用户名: 密码: 验证码:
多孔BN/Si_3N_4复合陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透波材料是一种集透波、防热、承载和抗蚀等多功能于一体的材料,它可以保护飞行器的天线系统,使其在恶劣环境下能够正常工作。随着飞行器的发展和飞行速度的不断提高,对透波材料介电性能、力学性能、寿命、工艺性和重量等方面要求越来越高。氮化硅(Si_3N_4)材料具有优异的力学性能、良好的热稳定性和耐腐蚀性能,是一种综合性能较高的飞行器天线罩用材料。但通过研究发现,Si_3N_4作为高速飞行器天线罩材料时,其介电性能不够理想,有待进一步提高。氮化硼(BN)具有比Si_3N_4更低的介电常数和介电损耗,而且在很宽的温度范围内具有优良的热、电性能稳定性,但其力学性能低于Si_3N_4、抗雨蚀性能差。本文将Si_3N_4和BN相结合,制备出具有Si_3N_4和BN各自优点的BN/Si_3N_4复合材料。
     由于多孔陶瓷具有较低的介电常数和密度,因此在制备BN/Si_3N_4复合材料时,应尽可能提高材料的气孔率。本文通过采用叔丁醇(TBA)基凝胶注模成型工艺制备高气孔率、高强度、低介电常数和介电损耗的BN/Si_3N_4复合陶瓷。优化了TBA基凝胶注模成型工艺各阶段的工艺参数,使该工艺适用于制备高气孔率的BN/Si_3N_4复合陶瓷。通过研究,加入0.144g/l(相对于溶剂体积)分散剂的浆料的流变性能较好;催化剂(MBAM)和引发剂(APS)水溶液最佳含量分别为1.5wt%和30wt%(相对于单体),40℃下N2保护聚合及保湿干燥制度较为合理。
     为了验证TBA基凝胶注模工艺在制备多孔BN/Si_3N_4复合陶瓷上的优越性,本文选取目前多孔陶瓷制备方法中应用最为广泛的干压成型工艺及造孔剂工艺与之进行对比实验,从微观结构到宏观性能进行了比较分析。研究发现,TBA基凝胶注模工艺的优势在于其能够制备出均匀可控,且具有高气孔率的结构。并可以通过调节固相含量得到不能性能的多孔BN/Si_3N_4复合陶瓷。当固相含量为7.5vol%时,气孔率为77.4%,介电常数为1.74;固相含量为30vol%时,气孔率为36.5%,抗弯强度为136±5.35MPa。
     在浆料中初始固相含量固定为15%体积分数的基础上,分别研究了烧结助剂Y2O3-Al2O3和SiO2的含量以及烧结温度的影响。结果表明,多孔BN/Si_3N_4复合陶瓷的气孔率随着烧结助剂含量的提高而下降,孔径呈单峰分布,尺寸为微米级或亚微米级。抗弯强度随着烧结助剂含量的提高而增大,介电常数随之上升。当Y2O3-Al2O3含量为5wt%,SiO_2含量为7.5wt%时,多孔BN/Si_3N_4复合陶瓷的抗弯强度为65.84±3.08MPa,室温下的介电常数非常稳定,在2.39附近波动,介电损耗在3×10~(-3)以下,并具有优异的高温介电性能。通过对烧结温度的研究,结果发现,在1750℃烧结温度下,Si_3N_4发育良好,具有优异的综合性能。
     研究了添加剂BN的加入量对多孔BN/Si_3N_4复合陶瓷的结构和性能的影响,对比了BN颗粒与BN晶须对样品的气孔率、显微结构、力学性能以及介电性能的影响。随着BN含量的提高,多孔BN/Si_3N_4陶瓷的气孔率呈现上升的趋势,而抗弯强度与介电常数则随之下降。由于BN晶须相对于BN颗粒具有长径比高的结构特征,借助其低介电常数与高长径比的特点,加入BN晶须的多孔BN/Si_3N_4复合陶瓷具有更加优良的介电性能和力学性能。
     研究了多孔复合陶瓷透波机理。随着气孔率的增加,多孔复合陶瓷的介电常数减小,介电常数实际测试值与Lichtencker方程(ε)推倒公式计算值有较好吻合。物相的组成是影响复合陶瓷介电性能的重要因素,随着BN相含量的增加,复合陶瓷的介电常数减小;多孔复合陶瓷的晶界相、气孔结构以及杂质也是影响介电常数及介电损耗的主要因素,晶界相含量的减少会使介电损耗急剧下降,具有较大气孔尺寸的样品的介电损耗较小。
Aerospace wave-transparent materials have many function characteristicssuch as wave-transparency, heat insulation, carrying capacity, and erosionresistance, which allow them to protect the spacecrafts from the influence ofharsh environments. With the rapid development of aircrafts and the increase offlight speed, materials are required to possess a number of critical properties suchas good mechanical and dielectric properties, excellent thermal resistance andrain erosion resistance, have a light weight, and so on. Silicon nitride is one ofthe most promising ceramic materials for the applications of wave-transparentmaterials, due to its high mechanical strength, good thermal shock resistance andexcellent erosion resistance. However when silicon nitride is used as high-machmissile radome, the dielectric properties are poor relatively. Boron nitride hasbetter thermal stability, a lower dielectric constant than silicon nitride, and it hasmore stability of dielectric properties at high temperatures. The downside is thatthe mechanical properties and rain-erosion resistance of BN are poor. In order toimprove the dielectric properties of Si_3N_4ceramics, BN can be introduced intothe Si_3N_4matrix to fabricate BN/Si_3N_4wave-transparent composites withexcellent properties.
     Porous composite ceramics have low dielectric constant and low density.They can not only satisfy the need to transmit signals with high speed, but alsoare able to overcome the brittleness of ceramic by designing and testingmulti-system materials. In this work porous BN/Si_3N_4composite ceramics with highporosity, high strength and excellent dielectric properties have been synthesized bygel-casting process.
     Parameters in the preparation process were thoroughly investigated andoptimized; the TBA-based gel-casting process has been improved to become a maturepreparation technique in preparing porous BN/Si_3N_4composite ceramics. The resultsshowed that the slurry with1.44g/l dispersant added had the best stability. Thecatalyst (MBAM) and initiator (APS) aqueous solution of the best content was1.5wt% and30wt%(to monomer), respectively. The green body was moisturizing dried at40°C in N2environment.
     Secondly, porous BN/Si_3N_4composite ceramics was fabricated by dry-pressingmethod, pore-forming agent method and TBA-based gel-casting process. It was foundthat the advantages of TBA-based gel-casting in fabricating porous BN/Si_3N_4composite ceramics could be ascribed to its feasibility in obtaining a homogeneousand controllable structure. And also, through TBA-based gel-casting we could gethigh porosity. When the porosity was36.5%, the flexural strength was136±5.35MPaand when the porosity was77.4%, the dielectric constant was1.74.
     At a fixed solid loading of15vol%of initial slurry, the effect of the content ofsintering additives Y2O3-Al2O3and SiO2and sintering temperature on the propertieswas analyzed. The results showed that the porosity increased with the higher amountsof sintering additives. A uniform pore size distribution was observed, and the medianpore size was micron or submicron. The flexural strength and dielectric constant ofporous BN/Si_3N_4ceramics increased when the content of sintering additives increased.When the content of Y2O3-Al2O3was5wt%, the content of SiO2was7.5wt%, andthe flexural strength was65.84±3.08MPa. At room temperature, porous BN/Si_3N_4composite ceramics had excellent and stable dielectric properties at7~18GHzfrequency. The dielectric constant was2.39, and the dielectric loss stayed between1.5~3.5×10~(-3). The porous BN/Si_3N_4composite ceramics had excellent dielectricproperties at high temperatures.
     Furthermore, the effect of BN contents on the microstructure and properties ofporous BN/Si_3N_4composite ceramics was analyzed. The porosity, microstructure,mechanical properties, and dielectric properties of BN particles and BN whiskerswere compared in porous BN/Si_3N_4composite ceramics. When the content of BNincreased the porosity of BN/Si_3N_4composite ceramics increased while the dielectricconstant and flexural strength decreased. The porous Si_3N_4composite ceramics withBN whiskers had better dielectric and mechanical properties.
     Lastly, the wave-transparent mechanism was investigated. The dielectricconstant of porous BN/Si_3N_4composite ceramics was decreased while theporosity increased. The relationship between the dielectric constant and porositywas consistent with Lichtencker's logarithmic equation (ε). Phase composition was another important factor on dielectric properties. The increase of BN with alow dielectric constant could decrease the dielectric constant of the composites.The dielectric constant of BN/Si_3N_4composites could be calculated by themultiphase Lichtencker's logarithmic equation (ε). Furthermore, we discussed theinfluence of the grain boundary phase, the pore structure and impurity ondielectric properties especially dielectric loss. The content of the grain boundaryphase decrease was beneficial for the dielectric loss. The samples with biggerpore size had small dielectric loss.
引文
[1]韩桂芳,陈照峰,张立同,等.高温透波材料研究进展[J].航空材料学报,2003,23(1):57-61
    [2]黎义,张大海,陈英,等.航天透波多功能材料研究进展[J].宇航材料工艺,2000(5):1-5
    [3]张谟杰.超音速导弹天线罩及其设计[J].制导与引信,2000,21(1):1-6
    [4] Barta J, Manela M, Fischer R. Si3N4and Si2N2O for high performanceradomes[J]. Materials Sciece and Engineering,1985(71):265-72
    [5]张军,张恒,沈献民,等.电磁透波功能复合材料的研究[J].材料导报,2003,(7):64-66
    [6] Fellows B J. Investigation into the nature of bioactivity in the calciumphosphate system[J]. Ceramics in Clinical Applications,1986(6):283-288
    [7] Jie XU., Dongmei Zhu., Fa LUO, et al. Dielectric properties of porousreaction-bonded Si3N4ceramics with controlled porosity and pore size[J].J.Mater.Sci.Technol.,2008,24(2):207-210
    [8]张谟杰.导弹天线罩的结构可靠性[J].制导与引信,2006,27(2):44-46
    [9]袁海根,周玉玺.透波复合材料研究进展[J].化学推进剂与高分子材料,2006,4(5):30-36
    [10]高晓菊,王红洁.高温微波功能复合材料研究进展[J].硅酸盐通报,2007,26(5):975-979
    [11] Mruthyunjaya L., Rao K. N. S. Measurement of dielectric constant ofaerospace dielectric materials[J]. Spacer Technol,1996,6(2):28-31
    [12] Bolivar P. H., Brucherseifer M., Rivas J. G., et al. Measurement of theDielectric constant and loss tangent of high dielectric constant materials atterahertz frequencies. Microwave Theory and Techniques,2003,51(4):1062-1066
    [13]张伟儒.高性能氮化物透波材料的设计、制备及特性研究[博士学位论文].武汉:武汉理工大学,2007:1-2
    [14]石毓铁,梁国正,兰立文.树脂基复合材料在导弹雷达天线罩中的应用[J].材料工程,2000(5):36-39
    [15] Robert T G. Radome structure and method of manufacture thereof: US,4615933[P].1986-10-07
    [16]宋麦丽,崔红,王涛,等.天线罩透波材料研究[J].功能材料,2004,35:925-928
    [17]沈强,陈斐,闫法强,等.新型高温陶瓷天线罩材料的研究进展[J].材料导报,2006,20(9):1-4
    [18] Rice R W, Mcdonough W J, Freiman S W et al. Ablative-resistant dielectricceramic articles: US,4304870[P],1981
    [19] Pletka B J, Wiederhorn S M. A comparison of failure predictions by strengthand fracture mechanics techniques[J]. Journal of Materials Science,1982,17:1247-1268
    [20]谢志勇.堇青石透波材料的研究与制备[D].天津:天津大学,2004:1-14
    [21]蒋三生.反应烧结Si3N4透波材料的研究[硕士学位论文].北京:北京交通大学,2008:12-14.
    [22] Place T. M., Bridge D. W. Fused quartz reinforced silica composite.Processing of10th symposium E. M. Windows,1970:115-119
    [23] Suzuki K., Nakano K., Ishikawa T., et al. Manufacturing of3D wovenSiC/SiC composite combustor liner[J]. Ceramic Engineering and ScienceProceedings,2001,22(3):463-47
    [24] Thomas L. S., Nicole H. Measurement of gas transport through fiber performsand densified composites for chemical vapour infiltration[J]. J. AM.Ceram.Soc.,1998,81(5):1298-1304
    [25] Riley F L. Silicon nitride and related materials[J]. Journal of the AmericanCeramic Society,2000(83):245-265
    [26] Ziegler A, Idrobo JC, Cinibulk MK et al. Interface structure and atomicbonding characteristics in silicon nitride Ceramics[J]. Science,2004,306(3):1768-1770
    [27]何利华,张谟杰.可控密度氮化硅在导弹天线罩上的应用[J].制导与引信,2007,28(1):33-36
    [28]郭景坤,黄校先,庄汉锐,,等.氮化硼纤维补强反应烧结氮化硅陶瓷.Patent: CN85104097
    [29] Yao D, Zeng Y P, Zuo K H, et al. The effects of BN addition on themechanical properties of porous Si3N4/BN ceramics prepared via nitridation ofsilicon powder[J]. Journal of the American Ceramic Society,2011,94(3):666-670
    [30] Kusunose T, Sekino T, Choa Y H, et al. Fabrication and microstructure ofsilicon nitride/boron nitride nanocomposites[J]. Journal of the AmericanCeramic Society,2002,85(11):2678-2688
    [31]张军,贺跃进,等.树脂基复合材料透波盖力学分析与透波试验研究[J].兵工学报,2008,29(3):327-330
    [32] David W M. Radomes Based on Novel inorganic Polymer Composites[J].SAMPE Journal,2001,37(5):53-58
    [33]张亮,金海波,曹茂盛.SiO2陶瓷复合材料高温介电性能研究[J].稀有金属材料与工程,2007,36(S3):515-518
    [34] Qi G J, Zhang C R, Hu H F, et al. Preparation of three-dimensional silica fiberreinforced silicon nitride composites using perhydropolysilazane asprecursor[J]. Materials Letters,2005,59:3256-3258
    [35]张大海,黎义,高文.高温天线罩材料研究进展[J].宇航材料工艺,2004,34(2):14-16
    [36]张漠杰.石英陶瓷天线罩的增强方法[J].上海航天,1994,4:15-16
    [37]成来飞,刘永胜,张立同,,等.氮化物高温透波材料及其应用研究进展[J].中国航空学会2005年学术会议论文集,2005:200-208
    [38] Facciano. High-temperature composite applications for supersonic missileairframes[J]. SAMPE Journal,2001,1:9-23
    [39] Lew, J. R. A. Spann. Assement of new radome material as replacement forpyroceram9606. Prpceeding of the16th symposium on Elecro-MagneticWindows.1982,429-436
    [40]齐共金,张长瑞,王思青,等.无机天线罩功能材料的新进展[J].功能材料,2004,35:1700-1703
    [41] Pechenik A, Piermarini G J. Fabrication of transparent silicon nitride formnanosize pariticles[J]. J. Am. Ceram. Soc.,1992,75(12):3283-3289
    [42] G. Talmy, C. A. Martin, D. A. Haught. Electromagnetic Window,1996,US5573986
    [43]高冬云,王树海,潘伟,,等.高速导弹天线罩用无机透波材料[J].现代陶瓷技术陶瓷,2005,4:33-35
    [44] K. E. Golden. The prediction and measure of dielectric properties and RFtransmission through ablating BN antenna widows. AIAA16thThermophysical Conference,1981,23-25
    [45]张伟儒,王重海,刘建,等.高性能透波Si3N4/BN基陶瓷复合材料的研究[J].硅酸盐通报,2003,3:3-6
    [46]李晓云,步文博,徐杰. AlN/BN复合陶瓷及在微波输能窗上的应用[J].南京化工大学学报,2001,6(23):103~106
    [47][48]徐常明,王士维,黄校先,等.热压制备SiO2f/SiO2复合材料的析晶行为及力学性质[J].硅酸盐学报,2006,3(34):284~289
    [48]管恩祥,陈玮. Li1.0Nb0.6Ti0.5O3陶瓷的低温烧结及其微波介电性能[J].无机材料学报,2007,2:315-318
    [49] Jiang Y G, Zhang C R, Cao F, et al. Fabrication of high performance2.5DSiO2f/Si3N4-BN Composites for high-temperature application[J]. AdvancedEngineering Materials,2007,9(1-2):114-116
    [50]徐常明,王士维,黄校先,等.无压烧结制备Si3N4/SiO2复合材料[J].无机材料学报,2006,21(4):935-938
    [51]吴洁华,郭景坤,李句顺. SiO2-AlN-BN复合材料的制备和性能研究[J].硅酸盐学报,2000,28(4):365-310
    [52]于萍. SiCf(w)对Cf/SiO2陶瓷复合材料力学与抗热震性能的影响[D].哈尔滨工业大学,2010,14-18
    [53]祝昌军,蒋俊,高玲,等.氮化硅陶瓷的制备及进展[J].江苏陶瓷,2001,34(3):10-12
    [54]王思青,张长瑞,王圣威,等.Si3N4-BN基复相陶瓷天线罩材料的制备及性能[J].国防科技大学学报,2006,28(2):16-18
    [55]江东亮.精细陶瓷材料[M].北京:中国物资出版社,2000:125-128
    [56] PAQUTTE G D. Method of making a radar transparent window materialsoperable above2000℃: USA,5627542[P].1997
    [57] Liu Ping, Li Yongfeng, Wang Xiangdong et al. Si3N4/BN Composite Ceramicswith Nd2O3-Al2O3-Y2O3Ternary Additives by Pressureless Sintering[J]. KeyEngineering Materials,2010,434-435:106-108
    [58] Gao Lian, Jin Xihai, Li Jingguo, et al. BN/Si3N4nanocomposite with highstrength and good machinability[J].Materials Science and Engineering A,2006(415):145-148
    [59] Sun Ye, Meng Qingchang, Ji Dechang et al. Effect of hexagonal BN on themicrostructure and mechanical properties of Si3N4ceramics[J]. Journal ofMaterials Processing Technology,2007,182(1-3):134-138
    [60]王思青,张长瑞,王圣威. Si3N4基复相陶瓷天线罩材料的制备及性能[J].国防科技大学学报,2006,28(2):44-47
    [61]张强,沈卫平,顾淑媛.加工氮化硅/BN复相陶瓷的制备[J].硅酸盐学报,2007,35(3):337-341
    [62]李永利,李瑞霞,张久兴.高性能Si3N4基可加工复合陶瓷的快速制备[J].北京工业大学学报,2007,33(11):1218-1221
    [63] Studart A R, Gonzenbach U T. Tervoort E, et al. Processing Routes toMacroporous Ceramics: A Review[J]. J Am Ceram Soc,2006,89:1771-1789.
    [64]张勇,王红洁,张雯,等.高强度多孔氮化硅陶瓷的制备与研究[J].稀有金属材料与工程,2004,33(6):655-658
    [65] Yang J F, Gao J Q, Zhang G J et al. Effects of pore morphology on thefabrication and mechanical properties of porous Si3N4ceramics[J]. KeyEngineering Materials,2005,280-283:1231-1234.
    [66] Diaz A, Hampshire S. Characterisation of porous silicon nitride materialsproduced with starch [J]. Journal of the European Ceramic Society,2004,24:413-416
    [67] Li F S. High performance porous Si3N4ceramics prepared by coatedpore-forming agent method [J]. Ceramics International,2009,35:3169–3173
    [68] Xia Y F, Zeng Y P, Jiang D L. Mechanical and dielectric properties of porousSi3N4ceramics using PMMA as pore former[J]. Ceramics International,2011,37:3775-3779
    [69] Young A C, Omatete O, Janney M A, et al. Gel casting of alumina [J]. Journalof the American Ceramic Society,1991,74(3):612-618
    [70] Omateta O, Janney M A, Strehlow R A. Gel casting-a new ceramic formingprocess[J]. American Ceramic Society Bulletin,1991,70(10):1641-1649
    [71] Chen R F, Huang Y, Wang C A, et al. Ceramics with ultra-low densityfabricated by gelcating: An unconventional view[J]. Journal of the AmericanCeramic Society,2007,90(11):3424-3429
    [72] Pekor C M, Kisa P and Nettleship I. Effect of Polyethylene Glycol on theMicrostructure of Freeze-Cast Alumina[J]. J Am Ceram Soc,2008,91:3185-3190
    [73] Lee S H, Jun S H, Kim H E, et al. Fabrication of porous PZT-PZNpiezoelectric ceramics with high hydrostatic figure of merits usingcamphene-based freeze casting[J]. J Am Ceram Soc,2007,90:2807-2813
    [74] Lee S H, Jun S H, Kim H E, et al. Piezoelectric Properties of PZT-basedCeramic with Highly Aligned Pores[J]. J Am Ceram Soc,2008,91:1912-1915
    [75] Moritzw T and Richter H J. Ceramic Bodies with Complex Geometries andCeramic Shells by Freeze Casting Using Ice as Mold Material. J Am CeramSoc,2006,89:2394–2398
    [76] Araki K and Halloran J W. Porous Ceramic Bodies with Interconnected PoreChannels by a Novel Freeze Casting Technique[J]. J Am Ceram Soc,2005,88:1108–1114
    [77] Koh Y H, Lee E J, Yoon B H, et al. Effect of Polystyrene Addition on FreezeCasting of Ceramic/Camphene Slurry for Ultra-High Porosity Ceramics withAligned Pore Channels[J]. J Am Ceram Soc,2006,89:3646–3653
    [78] Fukasawa T, Ando M, Ohji T, et al. Synthesis of porous ceramics withcomplex pore structure by freeze-dry processing[J]. Journal of the AmericanCeramic Society,2001,84(1):230-233
    [79] Fukasawa T. Synthesis of porous silicon nitride with unidirectionally alignedchannels using freeze-drying process[J]. Journal of the American CeramicSociety,2002,85(9):2151-2154
    [80] Ye F, Zhang J Y, Liu L M, et al. Effect of solid content on pore structure andmechanical properties of porous silicon nitride ceramics produced by freezecasting[J]. Materials Science and Engineering A,2011,528:1421-1424
    [81]陈源,黄莉萍,孙兴伟,等.烧结助剂对氮化硅陶瓷高温性能的影响[J].硅酸盐学报,1997,25(2):183-187
    [82] YANG J, YANG J F, SHAN S Y, et al. Effect of sintering additives onmicrostructure and mechanical properties of porous silicon nitride ceramics [J].J Am Ceram Soc,2006,89(12):3843–3845
    [83]邹强,徐廷献,郭文利. Si3N4陶瓷烧结中烧结助剂的研究进展.2004,1:81-84
    [84] J.F.Yang, T. Ohji. Influence of yttria-alumina content on sintering behaviorand microstructure of silicon nitride ceramics[J]. J Am Ceram Soc,2000,83(8):2094-2096
    [85] YU Fangli, YANG Jianfeng, XUE Yaohui, et al. Effect of sintering aid onmechanical and dielectric properties of porous silicon nitride ceramics[J].Journal of the Chinese ceramic society.2008,36(8):1307-1041
    [86]王红洁,于娟丽,张建,等.烧结助剂对多孔透波Si3N4陶瓷性能的影响.中国空间科学学会空间材料专业委员会2009学术交流会论文集.2009,207-212
    [87] Li ShuQin, Pei YuChen, Yu ChangQing, et al. Mechanical and dielectricproperties of porous Si2N2O–Si3N4in situ composites[J]. CeramicsInternational,2009,35(5):1851-1854
    [88] Ding Shuqiang, Zeng YuPing, Jiang Dongliang. Oxidation bonding of poroussilicon nitride ceramics with high strength and low dielectric constant[J].Materials Letters,2007,61(11-12):2277–2280
    [89] Yang J. F., Ohji T., Niihara K.. The influence of Y2O3-Al2O3content onsintering process and microstructure of siliconnitride ceramics[J]. Journal ofthe American Ceramic Society,2000,83(8),2094–2096
    [90]江涌,廖红梅,吴澜尔.温度对氮化硅粉烧结密度的影响[J].兵器材料科学与工程,2008,31(6):71-75
    [91]张雯,王红杰,张勇,等.凝胶注模工艺制备高强度多孔氮化硅陶瓷[J].无机材料学报,2004,19(4):743-748
    [92]周龙捷,黄勇,谢志鹏,等.凝胶注模成型制备高性能氮化硅陶瓷(Ⅱ)-冷,等静压、粉料氧化处理和气压烧结对材料性能的影响[J].材料研究学报,2001,15(1):55-60
    [93]王红洁,颜峰,王永兰,等.烧结工艺对Si3N4陶瓷显微结构及性能的影响[J].西安交通大学学报,1996,30(2):82-86
    [94]张煜东,苏勋家,侯根良.氮化硅天线罩的烧结工艺研究进展[J].飞航导弹,2007,5:59-61
    [95]郭文利,徐廷献,李爱华.纳米氮化硅制备天线罩材料介电性能的研究[J].硅酸盐学报,2003,31(7):698-701
    [96] Yang A K, Wang C A, Guo R, et al. Effects of sintering behavior onmicrostructure and piezoelectric properties of porous PZT ceramics[J]. CeramIntl,2010,36:549-554.
    [97] Yang A K, Wang C A, Guo R, et al. Porous PZT ceramics with highhydrostatic figure of merit and low acoustic impedance by TBA-basedgel-casting process[J]. J Am Ceram Soc,2010,93:1427-1431.
    [98] Hu L F, Wang C A, Huang Y. Porous yttria-stabilized zirconia ceramicswith ultra-low thermal conductivity[J]. J. Mater. Sci.,2010,45:3242-3246
    [99] Hu L F, Wang C A. Effect of sintering temperature on compressive strength ofporous yttria-stabilized zirconia ceramics[J]. Ceram. Int.,2010,36:1697-1701
    [100] Liu Weiyuan, Wang Chagn’an Zhou Lizhong et al. Fabrication of porousalumina ceramics with high porosity and high strength[J]. Journal of theChinese Ceramic Society.2008,36(12):1764-1768
    [101]汪长安,陈瑞峰,刘伟渊,等.凝胶注模新工艺制备超轻质氧化铝陶瓷[J].第十五届全国复合材料学术会议论文集,2008,660-664
    [102] Claire Soares. Process engineering equipment handbook[M].1st ed. New York:McGraw Hill Professional Publisher,2001
    [103]刘伟渊.高气孔率、高强度多孔氧化铝陶瓷的制备及表征[硕士学位论文].北京:清华大学,2008:1-2
    [104]尉磊,汪长安,魏桥苑,等.固相含量对多孔Si3N4显微结构及性能的影响[J].硅酸盐学报,2011,39(7):1197-1200
    [105] Omatete, M. A. Janney and S. D.Nunn, Gelcasting: from laboratorydevelopment toward industrial production[J]. J. Eur. Ceram. Soc.1997,17:407-413
    [106] J.X. Zhang, F. Ye, D.L Jiang and M. Iwasa, Dispersion of Si3N4powders inaqueous media[J]. Colloids Surf. A: Physicochem. Eng. Aspects.2005,259117-123
    [107] L. Bergstrom, Reological properties of concentrated, nonaqueous Si3N4suspensions[J]. J. Am. Soc.1996,79(12):33-40
    [108] COBLE R L, KINGERY W D. Effect of porosity on physical properties ofsintered alumina [J]. J Am Ceram Soc,1956,39:377-385
    [109] RYSHKEWITCH E. Compression strength of porous sintered alumina andzirconia [J]. J Am Ceram Soc,1953,36:65-68
    [110] Diaz A., Hampshire, S. Characterization of porous silicon nitride materialsproduced with starch[J]. J Euro. Ceram. Soc.2004,24(2):413-419
    [111] Terwilliger G. R., Lange. F. E. Hot-Pressing behavior of Si3N4[J]. J. Am.Ceram. Soc.,1974,57(1):25-29
    [112] Zhou F. Joining of silicon nitride ceramic composites with Y203-A12O3-SiO2mixtures[J]. J. Mater. Pro. Tech.,2002,127(3):293-297
    [113]尉磊,汪长安,董薇,等.高强度多孔氮化硅陶瓷的制备及性能研究[J].稀有金属材料与工程,2011,40(S1):547-550
    [114]尉磊,汪长安,孙加林,等.烧结助剂含量对多孔氮化硅结构及性能的影响[J].宇航材料工艺,2011,41(1):109-112.
    [115] Diaz A., Hampshire S., Comparison of mechanical properties of silicon nitridewith controlled porosities produced by different fabrication routes[J]. J. Am.Ceram. Soc.,2005,88(3):698-706
    [116] Dechang Jia, Yingfeng Shao, Boyang Liu, et al. Characterization of poroussilicon nitride/silicon oxynitride composite ceramics produced by solinfiltration[J]. Materials Chemistry and Physics,2010,124:97-101
    [117]熊昆,徐光亮,李松涛,等.碳化硅晶须的分散稳定性[J].硅酸盐学报,2008,36(10):1432-1436
    [118]孙银宝.氮化硅基多孔透波材料制备及其性能表征[博士学位论文].哈尔滨:哈尔滨工业大学,2009:28-30
    [119] E. Arvas, A. Rahhalarabi, U. Pekel, et al. Electromagnetic transmissionthrough a small radome of arbitrary shape[J]. IEE PROCEEDINGS,1990,137(6):401~403
    [120]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:315-316
    [121] S. J. Penn, N. M. Alford, A. Templeton. Effect of porosity and grain size onthe microwave dielectric properties of sintered alumina[J]. Journal of theAmerican Ceramic Society,1997,80(7):1885-1888
    [122] Matjaz Valant, Danilo Suvorov. Microstructural phenomena in low-firingceramics[J].Materials Chemistry and Physics,2003,79(2-3):104-110
    [123] Hiroyuki Miyazak, Yu-Ichi Yoshizawa, Kiyoshi Hirao. Effect of crystallizationof intergranular glassy phases on the dielectric properties of silicon nitrideceramics[J]. Materials Science and Engineering: B,2008,148(1-3):257-260
    [124]南策文.非均质材料物理–-显微结构–性能关联[M].北京:科学出版社,2005:97-100
    [125] Wang Xiaoyan, Luo Fa, Yu Xinmin et al. Influence of short carbon fibercontent on mechanical and dielectric properties of Cfiber/Si3N4composites[J].Scripta Materialia,2007,57(4):309-312
    [126] R. Vila, M. González, M. T. Hernández et al. The role of C-impurities inalumina dielectrics[J]. Journal of European Ceramic Society,2004,24(6):1513-1516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700