofMetal–Organic Polyhedra [J]. Angewandte Chemie International Edition,2008,47(28):5136-47.
    [17] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionallystable and highly porous metal-organic framework [J]. Nature,1999,402(18):276-9.
    [18] EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage [J].Science,2002,295(18):469-72.
    [19] DENG H, DOONAN C J, FURUKAWA H, et al. Multiple Functional Groups ofVarying Ratios in Metal-Organic Frameworks [J]. Science,2010,327(12):846-50.
    [20] CHUI S S-Y, LO S M-F, CHARMANT J P H, et al. A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(10):1148-50.
    [21] SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porous material forenantioselective separation and catalysis [J]. Nature,2000,404(27):982-6.
    [22] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A ChromiumTerephthalate–Based Solid with Unusually Large Pore Volumes and Surface Area [J].Science,2005,309(23):2040-2.
    [23] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic BuildingBrick Forming Metal Organic Frameworks with Exceptional Stability [J]. Journal of theAmerican Chemical Society,2008,130(42):13850-1.
    [24] CHAVAN S, VITILLO J G, UDDIN M J, et al. Functionalization of UiO-66Metal Organic Framework and Highly Cross-Linked Polystyrene with Cr(CO)3: In SituFormation, Stability, and Photoreactivity [J]. Chemistry of Materials,2010,22(16):4602-11.
    [25] KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and Stability of TaggedUiO-66Zr-MOFs [J]. Chemistry of Materials,2010,22(24):6632-40.
    [26] VALENZANO L, CIVALLERI B, CHAVAN S, et al. Disclosing the Complex Structureof UiO-66Metal Organic Framework: A Synergic Combination of Experiment andTheory [J]. Chemistry of Materials,2011,23(7):1700-18.
    [27] LI J-R, KUPPLER R J, ZHOU H-C. Selective gas adsorption and separation inmetal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1477-504.
    [28] LI J-R, SCULLEY J, ZHOU H-C. Metal–Organic Frameworks for Separations [J].Chemical Reviews,2011,112(2):869-932.
    [29] DYBTSEV D N, CHUN H, YOON S H, et al. Microporous Manganese Formate: ASimple Metal Organic Porous Material with High Framework Stability and HighlySelective Gas Sorption Properties [J]. Journal of the American Chemical Society,2003,126(1):32-3.
    [30] WANG B, COTE A P, FURUKAWA H, et al. Colossal cages in zeolitic imidazolateframeworks as selective carbon dioxide reservoirs [J]. Nature,2008,453(8):207-12.
    [31] PAN L, ADAMS K M, HERNANDEZ H E, et al. Porous Lanthanide-OrganicFrameworks: Synthesis, Characterization, and Unprecedented Gas AdsorptionProperties [J]. Journal of the American Chemical Society,2003,125(10):3062-7.
    [32] ZHONG D-C, LU W-G, JIANG L, et al. Three Coordination Polymers Based on1H-Tetrazole (HTz) Generated via in Situ Decarboxylation: Synthesis, Structures, andSelective Gas Adsorption Properties [J]. Crystal Growth&Design,2009,10(2):739-46.
    [33] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of Pore Size and Functionalityin Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide SelectiveCapture Properties [J]. Journal of the American Chemical Society,2009,131(11):3875-7.
    [34] DEMESSENCE A, D’ALESSANDRO D M, FOO M L, et al. Strong CO2Binding in aWater-Stable, Triazolate-Bridged Metal Organic Framework Functionalized withEthylenediamine [J]. Journal of the American Chemical Society,2009,131(25):8784-6.
    [35] BLOCH E D, BRITT D, LEE C, et al. Metal Insertion in a Microporous Metal OrganicFramework Lined with2,2′-Bipyridine [J]. Journal of the American Chemical Society,2010,132(41):14382-4.
    [36] ARSTAD B, FJELLV G H, KONGSHAUG K, et al. Amine functionalised metalorganic frameworks (MOFs) as adsorbents for carbon dioxide [J]. Adsorption,2008,14(6):755-62.
    [37] DENG H, DOONAN C J, FURUKAWA H, et al. Multiple Functional Groups ofVarying Ratios in Metal-Organic Frameworks [J]. Science,2010,327(5967):846-50.
    [38] CHEN Z, XIANG S, ARMAN H D, et al. Significantly Enhanced CO2/CH4SeparationSelectivity within a3D Prototype Metal–Organic Framework Functionalized with OHGroups on Pore Surfaces at Room Temperature [J]. European Journal of InorganicChemistry,2011,2011(14):2227-31.
    [39] PIZZETTI M, RUSSO A, PETRICCI E. Microwave-Assisted Aminocarbonylation ofYnamides by Using Catalytic [Fe3(CO)12] at Low Pressures of Carbon Monoxide [J].Chemistry–A European Journal,2011,17(16):4523-8.
    [40] SI X, JIAO C, LI F, et al. High and selective CO2uptake, H2storage and methanolsensing on the amine-decorated12-connected MOF CAU-1[J]. Energy&Environmental Science,2011,4(11):4522-7.
    [41] ZHAO Y, WU H, EMGE T J, et al. Enhancing Gas Adsorption and Separation Capacitythrough Ligand Functionalization of Microporous Metal–Organic Framework Structures[J]. Chemistry–A European Journal,2011,17(18):5101-9.
    [42] AN J, GEIB S J, ROSI N L. High and Selective CO2Uptake in a Cobalt AdeninateMetal Organic Framework Exhibiting Pyrimidine-and Amino-Decorated Pores [J].Journal of the American Chemical Society,2009,132(1):38-9.
    [43] BAE Y-S, FARHA O K, HUPP J T, et al. Enhancement of CO2/N2selectivity in ametal-organic framework by cavity modification [J]. Journal of Materials Chemistry,2009,19(15):2131-4.
    [44] VAIDHYANATHAN R, IREMONGER S S, SHIMIZU G K H, et al. Direct Observationand Quantification of CO2Binding Within an Amine-Functionalized Nanoporous Solid[J]. Science,2010,330(6004):650-3.
    [45] DIETZEL P D C, BESIKIOTIS V, BLOM R. Application of metal-organic frameworkswith coordinatively unsaturated metal sites in storage and separation of methane andcarbon dioxide [J]. Journal of Materials Chemistry,2009,19(39):7362-70.
    [46] MALLICK A, SAHA S, PACHFULE P, et al. Selective CO2and H2adsorption in achiral magnesium-based metal organic framework (Mg-MOF) with open metal sites [J].Journal of Materials Chemistry,2010,20(41):9073-80.
    [47] LIANG Z, MARSHALL M, CHAFFEE A L. CO2Adsorption-Based Separation byMetal Organic Framework (Cu-BTC) versus Zeolite (13X)[J]. Energy&Fuels,2009,23(5):2785-9.
    [48] XIANG Z, CAO D, LAN J, et al. Multiscale simulation and modelling of adsorptiveprocesses for energy gas storage and carbon dioxide capture in porous coordinationframeworks [J]. Energy&Environmental Science,2010,3(10):1469-87.
    [49] LIN J-B, ZHANG J-P, CHEN X-M. Nonclassical Active Site for Enhanced GasSorption in Porous Coordination Polymer [J]. Journal of the American Chemical Society,2010,132(19):6654-6.
    [50] HENKE S, SCHMID R, GRUNWALDT J-D, et al. Flexibility and Sorption Selectivityin Rigid Metal–Organic Frameworks: The Impact of Ether-Functionalised Linkers [J].Chemistry–A European Journal,2010,16(48):14296-306.
    [51] SEO J, MATSUDA R, SAKAMOTO H, et al. A Pillared-Layer Coordination Polymerwith a Rotatable Pillar Acting as a Molecular Gate for Guest Molecules [J]. Journal ofthe American Chemical Society,2009,131(35):12792-800.
    [52] DENG H, OLSON M A, STODDART J F, et al. Robust dynamics [J]. Nat Chem,2010,2(6):439-43.
    [53] ALLENDORF M D, BAUER C A, BHAKTA R K, et al. Luminescent metal-organicframeworks [J]. Chemical Society Reviews,2009,38(5):1330-52.
    [54] CUI Y, YUE Y, QIAN G, et al. Luminescent Functional Metal–Organic Frameworks [J].Chemical Reviews,2011,112(2):1126-62.
    [55] FANG Q, ZHU G, XUE M, et al. Structure, Luminescence, and Adsorption Properties ofTwo Chiral Microporous Metal Organic Frameworks [J]. Inorganic Chemistry,2006,45(9):3582-7.
    [56] BAUER C A, TIMOFEEVA T V, SETTERSTEN T B, et al. Influence of Connectivityand Porosity on Ligand-Based Luminescence in Zinc Metal Organic Frameworks [J].Journal of the American Chemical Society,2007,129(22):7136-44.
    [57] MOORE E G, SAMUEL A P S, RAYMOND K N. From Antenna to Assay: LessonsLearned in Lanthanide Luminescence [J]. Accounts of Chemical Research,2009,42(4):542-52.
    [58] BUNZLI J-C G. Lanthanide Luminescence for Biomedical Analyses and Imaging [J].Chemical Reviews,2010,110(5):2729-55.
    [59] ELISEEVA S V, BUNZLI J-C G. Lanthanide luminescence for functional materials andbio-sciences [J]. Chemical Society Reviews,2010,39(1):189-227.
    [60] ESCRIBANO P, JULIAN-LOPEZ B, PLANELLES-ARAGO J, et al. Photonic andnanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganicmaterials [J]. Journal of Materials Chemistry,2008,18(1):23-40.
    [61] BINNEMANS K. Lanthanide-Based Luminescent Hybrid Materials [J]. ChemicalReviews,2009,109(9):4283-374.
    [62] SABBATINI N, GUARDIGLI M, LEHN J-M. Luminescent lanthanide complexes asphotochemical supramolecular devices [J]. Coordination Chemistry Reviews,1993,123(1–2):201-28.
    [63] ELISEEVA S V, PLESHKOV D N, LYSSENKO K A, et al. Highly Luminescent andTriboluminescent Coordination Polymers Assembled from Lanthanide β-Diketonatesand Aromatic Bidentate O-Donor Ligands [J]. Inorganic Chemistry,2010,49(20):9300-11.
    [64] CHANDLER B D, CRAMB D T, SHIMIZU G K H. Microporous Metal OrganicFrameworks Formed in a Stepwise Manner from Luminescent Building Blocks [J].Journal of the American Chemical Society,2006,128(32):10403-12.
    [65] ZOU J-P, PENG Q, WEN Z, et al. Two Novel Metal Organic Frameworks (MOFs) with(3,6)-Connected Net Topologies: Syntheses, Crystal Structures, Third-Order NonlinearOptical and Luminescent Properties [J]. Crystal Growth&Design,2010,10(6):2613-9.
    [66] WEI Y, YU Y, WU K. Highly Stable Five-Coordinated Mn(II) Polymer [Mn(Hbidc)]n(Hbidc=1H-Benzimidazole-5,6-dicarboxylate): Crystal Structure, AntiferromegneticProperty, and Strong Long-Lived Luminescence [J]. Crystal Growth&Design,2008,8(7):2087-9.
    [67] WANG G-H, LI Z-G, JIA H-Q, et al. Metal-organic frameworks based on thepyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, andphotoluminescence [J]. CrystEngComm,2009,11(2):292-7.
    [68] FENG R, JIANG F-L, CHEN L, et al. A luminescent homochiral3D Cd(II) frameworkwith a threefold interpenetrating uniform net86[J]. Chemical Communications,2009,0(35):5296-8.
    [69] FUJITA M, KWON Y J, WASHIZU S, et al. Preparation, Clathration Ability, andCatalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II)and4,4'-Bipyridine [J]. Journal of the American Chemical Society,1994,116(3):1151-2.
    [70] BANERJEE M, DAS S, YOON M, et al. Postsynthetic Modification Switches anAchiral Framework to Catalytically Active Homochiral Metal Organic PorousMaterials [J]. Journal of the American Chemical Society,2009,131(22):7524-5.
    [71] EVANS O R, NGO H L, LIN W. Chiral Porous Solids Based on Lamellar LanthanidePhosphonates [J]. Journal of the American Chemical Society,2001,123(42):10395-6.
    [72] WU C-D, HU A, ZHANG L, et al. AHomochiral Porous Metal Organic Framework forHighly Enantioselective Heterogeneous Asymmetric Catalysis [J]. Journal of theAmerican Chemical Society,2005,127(25):8940-1.
    [73] MA L, FALKOWSKI J M, ABNEY C, et al. A series of isoreticular chiral metal–organicframeworks as a tunable platform for asymmetric catalysis [J]. Nat Chem,2010,2(10):838-46.
    [74] SONG F, WANG C, FALKOWSKI J M, et al. Isoreticular Chiral Metal OrganicFrameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity byControlling Framework Catenation and Varying Open Channel Sizes [J]. Journal of theAmerican Chemical Society,2010,132(43):15390-8.
    [75] DANG D, WU P, HE C, et al. Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis [J]. Journal of the American Chemical Society,2010,132(41):14321-3.
    [76] SUH M P, PARK H J, PRASAD T K, et al. Hydrogen Storage in Metal–OrganicFrameworks [J]. Chemical Reviews,2011,112(2):782-835.
    [77] MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews,2009,38(5):1294-314.
    [78] ROWSELL J L C, MILLWARD A R, PARK K S, et al. Hydrogen Sorption inFunctionalized Metal Organic Frameworks [J]. Journal of the American ChemicalSociety,2004,126(18):5666-7.
    [79] ROWSELL J L C, YAGHI O M. Effects of Functionalization, Catenation, and Variationof the Metal Oxide and Organic Linking Units on the Low-Pressure HydrogenAdsorption Properties of Metal Organic Frameworks [J]. Journal of the AmericanChemical Society,2006,128(4):1304-15.
    [80] WONG-FOY A G, MATZGER A J, YAGHI O M. Exceptional H2Saturation Uptake inMicroporous Metal Organic Frameworks [J]. Journal of the American ChemicalSociety,2006,128(11):3494-5.
    [81] KAYE S S, DAILLY A, YAGHI O M, et al. Impact of Preparation and Handling on theHydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5)[J]. Journalof the American Chemical Society,2007,129(46):14176-7.
    [82] ESKEN D, ZHANG X, LEBEDEV O I, et al. Pd@MOF-5: limitations of gas-phaseinfiltration and solution impregnation of [Zn4O(bdc)3](MOF-5) with metal-organicpalladium precursors for loading with Pd nanoparticles [J]. Journal of MaterialsChemistry,2009,19(9):1314-9.
    [83] M LLER M, HERMES S, K HLER K, et al. Loading of MOF-5with Cu and ZnONanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties ofCu/ZnO@MOF-5as Catalyst for Methanol Synthesis [J]. Chemistry of Materials,2008,20(14):4576-87.
    [84] SCHR DER F, ESKEN D, COKOJA M, et al. Ruthenium Nanoparticles inside Porous[Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State ReferenceSystem for Surfactant-Stabilized Ruthenium Colloids [J]. Journal of the AmericanChemical Society,2008,130(19):6119-30.
    [85] HAN S, WEI Y, VALENTE C, et al. Chromatography in a Single Metal OrganicFramework (MOF) Crystal [J]. Journal of the American Chemical Society,2010,132(46):16358-61.
    [86] LIU B, SHIOYAMA H, AKITA T, et al. Metal-Organic Framework as a Template forPorous Carbon Synthesis [J]. Journal of the American Chemical Society,2008,130(16):5390-1.
    [87] LI Y, YANG R T. Significantly Enhanced Hydrogen Storage in Metal OrganicFrameworks via Spillover [J]. Journal of the American Chemical Society,2005,128(3):726-7.
    [88] KAYE S S, LONG J R. Matrix Isolation Chemistry in a Porous Metal OrganicFramework: Photochemical Substitutions of N2and H2inZn4O[(η6-1,4-Benzenedicarboxylate)Cr(CO)3]3[J]. Journal of the American ChemicalSociety,2007,130(3):806-7.
    [89] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area,porosityand inclusion of large molecules in crystals [J]. Nature,2004,427(5):523-7.
    [90] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh Porosity in Metal-OrganicFrameworks [J]. Science,2010,329(5990):424-8.
    [91] TIAN Y-Q, CAI C-X, JI Y, et al.[Co5(im)10-2MB]∞: A Metal-Organic Open-Frameworkwith Zeolite-Like Topology [J]. Angewandte Chemie International Edition,2002,41(8):1384-6.
    [92] TIAN Y-Q, CAI C-X, REN X-M, et al. The Silica-Like Extended Polymorphism ofCobalt(II) Imidazolate Three-Dimensional Frameworks: X-ray Single-Crystal Structuresand Magnetic Properties [J]. Chemistry–A European Journal,2003,9(22):5673-85.
    [93] TIAN Y-Q, CHEN Z-X, WENG L-H, et al. Two Polymorphs of Cobalt(II) ImidazolatePolymers Synthesized Solvothermally by Using One Organic TemplateN,N-Dimethylacetamide [J]. Inorganic Chemistry,2004,43(15):4631-5.
    [94] TIAN Y-Q, ZHAO Y-M, CHEN Z-X, et al. Design and Generation of Extended ZeoliticMetal–Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc(II)Imidazolate Polymers with Zeolitic Topologies [J]. Chemistry–A European Journal,2007,13(15):4146-54.
    [95] BANERJEE R, PHAN A, WANG B, et al. High-Throughput Synthesis of ZeoliticImidazolate Frameworks and Application to CO2Capture [J]. Science,2008,319(5865):939-43.
    [96] WANG B, COTE A P, FURUKAWA H, et al. Colossal cages in zeolitic imidazolateframeworks as selective carbon dioxide reservoirs [J]. Nature,2008,453(7192):207-11.
    [97] HAYASHI H, COTE A P, FURUKAWA H, et al. Zeolite A imidazolate frameworks [J].Nat Mater,2007,6(7):501-6.
    [98] PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, Structure, and CarbonDioxide Capture Properties of Zeolitic Imidazolate Frameworks [J]. Accounts ofChemical Research,2009,43(1):58-67.
    [99] CHOI H J, DINC M, LONG J R. Broadly Hysteretic H2Adsorption in theMicroporous Metal Organic Framework Co(1,4-benzenedipyrazolate)[J]. Journal ofthe American Chemical Society,2008,130(25):7848-50.
    [100] SAVA D F, KRAVTSOV V C, ECKERT J, et al. Exceptional Stability and HighHydrogen Uptake in Hydrogen-Bonded Metal Organic Cubes Possessing ACO andAST Zeolite-like Topologies [J]. Journal of the American Chemical Society,2009,131(30):10394-6.
    [101] ALKORDI M H, BRANT J A, WOJTAS L, et al. Zeolite-like Metal OrganicFrameworks (ZMOFs) Based on the Directed Assembly of Finite Metal Organic Cubes(MOCs)[J]. Journal of the American Chemical Society,2009,131(49):17753-5.
    [102] SUN Y-Q, ZHANG J, CHEN Y-M, et al. Porous Lanthanide–Organic Open Frameworkswith Helical Tubes Constructed from Interweaving Triple-Helical and Double-HelicalChains [J]. Angewandte Chemie International Edition,2005,44(36):5814-7.
    [103] SUN Y-Q, ZHANG J, YANG G-Y. A series of luminescent lanthanide-cadmium-organicframeworks with helical channels and tubes [J]. Chemical Communications,2006,0(45):4700-2.
    [104] LIU Y, KRAVTSOV V C, LARSEN R, et al. Molecular building blocks approach to theassembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities[J]. Chemical Communications,2006,0(14):1488-90.
    [105] LIU Y, KRAVTSOV V C, EDDAOUDI M. Template-Directed Assembly of Zeolite-likeMetal–Organic Frameworks (ZMOFs): A usf-ZMOF with an Unprecedented ZeoliteTopology [J]. Angewandte Chemie International Edition,2008,47(44):8446-9.
    [106] WANG S, ZHAO T, LI G, et al. From Metal Organic Squares to Porous Zeolite-likeSupramolecular Assemblies [J]. Journal of the American Chemical Society,2010,132(51):18038-41.
    [107]王爽.咪唑羧酸及其衍生物为配体的配位聚合物的合成,表征及性质研究[D].吉林大学化学学院,2010.
    [108] ZOU R-Q, JIANG L, SENOH H, et al. Rational assembly of a3D metal-organicframework for gas adsorption with predesigned cubic building blocks and1D openchannels [J]. Chemical Communications,2005,0(28):3526-8.
    [109] ZOU R-Q, SAKURAI H, XU Q. Preparation, Adsorption Properties, and CatalyticActivity of3D Porous Metal–Organic Frameworks Composed of Cubic Building Blocksand Alkali-Metal Ions [J]. Angewandte Chemie International Edition,2006,45(16):2542-6.
    [110] XU Q, ZOU R-Q, ZHONG R-Q, et al. Cubic Metal Organic Polyhedrons of Nickel(II)Imidazoledicarboxylate Depositing Protons or Alkali Metal Ions [J]. Crystal Growth&Design,2008,8(7):2458-63.
    [111] PANDA T, PACHFULE P, BANERJEE R. Template induced structural isomerism andenhancement of porosity in manganese(II) based metal-organic frameworks (Mn-MOFs)[J]. Chemical Communications,2011,47(27):7674-6.
    [112] CHEN M, CHEN M-S, OKAMURA T-A, et al. A series of silver(I)-lanthanide(III)heterometallic coordination polymers: syntheses, structures and photoluminescentproperties [J]. CrystEngComm,2011,13(11):3801-10.
    [113] CHEN M, CHEN S-S, OKAMURA T-A, et al. pH Dependent Structural Diversity ofMetal Complexes with5-(4H-1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid [J].Crystal Growth&Design,2011,11(5):1901-12.
    [114] NOUAR F, EUBANK J F, BOUSQUET T, et al. Supermolecular Building Blocks(SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks [J].Journal of the American Chemical Society,2008,130(6):1833-5.
    [115] LI J-R, YU Q, TAO Y, et al. Magnetic canting or not? Two isomorphous3D CoII andNiII coordination polymers with the rare non-interpenetrated (10,3)-d topologicalnetwork, showing spin-canted antiferromagnetism only in the CoII system [J]. ChemicalCommunications,2007,0(22):2290-2.
    [116] KITAGAWA S, UEMURA K. Dynamic porous properties of coordination polymersinspired by hydrogen bonds [J]. Chemical Society Reviews,2005,34(2):109-19.
    [117] UEMURA K, MATSUDA R, KITAGAWA S. Flexible microporous coordinationpolymers [J]. Journal of Solid State Chemistry,2005,178(8):2420-9.
    [118] DYBTSEV D N, NUZHDIN A L, CHUN H, et al. A Homochiral Metal–OrganicMaterial with Permanent Porosity, Enantioselective Sorption Properties, and CatalyticActivity [J]. Angewandte Chemie International Edition,2006,45(6):916-20.
    [119] DINC M, LONG J R. Strong H2Binding and Selective Gas Adsorption within theMicroporous Coordination Solid Mg3(O2C-C10H6-CO2)3[J]. Journal of the AmericanChemical Society,2005,127(26):9376-7.
    [120] PAN L, PARKER B, HUANG X, et al. Zn(tbip)(H2tbip=5-tert-Butyl IsophthalicAcid): A Highly Stable Guest-Free Microporous Metal Organic Framework withUnique Gas Separation Capability [J]. Journal of the American Chemical Society,2006,128(13):4180-1.
    [121] PAN L, OLSON D H, CIEMNOLONSKI L R, et al. Separation of Hydrocarbons with aMicroporous Metal–Organic Framework [J]. Angewandte Chemie International Edition,2006,45(4):616-9.
    [122] CHEN B, LIANG C, YANG J, et al. A Microporous Metal–Organic Framework forGas-Chromatographic Separation of Alkanes [J]. Angewandte Chemie InternationalEdition,2006,45(9):1390-3.
    [123] CHEN B, MA S, ZAPATA F, et al. Rationally Designed Micropores within aMetal Organic Framework for Selective Sorption of Gas Molecules [J]. InorganicChemistry,2007,46(4):1233-6.
    [124] MA S, SUN D, WANG X-S, et al. A Mesh-Adjustable Molecular Sieve for General Usein Gas Separation [J]. Angewandte Chemie International Edition,2007,46(14):2458-62.
    [125] CHEN B, OCKWIG N W, MILLWARD A R, et al. High H2Adsorption in aMicroporous Metal–Organic Framework with Open Metal Sites [J]. AngewandteChemie International Edition,2005,44(30):4745-9.
    [126] BROERING J M, HILL E M, HALLETT J P, et al. Biocatalytic Reaction AndRecycling by Using CO2-Induced Organic–Aqueous Tunable Solvents [J]. AngewandteChemie International Edition,2006,45(28):4670-3.
    [127] SUN D, MA S, KE Y, et al. An Interweaving MOF with High Hydrogen Uptake [J].Journal of the American Chemical Society,2006,128(12):3896-7.
    [128] MILLWARD A R, YAGHI O M. Metal Organic Frameworks with Exceptionally HighCapacity for Storage of Carbon Dioxide at Room Temperature [J]. Journal of theAmerican Chemical Society,2005,127(51):17998-9.
    [129] MA S, ZHOU H-C. AMetal Organic Framework with Entatic Metal Centers ExhibitingHigh Gas Adsorption Affinity [J]. Journal of the American Chemical Society,2006,128(36):11734-5.
    [130] LIU Y, KRAVTSOV V, WALSH R D, et al. Directed assembly of metal-organic cubesfrom deliberately predesigned molecular building blocks [J]. Chemical Communications,2004,0(24):2806-7.
    [131] ALKORDI M H, LIU Y, LARSEN R W, et al. Zeolite-like Metal Organic Frameworksas Platforms for Applications: On Metalloporphyrin-Based Catalysts [J]. Journal of theAmerican Chemical Society,2008,130(38):12639-41.
    [132] LIU Y, KRAVTSOV V C, BEAUCHAMP D A, et al.4-Connected Metal OrganicAssemblies Mediated via Heterochelation and Bridging of Single Metal Ions: KagoméLattice and the M6L12Octahedron [J]. Journal of the American Chemical Society,2005,127(20):7266-7.
    [133]郑冰.以四齿羧酸为有机配体的配位聚合物的合成,结构及性质研究[D].吉林大学化学学院,2012.
    [134] WANG X, QIN C, WANG E, et al. Designed double layer assembly: athree-dimensional open framework with two types of cavities by connection of infinitetwo-dimensional bilayer [J]. Chemical Communications,2004,0(4):378-9.
    [135] LIAO J-H, LAI C-Y, HO C-D, et al. Syntheses and characterization of two coordinationpolymers:[Cd(isonicotinate)2(H2O)]·DMF andCd3(isonicotinate)4(NO3)2(4,4′-bipy)2(H2O)2[J]. Inorganic Chemistry Communications,2004,7(3):402-4.
    [136] LI X, CAO R, SUN D, et al. Syntheses and Characterizations of Zinc(II) CompoundsContaining Three-Dimensional Interpenetrating Diamondoid Networks Constructed byMixed Ligands [J]. Crystal Growth&Design,2004,4(4):775-80.
    [137] ALMEIDA PAZ F A, KLINOWSKI J. Two-and Three-Dimensional Cadmium OrganicFrameworks with Trimesic Acid and4,4‘-Trimethylenedipyridine [J]. InorganicChemistry,2004,43(13):3882-93.
    [138] CHANG W-K, CHIANG R-K, JIANG Y-C, et al. Metamagnetism in Cobalt Phosphateswith Pillared Layer Structures:[Co3(pyz)(HPO4)2F2] and[Co3(4,4‘-bpy)(HPO4)2F2]·xH2O [J]. Inorganic Chemistry,2004,43(8):2564-8.
    [139] WANG Y, WANG Z, YAN C, et al. Hydrothermal synthesis and structure of newlanthanide coordination polymers with dicarboxylic acid and1,10-phenanthroline [J].Journal of Molecular Structure,2004,692(1–3):177-86.
    [140] ZHENG X, SUN C, LU S, et al. New Porous Lanthanide-Organic Frameworks:Synthesis, Characterization, and Properties of Lanthanide2,6-Naphthalenedicarboxylates [J]. European Journal of Inorganic Chemistry,2004,2004(16):3262-8.
    [141] LIU C-B, SUN C-Y, JIN L-P, et al. Supramolecular architecture of new lanthanidecoordination polymers of2-aminoterephthalic acid and1,10-phenanthroline [J]. NewJournal of Chemistry,2004,28(8):1019-26.
    [142] LIN X, JIA J, ZHAO X, et al. High H2Adsorption by Coordination-FrameworkMaterials [J]. Angewandte Chemie International Edition,2006,45(44):7358-64.
    [143] MILLER S R, HEURTAUX D, BAATI T, et al. Biodegradable therapeutic MOFs for thedelivery of bioactive molecules [J]. Chemical Communications,2010,46(25):4526-8.
    [144] MCKINLAY A C, MORRIS R E, HORCAJADA P, et al. BioMOFs: Metal–OrganicFrameworks for Biological and Medical Applications [J]. Angewandte ChemieInternational Edition,2010,49(36):6260-6.
    [145] MA S, ZHOU H-C. Gas storage in porous metal-organic frameworks for clean energyapplications [J]. Chemical Communications,2010,46(1):44-53.
    [146] LEE J, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews,2009,38(5):1450-9.
    [147] FEREY G. Some suggested perspectives for multifunctional hybrid porous solids [J].Dalton Transactions,2009,0(23):4400-15.
    [148] HORIKE S, DINC M, TAMAKI K, et al. Size-Selective Lewis Acid Catalysis in aMicroporous Metal-Organic Framework with Exposed Mn2+Coordination Sites [J].Journal of the American Chemical Society,2008,130(18):5854-5.
    [149] DINC M, LONG J R. Hydrogen Storage in Microporous Metal–Organic Frameworkswith Exposed Metal Sites [J]. Angewandte Chemie International Edition,2008,47(36):6766-79.
    [150] MUELLER U, SCHUBERT M, TEICH F, et al. Metal-organic frameworks-prospectiveindustrial applications [J]. Journal of Materials Chemistry,2006,16(7):626-36.
    [151] KEPERT C J. Advanced functional properties in nanoporous coordination frameworkmaterials [J]. Chemical Communications,2006,0(7):695-700.
    [152] SUN Y-G, YAN X-M, DING F, et al. A novel3D4d–4f heterometallic coordinationpolymer: Synthesis, crystal structure and luminescence [J]. Inorganic ChemistryCommunications,2008,11(10):1117-20.
    [153] BO Q-B, WANG H-Y, WANG D-Q, et al. Structure and Photoluminescence TuningFeatures of Mn2+-and Ln3+-Activated Zn-Based Heterometal–Organic Frameworks(MOFs) with a Single5-Methylisophthalic Acid Ligand [J]. Inorganic Chemistry,2011,50(20):10163-77.
    [154] YUAN R, CHEN C, ZHANG N. Targeted Highly-Thermostable Metal–OrganicFrameworks Directed by Imidazole: Syntheses, Structures, Thermal Behaviors andLuminescent Properties [J]. J Inorg Organomet Polym,2012,22(2):507-13.
    [155] LIU Y, PAN M, YANG Q-Y, et al. Dual-Emission from a Single-Phase Eu–AgMetal–Organic Framework: An Alternative Way to Get White-Light Phosphor [J].Chemistry of Materials,2012,24(10):1954-60.
    [156] LU W-G, ZHONG D-C, JIANG L, et al. Lanthanide Coordination Polymers Constructedfrom Imidazole-4,5-Dicarboxylate and Sulfate: Syntheses, Structural Diversity, andPhotoluminescent Properties [J]. Crystal Growth&Design,2012,12(7):3675-83.
    [157] YAN C, LI K, WEI S-C, et al. Lanthanide homometallic and d-f heterometallic MOFsfrom the same tripodal ligand: structural comparison, one photon (OP) vs. two photon(TP) luminescence and selective guest adsorption behavior [J]. Journal of MaterialsChemistry,2012,22(19):9846-52.
    [158] GIL-HERNANDEZ B, MACLAREN J K, HOPPE H A, et al. Homochirallanthanoid(III) mesoxalate metal-organic frameworks: synthesis, crystal growth,chirality, magnetic and luminescent properties [J]. CrystEngComm,2012,14(8):2635-44.
    [159] SERRE C, MILLANGE F, THOUVENOT C, et al. Synthesis, characterisation andluminescent properties of a new three-dimensional lanthanide trimesate:M((C6H3)-(CO2)3)(M=Y, Ln) or MIL-78[J]. Journal of Materials Chemistry,2004,14(10):1540-3.
    [160] LI X, WU B-L, NIU C-Y, et al. Syntheses ofMetal2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate Networks with TopologicalDiversity: Gas Adsorption, Thermal Stability and Fluorescent Emission Properties [J].Crystal Growth&Design,2009,9(8):3423-31.
    [161] NAYAK S, NAYEK H P, PIETZONKA C, et al. A series of three-dimensionallanthanide MOFs: Observation of reversible structural changes controlled by solventdesorption–adsorption, and magnetic properties [J]. Journal of Molecular Structure,2011,1004(1–3):82-7.
    [162] YUAN G, SHAO K-Z, WANG X-L, et al. A series of novel chiral lanthanidecoordination polymers with channels constructed from16Ln-based cage-like buildingunits [J]. CrystEngComm,2010,12(4):1147-52.
    [163] JING X, MENG H, LI G, et al. Construction of Three Metal Organic FrameworksBased on Multifunctional T-Shaped Tripodal Ligands, H3PyImDC [J]. Crystal Growth&Design,2010,10(8):3489-95.
    [164] LIN Z-J, YANG Z, LIU T-F, et al. Microwave-Assisted Synthesis of a Series ofLanthanide Metal–Organic Frameworks and Gas Sorption Properties [J]. InorganicChemistry,2012,51(3):1813-20.
    [165] GU Z-G, FANG H-C, YIN P-Y, et al. A Family of Three-Dimensional Lanthanide-ZincHeterometal–Organic Frameworks from4,5-Imidazoledicarboxylate and Oxalate [J].Crystal Growth&Design,2011,11(6):2220-7.
    [166] AMGHOUZ Z, ROCES L, GARC A-GRANDA S, et al. Yttrium-succinatescoordination polymers: Hydrothermal synthesis, crystal structure and thermaldecomposition [J]. Journal of Solid State Chemistry,2009,182(12):3365-73.
    [167] FEREY G. Hybrid porous solids: past, present, future [J]. Chemical Society Reviews,2008,37(1):191-214.
    [168] DEBATIN F, THOMAS A, KELLING A, et al. In Situ Synthesis of anImidazolate-4-amide-5-imidate Ligand and Formation of a Microporous Zinc–OrganicFramework with H2-and CO2-Storage Ability [J]. Angewandte Chemie InternationalEdition,2010,49(7):1258-62.
    [169] EVANS O R, LIN W. Crystal Engineering of NLO Materials Based on Metal OrganicCoordination Networks [J]. Accounts of Chemical Research,2002,35(7):511-22.
    [170] REINEKE T M, EDDAOUDI M, FEHR M, et al. From Condensed LanthanideCoordination Solids to Microporous Frameworks Having Accessible Metal Sites [J].Journal of the American Chemical Society,1999,121(8):1651-7.
    [171] CHEN B, YANG Y, ZAPATA F, et al. Luminescent Open Metal Sites within aMetal–Organic Framework for Sensing Small Molecules [J]. Advanced Materials,2007,19(13):1693-6.
    [172] ZHANG D-J, SONG T-Y, SHI J, et al. Solvothermal synthesis a novel hemidirected2-D(3,3)-net metal-organic framework [Pb(HIDC)]nbased on the linkages of left-andright-hand helical chains [J]. Inorganic Chemistry Communications,2008,11(2):192-5.
    [173] CARLSSON A. A Paradigm Shift in Brain Research [J]. Science,2001,294(5544):1021-4.
    [174] SHEKHAH O, WANG H, PARADINAS M, et al. Controlling interpenetration inmetal-organic frameworks by liquid-phase epitaxy [J]. Nat Mater,2009,8(6):481-4.
    [175] SCHNOBRICH J K, LEBEL O, CYCHOSZ K A, et al. Linker-Directed VertexDesymmetrization for the Production of Coordination Polymers with High Porosity [J].Journal of the American Chemical Society,2010,132(39):13941-8.
    [176] PERRY IV J J, FENG P L, MEEK S T, et al. Connecting structure with function inmetal-organic frameworks to design novel photo-and radioluminescent materials [J].Journal of Materials Chemistry,2012,22(20):10235-48.
    [177] SUN D, KE Y, MATTOX T M, et al. Stability and Porosity Enhancement throughConcurrent Ligand Extension and Secondary Building Unit Stabilization [J]. InorganicChemistry,2006,45(19):7566-8.
    [178] ZHANG W-X, XUE W, ZHENG Y-Z, et al. Two spin-competing manganese(II)coordination polymers exhibiting unusual multi-step magnetization jumps [J]. ChemicalCommunications,2009,0(25):3804-6.
    [179] CHEN C, ZHANG S-Y, SONG H-B, et al. One-dimensional lanthanide coordinationpolymers as promising luminescent materials [J]. Inorganica Chimica Acta,2009,362(8):2749-55.
    [180] LIU G-F, LI L-L, REN Y-S, et al. Two1D coordination polymeric isomers with thesame chemical formula [Cu(2,2′-bipy)(Htda)]n: Synthesis, crystal structures andelectrochemical properties [J]. Inorganic Chemistry Communications,2009,12(6):563-5.
    [181] SHI W, CHEN X-Y, XU N, et al. Synthesis, Crystal Structures, and Magnetic Propertiesof2D Manganese(II) and1D Gadolinium(III) Coordination Polymers with1H-1,2,3-Triazole-4,5-dicarboxylic Acid [J]. European Journal of Inorganic Chemistry,2006,2006(23):4931-7.
    [182] YUAN G, SHAO K-Z, DU D-Y, et al. Syntheses, structures, and photoluminescence ofd10coordination architectures: From1D to3D complexes based on mixed ligands [J].Solid State Sciences,2011,13(5):1083-91.
    [183] YUE Y-F, LIANG J, GAO E-Q, et al. Supramolecular Engineering of a2D KagoméLattice: Synthesis, Structures, and Magnetic Properties [J]. Inorganic Chemistry,2008,47(14):6115-7.
    [184] ZHANG W-X, XUE W, CHEN X-M. Flexible Mixed-Spin Kagomé CoordinationPolymers with Reversible Magnetism Triggered by Dehydration and Rehydration [J].Inorganic Chemistry,2010,50(1):309-16.
    [185] ZHANG W-X, XUE W, LIN J-B, et al.3D geometrically frustrated magnets assembledby transition metal ion and1,2,3-triazole-4,5-dicarboxylate as triangular nodes [J].CrystEngComm,2008,10(12):1770-6.
    [186] YUE Y-F, WANG B-W, GAO E-Q, et al. A novel three-dimensional heterometalliccompound: templated assembly of the unprecedented planar "Na [Cu4]"metalloporphyrin-like subunits [J]. Chemical Communications,2007,0(20):2034-6.
    [187] YUAN G, SHAO K, DU D, et al. Synthesis and characterization of two novelcoordination polymers based on the rigid1H-1,2,3-triazole-4,5-dicarboxylic acid ligand[J]. Sci China Chem,2010,53(10):2177-82.
    [188] LIU G X, HUANG L F, XU H, et al. Synthesis, structure and photoluminescent propertyof a novel potassic compound [J]. Chinese Chemical Letters,2007,18(12):1539-42.
    [189] LIU G-F, REN Z-G, CHEN Y, et al. Solvothermal synthesis, structure and luminescentproperties of a new3D coordination polymer [K2Cd(Htda)2]n(Htda=1,2,3-triazole-4,5-dicarboxylate)[J]. Inorganic Chemistry Communications,2008,11(2):225-9.
    [190] FURUKAWA H, GO Y B, KO N, et al. Isoreticular Expansion of Metal–OrganicFrameworks with Triangular and Square Building Units and the Lowest CalculatedDensity for Porous Crystals [J]. Inorganic Chemistry,2011,50(18):9147-52.
    [191] AMIRJALAYER S, TAFIPOLSKY M, SCHMID R. Exploring Network Topologies ofCopper Paddle Wheel Based Metal–Organic Frameworks with a First-PrinciplesDerived Force Field [J]. The Journal of Physical Chemistry C,2011,115(31):15133-9.
    [192] KLEIN N, SENKOVSKA I, BABURIN I A, et al. Route to a Family of Robust,Non-interpenetrated Metal–Organic Frameworks with pto-like Topology [J]. Chemistry–AEuropean Journal,2011,17(46):13007-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700