用户名: 密码: 验证码:
负折射率材料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负折射率材料(negative index materials,简称NIM),又称“左手材料”(left-handed material,简称LHM)。指的是电磁波在这种特殊介质中传播时,波矢k、电场强度E和磁场强度H三者不再遵守右手定则k=E×H,而是遵守左手定则k=E×H,使得坡印廷矢量S的方向和波矢k的方向相反。当平面电磁波从一般的右手材料入射到左手材料中时,在左手材料内部会发生入射光线和折射光线位于法线同侧的现象,根据推广的Snell定律,可以认为左手材料的折射率为负值。负折射率材料体现出诸多的奇特性质,例如反常多普勒效应、反常切伦科夫辐射和反常古斯汉欣位移等。同时,由于负折射率材料可以用于制作突破衍射极限的理想透镜、新型天线、新型带隙材料和高密度光学存储器等,是近十年来光学、材料学以及微电子学等诸多学科的重点研究领域。目前,研究还处于起步阶段,由于在自然界中没有天然的负折射率材料,因此学术界研究的重点仍集中在如何设计和获得性能优越的负折射率材料上。
     本文主要着眼于负折射率材料的基础理论研究,分为三个部分。第一部分研究了基于光子晶体以及类光子晶体结构的负折射率材料;第二部分基于天然的掺杂型锰钙钛矿材料,研究了此类材料在铁磁共振时的负折射特性。在外加磁场时,此类特殊材料在环境温度低于居里温度时体现金属特性,提供负的介电函数,铁磁共振时能得到负的磁导率,因而满足负折射率材料的要求;第三部分研究了反常多普勒效应,在国际上首次在光频段实验验证了负折射材料中的非相对论反常多普勒效应。
     第一部分的研究内容包括:
     1)利用理想的二维光子晶体,设计和研究了全角度等效折射率为-1的光子晶体平板透镜,研究了平板透镜的成像质量。
     2)计算了更接近实际情况的有限高光子晶体平板的能带结构随高度的变化关系,研究结果表明,平板的高度能够对光子晶体的能带结构产生很大的影响,从而改变光子晶体的等效折射率。因此,在设计光子晶体平板透镜时要注意平板高度对折射率的影响,同时也可以利用这一点来设计所需的光子晶体负折射器件。
     3)计算了不同外磁场下,磁流体光子晶体平板的能带结构,研究表明可以通过改变外磁场的强弱来调节光子晶体平板的等效负折射率,为设计和制作折射率可调的负折射率材料提供了一条新的思路。
     第二部分的研究包括:
     1)研究了电子强关联效应对掺杂型锰钙钛矿电子结构的影响,通过比较分析获得了合适的在位库仑能,为接下来的理论模拟工作铺平了道路。
     2)通过计算eg电子带宽,研究了晶格结构对材料居里温度的影响,发现居里温度主要取决于材料的平均Mn-O-Mn键角的大小,受平均Mn-O键长的影响很小,并分析了成因,为后续的实验选材工作指明了方向。
     3)理论计算了铁磁共振时材料的磁导率函数和介电函数,研究了等效磁导率和共振频率随外磁场的变化情况,发现通过调节外磁场,能够在很宽广的频率范围内实现负折射。同时还计算分析了此类材料在铁磁共振时的电磁波传播特性。为实验工作提供了理论依据。
     第三部分的研究包括:
     1)设计了易于制备且具有负折射特性的光子晶体棱镜,并对实际光子晶体棱镜的负折射特性进行了实验验证。
     2)设计了反常多普勒效应的测量光路,得到了明确的判据来判断实验观测到的现象是否为反常多普勒效应,实验结果证明了负折射材料确实具有这种奇异的物理性质,在国际上首次观测到了光频段的反常多普勒现象。
In1968, Veselago showed theoretically that material with simultaneously negativeε and μ possess a number of unusual and often counterintuitive properties. If ε <0and μ <0, the vectors E, H and k form a “left-handed” triplet as k=E×H, andthe refractive index is negative using an extended snell's law, i.e. n=εμ. The caseis referred to as negative-index materials (NIMs) or “left-handed materials”(LHMs).The NIMs have shown many novel properties, such as inverse Doppler effects, inverse erenkov radiation and inverse Goos-H nchen shift, and have many potentialapplications in superlens, new type Antennas, band gap materials and high-densityoptical memory et al. So this field has attracted great attention in optics, materialsengineering and microelectronics for decade. Nevertheless, no materials with ε andμ being simultaneously negative had been found in nature or demonstratedexperimentally prior to the year2000. Until now, the most works focus on the problemof the NIMs how to realize.
     The thesis is composed of three parts. In part one, the NIMs are achieved usingphotonic crystals (PCs), and the NIMs properties have been discussed in detail. In parttwo, the NIMs are achieved using doped perovskite oxides. Under magnetic field, thematerials show metal behavior below Curie temperature,i.e. Re ε <0. At the sametime, it can achieve Re μ <0during ferromagnetic resonance. The NIMs propertieshave been discussed in detail. In part three, we observed the inverse Doppler shift in aphotonic crystal (PC) prism for the first time, which has NIMs property at10.6μ mwavelength.
     Part One:
     1) A left-hand structure based on a two-dimensional (2D) PC with a negativerefractive index of–1has been proposed, and its imaging properties have beeninvestigated systematically.
     2) Naturally, planar waveguides based on photonic crystals cannot be of infiniteheight, and guidelines for the design of finite-height waveguides are, therefore,important for the realization of planar photonic crystal waveguides. Thephotonic band structures of finite-height two-dimensional photonic crystal slabs have been calculations. The results show that the height of PC slabs playan important role on the band structures. It provides a new way to design theNIMs.
     3) The model of tunable superparamagnetic photonic crystals self-assembled incolloidal magnetic fluids under externally applied magnetic fields isestablished. The photonic band structures of the guided modes propagating inthe PC slab have been calculated. The results that the tunable refractive indexmaterials can be achieved using magnetic fluids.
     Part two:
     1) The electronic structures of perovskite oxides were studied with the densityfunctional methods. Our calculations indicated that although the effects ofJahn-Teller distortion play a main role for getting the correct ground state, areasonable strong electron correlation correction is necessary for obtaining theexact band structure.3.5eV is a good choice for the on-site Coulombparameter U.
     2) The correlations between structural effects and egbandwidth in hole-dopedmanganites were studied with the density functional methods. The calculationresults show that the bandwidth exhibits an oscillating behavior as the Mn-Odistances shorten, and the Mn-O-Mn angles play a major role in the bandwidthvariation in these materials.
     3) The permeability and the permittivity of perovskite oxides were calculatedunder ferromagnetic resonance conditions. The negative refraction propertiesof the magnetic films have been discussed in detail.
     Part three:
     1) The PC prism, which has NIM property at10.6μm wavelength, has beendesigned. The experimental results show that the PC prism clearly exhibits anegative refraction behavior.
     2) The experimental setup for detection of the inverse Doppler effect has beendesigned. A clear criterion has been found to clarify the normal and anomalousDoppler effects. The experimental result clearly indicates that the observedDoppler effect is anomalous, and the inverse Doppler effect has been explicitlyobserved at optical frequencies for the first time.
引文
[1] V G Veselago. The electrodynamics of substances with simultaneously negativevalues of permittivity and permeability. Sov. Phys. Usp.1968,10:509-514.
    [2] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons inmetallic mesostructures. Phys. Rev. Lett.1996,76:4773.
    [3] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors andenhanced nonlinear phenomena. IEEE Transactions on Microwave Theory anfTechniques.1999,47:2075-2084.
    [4] Pendry J B. Negative refraction makes a perfect lens. Phys. Rev. Lett.2000,85:3966–3969.
    [5] Williams J M. Some problems with negative refraction. Phys. Rev. Lett.2001,87:249703(4).
    [6] Garcia N, Nieto-Vesperinas M. Left-handed materials do not make a perfect lens.Phys. Rev. Lett.2002,88:207403(4).
    [7] Shen J T, Platzman P M, Near field imaging with negative dielectric constant lenses.Appl. Phys. Lett.2002,80:3286–3288.
    [8] Ye Z. Optical transmission and reflection of perfect lenses by left handed materials.Phys. Rev. B2003,67:193106.
    [9] Taubner T, Korobkin D, Urzhumov Y et al. Near-field microscopy through a SiCsuperlens. Science2006,313:1595.
    [10]Larkin I A, Stockman M I. Imperfect perfect lens. Nano Lett.2005,5:339–343.
    [11]Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneouslynegative permeability and permittivity. Phys. Rev. Lett.2000,84:4184–4187.
    [12]Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index ofrefraction. Science.2001,292:77–79.
    [13]Parazzoli C G, Greegor R B, Li K et al. Experimental verification and simulation ofnegative index of refraction using Snell’s law. Phys. Rev. Lett.2003,90:107401(4).
    [14]Houck A A, Brock J B, Chuang I L, Experimental observations of a left-handedmaterial that obeys Snell’s law2003, Phys. Rev. Lett.90:137401(4).
    [15]Parimi P V, Lu W T, Vodo P et al. Imaging by flat lens using negative refraction.Nature2003,426:404.
    [16]’t Hooft G W. Comment on “Negative Refraction Makes a perfect lens”. Phys. Rev.Lett.2001,87:249701(4).
    [17]Pendry J B. Comment on “Left-Handed Materials Do Not Make a Perfect Lens”.Phys. Rev. Lett.2003,91:99701.
    [18]Pendry J B. Pendry Replies: Phys. Rev. Lett.2001,87:249702; Pendry J B. PendryReplies: Phys. Rev. Lett.2001,87:249704.
    [19]Pendry J B. Optics: Positively negative. Nature2003,423:22-23.
    [20]Kevin M. K. H. Leong, Anthony L, Tatsuo Itoh. Demonstration of reverse Dopplereffect using a left-handed transmission line. Micro. Optic. Tech. Lett.2006,48:545-547.
    [21]Alexander B. Kozyrev, Daniel W. van der Weide. Explanation of the inverseDoppler effect observed in nonlinear transmission lines. Phys. Rev. Lett.2005,94:203902.
    [22]Chiyan Luo, Mihai Ibanescu, Evan J. Reed et al. Doppler radiation emitted by anoscillating dipole moving inside a photonic band-Gap crystal. Phys. Rev. Lett.2006,96:043903
    [23]A.V. Kats, Sergey Savel’ev, V. A. Yampol’skii et al. Left-handed interfaces forelectromagnetic surface waves. Phys. Rev. Lett.2007,98:073901.
    [24]N. Seddon, T. Bearpark, Observation of the inverse Doppler effect. Science2003,302:1537-1540
    [25]Evan J. Reed, Marin Soljacic, Mihai Ibanescu et al. Comment on "Observation ofthe Inverse Doppler Effect”. Science2004,305:778b
    [26]Alexander B. Kozyrev, Daniel W. van der Weide. Explanation of the InverseDoppler Effect Observed in Nonlinear Transmission Lines. Phys. Rev. Lett.2005,94:203902
    [27]Evan J. Reed, Marin S, J. D. Joannopoulos. Comment on ‘‘Explanation of theInverse Doppler Effect Observed in Nonlinear Transmission Lines’’. Phys. Rev.Lett.2006,96:069402
    [28]Chiyan Luo, Mihai Ibanescu, Steven G. Johnson et al. Cerenkov radiation inphotonic crystals. Science2003,299:368-371
    [29]Lu J, Grezgorczyk TM, Zhang Y. Cerenkov radiation in materials with negativepermittivity and permeability. Optics Express2003,11:723-734
    [30]Berman P R. Goos-H nchen shift in negatively refractive media. Phys. Rev. E2002,66:067603
    [31]Huangfu J T, Ran L X, Chen H S et al. Experimental confirmation of negativerefractive index of a metamaterial composed of Ω-like metallic patterns.2004,Appl. Phys. Lett.84:1537
    [32]Chen H S, Ran L X, Huangfu J T et al. Metamaterial exhibiting left-handedproperties over multiple frequency bands. J. Appl. Phys.2004,96:5338
    [33]Linden S, Enkrich C, Wegener M et al. Magnetic response of metamaterials at100Terahertz. Science2004,306:1351–1353.
    [34]Shalaev V M, Cai W, Chettiar U K et al. Negative index of refraction in opticalmetamaterials. Opt. Lett.2005,30:3356–3358.
    [35]Zhang S, Fan W, Panoiu N C et al. Demonstration of near-infrared negative-indexmaterials. Phys. Rev. Lett.2005,95:137404(4).
    [36]Grigorenko A N, Geim A K, Gleeson H F et al. Nanofabricated media withnegative permeability at visible frequencies. Nature2005,438:17–20.
    [37]Depine R A, Lakhtakia A. A new condition to identify isotropic dielectric-magneticmaterials displaying negative phase velocity. Microwave and Optical TechnologyLetters.2004,41:315–316.
    [38]Podolskiy V A, Narimanov E E. Near-sighted superlens. Opt. Lett.2005,30:75–77.
    [39]Shamonina E, Kalinin V A, Ringhofer K H et al. Imaging, compression andPoynting vector streamlines for negative permittivity materials. Electron. Lett.2001,37:1243–1244.
    [40]Ramakrishna S, Pendry J B. Removal of absorption and increase in resolution in anear-field lens via optical gain. Phys. Rev. B2003,67:201101(4).
    [41]Klar T A, Kildishev A V, Drachev V P et al. Negative-index metamaterials: Goingoptical. IEEE J. of Selected Topics in Quantum Electronics2006,12:1106–1115.
    [42]Zhang S, FanW, Panoiu NC, et al. Optical negativeindex bulk metamaterialsconsisting of2D perforated metal-dielectric stacks. Opt. Express2006,14:6778–6787.
    [43]Dolling G, Enkrich C, Wegener M et al. Low-loss negative-index metamaterial attelecommunication wavelengths. Opt. Lett.2006,31:1800–1802.
    [44]Dolling G, Enkrich C, Wegener M et al. Simultaneous negative phase and groupvelocity of light in a metamaterial. Science2006,312:892–894.
    [45]Dolling G, Wegener M, Soukoulis C M, Negative-index metamaterial at780nmwavelength. Opt. Lett.2007,32:53–55.
    [46]Chettiar U K, Kildishev A V, Klar T A et al. Negative index metamaterialcombining magnetic resonators with metal films. Opt. Express.2006,14:7872–7877.
    [47]Zhou J, Zhang L, Tuttle G et al. Negative index materials using simple short wirepairs. Phys. Rev. B2006,73:041101(4).
    [48]Shvets G, Urzhumov Y. Negative index meta-materials based on two-dimensionalmetallic structures. J. Opt. A2006,8: S122–S130.
    [49]Sarychev A K, Shvets G, Shalaev V M. Magnetic plasmon resonance. Phys. Rev. E2006,73:036609-10.
    [50]Lomakin V, Fainman Y, Urzhumov Y et al. Doubly negative metamaterials in thenear infrared and visible regimes based on thin film nanocomposites, Opt. Express2006,14:11164–11177.
    [51]Yablonoviteh E. Inhibited Spontaneous Emission In Solid-State Physics AndElectronics. Phys. Rev. Lett.1987,58:2059-2062.
    [52]John S. Strong Localization of Photons ln Certain Disordered DielectricSuPerlattices. Phys. Rev. Lett.1987,58:2486-2489.
    [53]Kuon Inoue, Kazuo Ohtaka. photonic crystals: Physics, Fabrication andApplications. Berlin: Springer2004
    [54]黄昆,韩汝琦.固体物理北京:高等教育出版社,1988
    [55]Notomi M. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B2000,62:10696–10705.
    [56]Cubukcu E, Aydin K, Ozbay E et al. Electromagnetic waves: Negative refraction byphotonic crystals.2003, Nature423:604–605.
    [57]Parimi PV, Lu WT, Vodo P et al. Imaging by flat lens using negative refraction.Nature2003,426:404.
    [58]Kosaka H, Kawashima T, Tomita A et al. Superprism phenomena in photoniccrystals. Phys. Rev. B1998,58: R10096–R10099.
    [59]Luo C, Johnson S G, Joannopoulos J D et al. All-angle negative refraction withoutnegative effective index. Phys. Rev. B2002,65:201104(4)
    [60]Ye Luo,Wei Zhang,Yidong Huang et al. Wide-angle beam splitting by use ofPositive-negative refraction in Photonic crystals. Opt. Lett.2005,29:242920.
    [61]Xianyu Ao,Sailing He. Polarization beam splitters based on a two dimensionalphotonic crystal of negative refraction. Opt. Lett.2005,30:162152.
    [62]Zhichao Ruan, Sailing He. Open cavity formed by a photonic crystal with negativeeffective index of refraction. Opt. Lett.2005,30:172308.
    [63]Gralak B, Enoch S, Tayeb G. Anomalous refractive properties of photonic crystals.J. Opt. Soc. Am. A2000,17:1012–1020.
    [64]Foteinopoulou S, Soukoulis C M. Negative refraction and left-handed behavior intwodimensional photonic crystals. Phys. Rev. B2003,67:235107(5).
    [65]Foteinopoulou S, Economou E N, Soukoulis CM. Refraction in media with anegative refractive index. Phys. Rev. Lett.2003,90:107402(4).
    [66]Cubukcu E, Aydin K, Ozbay E et al. Subwavelength resolution in atwo-dimensional photonic-crystal-based superlens. Phys. Rev. Lett.2003,91:207401(4).
    [67]Berrier A, Mulot M, Swillo M et al. Negative refraction at infrared wavelengths ina two-dimensional photonic crystal. Phys. Rev. Lett.2004,93:073902(4).
    [68]Schonbrun E, Tinker M, Park W et al. Negative refraction in a si-polymer photoniccrystal membrane. IEEE Photon. Technol. Lett.2005,17:1196–1198.
    [69]Belov P A. Backward waves and negative refraction in uniaxial dielectrics withnegative dielectric permittivity along the anisotropy axis. Microwave and OpticalTechnology Letters2003,37:259–263.
    [70]Podolskiy V A, Alekseyev L, Narimanov E E. Strongly anisotropic media: the THzperspectives of left-handed materials. J. Mod. Opt.2005,52:2343.
    [71]Alekseyev L V, Narimanov E. Slow light and3D imaging with non-magneticnegative index systems. Opt. Express2006,14:11184–11193.
    [72]A. Pimenov, A. Loidl, P. Przyslupski et al. Negative Refraction inFerromagnet-Superconductor Superlattices. Phys. Rev. Lett.2005,95:247009(4).
    [73]A. Pimenov, A. Loidl, K. Gehrke et al. Negative Refraction Observed in a MetallicFerromagnet in the Gigahertz Frequency Range. Phys. Rev. Lett.2007,98:197401(4).
    [74]Y. D. Chuang, A. D. Gromko, D. S. Dessau et al. Fermi Surface Nesting andNanoscale Fluctuating Charge/Orbital Ordering in Colossal MagnetoresistiveOxides. Science,2001,292:1509-1513.
    [75]K. H. Ahn, T. Lookman, A. R. Bishop. Strain-induced metal–insulator phasecoexistence in perovskite manganites. Nature,2004,428:401-404.
    [76]Cengiz Sen, Gonzalo Alvarez, Elbio Dagotto. Competing Ferromagnetic andCharge-Ordered States in Models for Manganites: The Origin of the ColossalMagnetoresistance Effect. Phys. Rev. Lett.2007,98:127202(4).
    [77]N. Bi kup, A. de Andrés, N. M. Nemes et al. Colossal electroresistance withoutcolossal agnetoresistance in La0.9Sr0.1MnO3. Appl. Phys. Lett.2007,90:222502(3).
    [78]A. D. Boardman, N. King, L. Velasco et al. Negative Refraction in Perspective.Electromagnetics2005,25:365.
    [79]方容川.固体光谱学.安徽:中国科学技术大学出版社,2001.
    [80]Jinhui Wanga, Gongqiang Liua, Gang Nic et al. Domain wall pinning inpolycrystalline perovskite La0.7Sr0.3MnO3. J. Magn. Magn. Mater.2004,280:316-321
    [81]汪忠柱,吴先良,冯双久等. La1-xSrxMnO3氧化物磁导率和介电常数的频率特性研究.中国稀土学报2006,24:310-313
    [82]杨勇,梁迪飞,陈良等. La0.67Sr0.33Mn1-yFeyO3(y=0,0.01,0.02,0.03)磁谱特性分析.中国稀土学报2008,26:173-177
    [83]Agranovich V M, Shen Y R, Baughman R H et al. Optical bulk and surface waveswith negative refraction. J. of Luminescence2004,110:167–173.
    [84]Agranovich VM, Gartstein Yu N, Zakhidov A A. Negative refraction in gyrotropicmedia. Phys. Rev. B2006,73:045114(12).
    [85]Engheta N, Salandrino A, Alu A. Circuit elements at optical frequencies:Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett.2005,95:095504(4).
    [86]Alu A, Engheta N. Evanescent growth and tunneling through stacks offrequency-selective surfaces. IEEE Antennas and Wireless Propagation Lett.2005,4:417–420.
    [87]Khoo I C, Williams Y, Diaz A et al. Liquid-crystals for optical filters, switches andtunable negative index material development. Molecular Crystal Liquid Crystal2006,453:309–319.
    [88]Thommen Q, Mandel P. Electromagnetically induced left handedness in opticallyexcited four-level atomic media. Phys. Rev. Lett.2006,96:053601(4).
    [1] Plihal M, Maradudin A A. Photonic band structure of two-dimensional system: thetriangular lattice. Phys. Rev. B1991,44:8565
    [2] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodicdielectric structure. Phys. Rev. Lett.1990,65:3152
    [3] K. S. Yee. Numerical solution of initial boundary value problems involvingMaxwell equations in isopic media. IEEE Trans. Antennas Propagat.1966, AP-14:302-307
    [4]高本庆.时域有限差分法FDTD Method.北京:国防工业出版社,1995.
    [5] Jackson J D. Classical electromagnetics. New York: Wiley,1975
    [6] Taflove A, Brodwin M E. Numerical solution of steady-state electromagneticscattering problems using the time-dependent Maxwell’s equations. IEEE Trans. OnMIT1975,23:623-630.
    [7] J. P. Berenger, Three-dimensional perfectly matched layer for the absorption ofelectromagnetic waves. J. Comput. Phys.1996,127:363-379
    [8] J. P. Berenger, Perfectly matched layer for the FDTD solution of wave-structureinteraction problem. IEEE Trans. Antennas Propagat.1996AP-44(1):110-117
    [9] Chiyan Luo, John D. Joannopoulos, in: G. V. Eleftheriades, K. G. Balmain (Ed.),Negative Refraction and Subwavelength Imaging in Photonic Crystals. New Jersey:John Wiley&Sons,2005
    [10]Notomi M. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B2000,62:10696–10705.
    [11]Luo C, Johnson S G, Joannopoulos J D et al. All-angle negative refraction withoutnegative effective index. Phys. Rev. B2002,65:201104(4)
    [12]E. Cubukcu, K. Aydin, E. Ozbay. Subwavelength Resolution in a Two-DimensionalPhotonic-Crystal-Based Superlens. Phys. Rev. Lett.2003,91:207401(4)
    [13]Zhifang Feng, Xiangdong Zhang, Kun Ren et al. Experimental demonstration ofnon-near-field image formed by negative refraction. Phys. Rev. B2006,73:75118(5)
    [14]R. Moussa, S. Foteinopoulou, Lei Zhang et al. Negative refraction and superlensbehavior in a two-dimensional photonic crystal. Phys. Rev. B2005,71:085106(5)
    [15]S. Foteinopoulou, C. M. Soukoulis. Negative refraction and left-handed behavior intwo-dimensional photonic crystals. Phys. Rev. B2003,67:235107(5)
    [16]Pendry J B. Negative refraction makes a perfect lens. Phys. Rev. Lett.2000,85:3966–3969.
    [17]C. M. Soukoulis, Photonic Crystals and Light Localization in the21st Century. TheNetherlands: Kluwer Academic, Dordrecht,2001.
    [18]S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensionalphotonic crystals at near-infrared wavelengths. Science289,604–606(2000).
    [19]S. Lin, J. G. Fleming. A three-dimensional optical photonic crystal. J. LightwaveTechnol.1999,17:1944–1947.
    [20]Cubukcu E, Aydin K, Ozbay E et al. Electromagnetic waves: Negative refraction byphotonic crystals.2003, Nature423:604–605.
    [21]Parimi PV, Lu WT, Vodo P et al. Imaging by flat lens using negative refraction.Nature2003,426:404.
    [22]Xianyu Ao,Sailing He. Polarization beam splitters based on a two dimensionalphotonic crystal of negative refraction. Opt. Lett.2005,30:162152.
    [23]Berrier A, Mulot M, Swillo M et al. Negative refraction at infrared wavelengths ina two-dimensional photonic crystal. Phys. Rev. Lett.2004,93:073902-4.
    [24]U. Gr ning, V. Lehmann, S. Ottow. Macroporous silicon with a completetwo-dimensional photonic band gap centered at5μm. Appl. Phys. Lett.1996,68:747(3).
    [25]U. Gr ning, V. Lehmann, C.M. Engelhardt. Two-dimensional infrared photonicband gap structure based on porous silicon. Appl. Phys. Lett.1995,66:3254(3).
    [26]S.W. Leonard, H.M. van Driel, K. Busch et al. Attenuation of optical transmissionwithin the band gap of thin two-dimensional macroporous silicon photonic crystals.Appl. Phys. Lett.1999,75:3063(3).
    [27]T.F. Krauss, R.M. De La Rue, and S. Brand. Two-dimensional photonic-bandgapstructures operating at near-infrared wavelengths. Nature1996,383:699-702
    [28]H. Benisty, C. Weisbuch, D. Labilloy et al. Optical and Confinement Properties ofTwo-Dimensional Photonic Crystals. J. Lightwave Technol.1999,17:2063-2077
    [29]E. Chow, S. Y. Lin, S. G. Johnson et al. Three-dimensional control of light in atwo-dimensional photonic crystalslab. Nature2000,407:983-986
    [30]A. Chutinan, M. Mochizuki, M. Imada et al. Surface-emitting channel drop filtersusing single defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett.2001,79:2690(3)
    [31]N. Kawai, K. Inoue, N. Carlsson et al. Confined Band Gap in an Air-Bridge Type ofTwo-Dimensional AlGaAs Photonic Crystal. Phys. Rev. Lett.2001,86:2289(4)
    [32]R. Ferrini, A. Berrier, L. A. Dunbar et al. Minimization of out-of-plane losses inplanar photonic crystals by optimizing the vertical waveguide. Appl. Phys. Lett.2004,85:3999(3).
    [33]G. Y. Zhou, M. J. Ventura, M. Straub et al. In-plane and out-of-plane band-gapproperties of a two-dimensional triangular polymer-based void channel photoniccrystal. Appl. Phys. Lett.2004,84:4415(3).
    [34]Ping Ma, Peter Kaspar, Yuriy Fedoryshyn et al. InP-based planar photonic crystalwaveguide in honeycomb lattice geometry for TM-polarized light. Opt. Lett.2009,34:1658-1660.
    [35]Yoshiaki Kanamori, Takashi Kitani, Kazuhiro Hane et al. Control of guidedresonance in a photonic crystal slab using microelectromechanical actuauors. Appl.Phys. Lett.2007,90:031911(3).
    [36]Steven G. Johnson, Shanhui Fan, Pierre R et al. Guided modes in photonic crystalslabs. Phys. Rev. B1999,60:5751-5758.
    [37]D.-H. Kim, C.-O. Cho, Y.-G. Roh et al. Enhanced light extraction fromGaN-based light-emitting diodes with holographically generated two-dimensionalphotonic crystal patterns. Appl. Phys. Lett.2005,87:203508(3).
    [38]徐灏.密封.北京:冶金工业出版社,1999.
    [39]李德才,磁性液体理论及应用.北京:科学出版社,2003.
    [40]卜胜利.磁流体光学性质及其在光子器件上的应用研究.[学位论文]上海交通大学2006
    [41]S. S. Papell. Low viscosity magnetic fluid obtained by the colloidal suspension ofmagnetic particles.1965, U. S. Patent3215572.
    [42]王晨,胡军,罗伟等.磁性液体的研究进展.金属功能材料2003,10:35-38
    [43]S. E. Khalafalla, G. W. Reimers. Production of magnetic fluids by peptizationtechniques.1974, U. S. Patent3843540.
    [44]B. M. Berkovsky. Magnetic Fluids Engineering Application. Oxford UniversityPress,1993
    [45]Isao Nakatani, Masayuki Hijikata, Kiyoshi Ozawa1. Iron-nitride magnetic fluidsprepared by vapor-liquid reaction and their magntic properties. J. Magn. Magn.Mater.1993,122:10-14
    [46]李学慧,齐锐,薛志勇等.等离子体活化法制备纳米磁性液体.稀有金属材料和工程.2004,33:858
    [47]王瑞金.磁流体技术的应用与发展.新技术新工艺.2001,10:15-18
    [48]A. E. Berkowitz, J. L. Walter. Ferrofluids prepared by spark erosion. J. Magn.Magn. Mater1983,39:75-78
    [49]F. E. Luborsky, J. D. Opie. Adsorption of Metals on Iron Particles in Mercury. J.Appl. Phys.1963,34:1317.
    [50]P. L. Windle, J. Popplewell, S. W. Charles. IEEE Trans. Magn. MAG-11,1975,1367.
    [51]S. R. Hoon, M. Kilner, G.J. Russell et al. Preparation and properties of nickelferrofluids. J. Magn. Magn. Mater1983,39:107-110
    [52]池长青,王之珊,赵丕智.铁磁流体力学.北京:北京航空航天大学出版社,1993
    [53]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003
    [54]R. E. Rosensweig. Ferrohydrodynamics. Cambridge: Cambridge University Press,1985
    [55]Horng H. E., Chen C. S., Fang K. L. et al. Tunable optical switch using magneticfluids. Appl. Phys. Lett.2004,85:5592-5594
    [56]Chieh J. J., Yang S. Y., Horng H. E. Magnetic-fluid optical-fiber modulators viamagnetic modulation. Appl. Phys. Lett.2007,97:133505(3)
    [57]S. l. Pu, X. F. Chen, L. J. Chen. Tunable magnetic fluid grating by applying amagnetic field. Appl. Phys. Lett.2005,87:021901(3)
    [58]Liu T., Chen X. F., Di Z. Y. et al. Tunable magneto-optical wavelength filter oflong-period fiber grating with magnetic fluids. Appl. Phys. Lett.2007,91:121116(3).
    [59]Yuan S. H., Chen X. W. New electric current sensor by thermal lens coupledmagneto-optical effect in ferrofluid. Proceeding of SPIE.1996,2895:8-10.
    [60]W. E. L. Hass, J. E. Adams. Diffraction effects in ferrofluids. Appl. Phys. Lett.1975,27:571(3).
    [61]Y. W. Huang, S. T. Hu, S. Y. Yang et al. Tunable diffraction pf magnetic fluidfilms and its potential application in coarse wavelength-division multiplexing. Opt.Lett.2004,29:1867-1869.
    [62]H. E. Horng, C.–Y. Hong, S. L. Lee et al. Magnetochromatics resulted from opticalgratings of magnetic fluid films subjected to perpendicular magnetic fields. J. Appl.Phys.2000,88:5904
    [63]H. E. Horng, S. Y. Yang, S. L. Lee et al. Magnetochromatics of the magnetic fluidfilm under a dynamic magnetic field. Appl. Phys. Lett.2001,79:350(3)
    [64]S. Y. Yang, H. E. Horng, Chin-Yih Hong et al. Control method for the tunableordered structures in magnetic fluid microstrips. J. Appl. Phys.2003,93:3457-3460
    [65]I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii et al. Magnetic photoniccrystals. J. Phys. D: Appl. Phys.2003,36: R277–R287.
    [66]S.Y. Yang, H.E. Hornga, Y.T. Shiaoa et al. Photonic-crystal resonant effect usingself-assembly ordered structures in magnetic fluid films under external magneticfields. J. Magn. Magn. Mater2006,307:43-47
    [67]W. Wen, L. Zhang, P. Sheng et al. Planar Magnetic Colloidal Crystals. Phys. Rev.Lett.2000,85:5464-5467
    [68]S. Y. Yang, J. J. Chieh, H. E. Horng. Origin and applications of magneticallytunable refractive index of magnetic fluid films. Appl. Phys. Lett.2004,84:5204(3).
    [69]L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media. London:Pergamon,1960.
    [70]D. L. Mills. Nonlinear Optics, Basic Concepts. New York: Springer,1998
    [71]H. E. Horng, Chin-Yih Hong, S. Y. Yang et al. Designing the refractive indices byusing magnetic fluids. Appl. Phys. Lett.2003,82:2324(3).
    [72]U. Buchenau, I. Müller. Optical properties of magnetite. Solid State Commun.1972,11:1291-1293
    [1] A. Pimenov, A. Loidl, P. Przyslupski et al. Refraction inFerromagnet-Superconductor Superlattices. Phys. Rev. Lett.2005,95:247009(4)
    [2] A. Pimenov, A. Loidl, et al. Negative Refraction Observed in a MetallicFerromagnet in the Gigahertz Frequency Range. Phys. Rev. Lett.2007,98:197401
    [3] Y. D. Chuang, A. D. Gromko, D. S. Dessau et al. Fermi Surface Nesting andNanoscale Fluctuating Charge/Orbital Ordering in Colossal MagnetoresistiveOxides. Science,2001,292:1509-1513
    [4] K. H. Ahn, T. Lookman, A. R. Bishop, Strain-induced metal–insulator phasecoexistence in perovskite manganites. Nature,2004,428:401-404
    [5] Cengiz Sen, Gonzalo Alvarez, Elbio Dagotto, Competing Ferromagnetic andCharge-Ordered States in Models for Manganites: The Origin of the ColossalMagnetoresistance Effect. Phys. Rev. Lett.,2007,98:127202(4)
    [6] N. Bi kup, A. de Andrés, N. M. Nemes, Colossal electroresistance without colossalagnetoresistance in La0.9Sr0.1MnO3. Appl. Phys. Lett.2007,90:222502(3)
    [7] G. H. Jonker, J. H. Van. Santen, Ferromagnetic compounds of manganese withperovskite structure. Physica,1951,16:337-349
    [8] C. Zener, Interaction between the d-Shells in the Transition Metals. II.Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev.1951,82:403-405
    [9] P W.Anderson, H.Hasegawa, Considerations on Double Exchange. Phys. Rev.1955,100:675-681
    [10]P.-G. de Gennes, Effects of Double Exchange in Magnetic Crystals. Phys. Rev.1960,118:141-154
    [11]R. M. Kusters, J. Singleton, D. A. Keen, Magnetoresistance measurements on themagnetic semiconductor Nd0.5Pb0.5MnO3. Physica,1989,155:362-365
    [12]R. von Helmolt, J. Wecker et al. Giant negative magnetoresistance in perovskitelikeLa2/3Ba1/3MnOxferromagnetic films. Phys.Rev.Lett.1993,71:2331-2333
    [13]S. Jin, T. H. Tiefel, M. McCormack et al. Thousandfold Change in Resistivity inMagnetoresistive La-Ca-Mn-O Films. Science,1994,264:413-415
    [14]A. Asamitsu, Y. Moritomo, Y. Tomloka et al. A structural phase transition inducedby an external magnetic field. Nature,1995,373:407-409
    [15]H. Kuwahara, Y. Tomioka, Y. Moritomo et al. Striction-Coupled Magnetoresistancein Perovskite-Type Manganese Oxides. Science,1996,272:80-82
    [16]K. Liu, X. W. Wu, K. H. Ahn et al., Charge ordering and magnetoresistance inNd1-xCaxMnO3due to reduced double exchange. Phys. Rev. B,1996,54:3007-3010
    [17]J. M. De Teresa, M. R. Ibarra, J. García et al., Spin-Glass Insulator State in(Tb-La)2/3Ca1/3MnO3Perovskite. Phys. Rev. Lett,1996,76:3392-3395
    [18]A. Sundaresan, A. Maignan, B. Raveau, Spin-glass state andmagnetic-field-induced phenomena in distorted Eu0.58Sr0.42MnO3perovskite. Phys.Rev. B,1997,55:5596-5599
    [19]Y. Tomioka, A. Asamitsu, Y. Moritomo et al. Collapse of a Charge-Ordered Stateunder a Magnetic Field in Pr1/2Sr1/2MnO3. Phys. Rev. Lett,1995,74:5108-5111
    [20]J. J. Neumeier, M. F. Hundley, J. D. Thompson et al. Substantial pressure effects onthe electrical resistivity and ferromagnetic transition temperature of La1-xCaxMnO3.Phys. Rev. B,1995,52: R7006-R7009
    [21]Y. Moritomo, A. Asamitsu, Pressure effect on the double-exchange ferromagnetLa1-xSrxMnO3(0.15≤x≤0.5). Phys. Rev. B,1995,51:16491-16494
    [22]H. Y. Hwang, T. T. M. Palstra, S-W. Cheong et al. Pressure effects on themagnetoresistance in doped manganese perovskites. Phys. Rev. B,1995,52:15046-15049
    [23]Y. Moritomo, H. Kuwahara, Y. Tomioka et al. Pressure effects on charge-orderingtransitions in Perovskite manganites. Phys. Rev. B,1997,55:7549-7556
    [24]S. Smadici, P. Abbamonte, A. Bhattacharya et al. Electronic Reconstruction atSrMnO3-LaMnO3Superlattice Interfaces. Phys. Rev. Lett,2007,99:196404(4)
    [25]Y. Wakabayashi, D. Bizen, H. Nakao et al. Novel Orbital Ordering Induced byAnisotropic Stress in a Manganite Thin Film. Phys. Rev. Lett,2006,96:017202(4)
    [26]Y. Ding, D. Haske, Yuan-Chieh Tseng et al. LaMnO3/SrMnO3interfaces withcoupled charge-spin-orbital modulation. Appl. Phys. Lett.2006,89:052506(3)
    [27]Y. Ding, D. Haske, Yuan-Chieh Tseng et al. Pressure-Induced Magnetic Transitionin Manganite (La0.75Ca0.25MnO3). Phys. Rev. Lett,2009,102:237201(4)
    [28]冯端,金国钧凝聚态物理学(上卷)北京:高等教育出版社,2003
    [29]H. Y. Hwang, S-W. Cheong, P. G. Radaelli et al. Lattice Effects on theMagnetoresistance in Doped LaMnO3. Phys. Rev. Lett,1995,75:914-917
    [30]E. Dagotto, T. HottA, A. Moreo, Colossal magentoresistant materials: the key roleof phase separation. Phys. Reports,2001,344:1-153
    [31]A. Urushibara, Y. Moritomo, T. Arima et al. Insulator-metal transition and giantmagnetoresistance in La1-xSrxMnO3. Phys. Rev. B,1995,51:14103-14109
    [32]P. Schiffer, A. P. Ramirez, W. Bao et al. Low Temperature Magnetoresistance andthe Magnetic Phase Diagram of La1-xCaxMnO3. Phys. Rev. Lett,1995,75:3336-3339
    [33]Y. Tomioka, Y. Tokura. Colossal magnetoresistive oxides. Netherlands: TheGordon and Breach Science Publishers,2000
    [34]A. Millis, B. L. Shraiman, P. B. Littlewood. Double Exchange Alone Does NotExplain the Resistivity of La1-xSrxMnO3. Phys. Rev. Lett,1995,74:5144-5147
    [35]A. J. Millis, Boris I. Shraiman, R. Mueller. Dynamic Jahn-Teller Effect andColossal Magnetoresistance in La1-xSrxMnO3. Phys. Rev. Lett,1996,77:175-178
    [36]M. Ushara, S. Mori, C. H. Chen et al. Percolative phase separation underliescolossal magnetoresistance in mixed-valent manganites. Nature.1999,56:560-563
    [37]Cz. Kapusta, P. C. Riedi, M. Sikora et al. NMR Probe of Phase Segregation inElectron Doped Mixed Valence Manganites. Phys. Rev. Lett,2000,84:4216(4)
    [38]Chun-lian Hu, Kui-juan Jin, Peng Han et al. The effect of phase separation on thetemperature dependent magnetoresistance in perovskite oxide heterojunction. Appl.Phys. Lett.2008,93:162106(3)
    [39]S. Landsgesell, A. Maljuk, T. C. Hansen et al. Structural tuning of magnetism in theorthorhombic perovskite Nd1xYxMnO3: Evidence for magnetic phase separation.Phys. Rev. B,2008,80:014412(8)
    [40]Luis Brey. Electronic phase separation in manganite-insulator interfaces. Phys. Rev.B,2007,75:104423(7)
    [41]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,2000
    [42]P. Hohonberg, W. Kohn, Inhomogeneous Electron Gas. Phys. Rev.1964,136:B864-B871
    [43]W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects. Phys. Rev.1965,140: A1133-A1138
    [44]G. L. Oliver, J. P. Perdew. Spin-density gradient expansion for the kinetic energy.Phys. Rev. A,1979,20:397-403
    [45]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of theelectron-gas correlation energy. Phys. Rev. B,1992,45:13244-13294
    [46]A. D. Becke. Density-functional exchange-energy approximation with correctasymptotic behavior. Phys. Rev. A,1988,38:3098-3100
    [47]John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized GradientApproximation Made Simple. Phys. Rev. Lett.,1996,77:3865-3868
    [48]C. Filippi, C. J. Umrigar, M. Taut et al. Comparison of exact and approximatedensity functionals for an exactly soluble model. J. Chem. Phys.1994,100:1290(6)
    [49]J. C. Slater. Wave Functions in a Periodic Potential. Phys. Rev.1937,51:846-851
    [50]J. C. Slater. An Augmented Plane Wave Method for the Periodic Potential Problem.Phys. Rev.1953,92:603-608
    [51]L. F. Mattheiss. Energy Bands for Solid Argon. Phys. Rev.1964,133:A1399-A1403
    [52]O. Krogh Andersen. Linear methods in band theory. Phys. Rev. B1975,12:3060-3083
    [53]N.W. Ashcroft, N.D. Mermin. Solid State Physics. USA: Saunders CollegePublishing,1976
    [54]李正中.固体理论.北京:高等教育出版社,2006
    [55]S. Nakajima. The physics of elementary excitation. New York: Springer-Verlag,1980
    [56]Claudia Ambrosch-Draxl, Jorge O. Sofo. Linear optical properties of solids withinthe full-potential linearized augmented planewave method. Comp. Phys. Comm.,2006,175:1-14
    [57]廖绍彬.铁磁性(下).北京:科学出版社,1998
    [58]Satpathy S, Zoran S. popovi et al. Electronic Structure of the Perovskite Oxides:La1-xCaxMnO3. Phys. Rev. Lett.1996,76:960-963
    [59]J-H. Park, C. T. Chen, S-W Cheong et al. Electronic Aspects of the FerromagneticTransition in Manganese Perovskites. Phys. Rev. Lett.1996,76:4215-4218
    [60]Soloyev I., Hamada N., Terakura K. t2gversus all3d localization in LaMO3perovskites (M=Ti–Cu): First-principles study. Phys. Rev. B1996,53:7158-7170
    [61]Blaha P., Schwarz K., Madsen G. K. H., et al. WIEN2k, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties. Austria:Karlheinz Schwarz, Techn. Univ. Wien,2001
    [62]Schwarz K., Blaha P., Madsen G. K. H., Electronic structure calculations of solidsusing the WIEN2k package for material sciences. Comput. Phys. Comm.2002,147:71~76
    [63]Huang Q., Santoro A., Lynn J. W. et al. Structure and magnetic order in undopedlanthanum manganite. Phys. Rev. B,1997,55:14987-14999
    [64]G. K. H. Madsen, P. Novák. Charge order in magnetite: An LDA+U study.Europhys. Lett.2005,69:777-783
    [65]H. Y. Hwang, S-W Cheong, N. P. Ong et al. Spin-Polarized Intergrain Tunneling inLa2/3Sr1/3MnO3. Phys. Rev. Lett.1996,77:2041-2044
    [66]W. Y. Hu, M. C. Qian, Q. Q. Zheng et al. Jahn-Teller effect and many-bodycorrelation effect in LaMnO3. Phys. Rev. B2000,61:1223-1231
    [67]Dessau D. S., Shen Z. X. Direct Electronic Structure Measurements of the ColossalMagnetoresistive Oxides (A chapter in “Colossal Magnetoresistive Oxides”).London: Gordon And Breach,1999
    [68]Arima T., Tokura Y., Torrance J. B. Variation of optical gaps in perovskite-type3dtransition-metal oxides. Phys. Rev. B1993,48:17006-17009
    [69]A. J. Millis, Boris I Shraiman, R. Mueller. Dynamic Jahn-Teller Effect and ColossalMagnetoresistance in La1-xSrxMnO3. Phys. Rev. Lett.1996,77:175-178
    [70]M. Medarde, J. Mesot, P. Lacorre et al. High-Pressure neutron-diffraction study ofthe metallization process in PrNiO3. Phys. Rev. B1995,52:9248-9258
    [71]P. G Radaelli, G. Iannone, M. Marezio et al. Structural effects on the magnetic andtransport properties of perovskite A1-xA’xMnO3(x=0.25,0.3). Phys. Rev. B1997,56:8265-8276
    [72]G. M. Zhao, K. Conder, H. Keller et al. Giant oxygen isotope shift in themagnetoresistive perovskite La1-xCaxMnO3+y. Nature1996,381:676-678
    [73]C. W. Cui, T. A. Tyson. Correlations between pressure and bandwidth effects inmetal–insulator transitions in manganites. Appl. Phys. Lett.2004,84:942-944
    [74]D. P. Kozlenko, V. P. Glazkov, R. A. Sadykov et al. Structural study ofpressure-induced magnetic phase transitions in manganites La0.67Ca0.33MnO3andPr0.7Ca0.3MnO3. J. Magn. Magn.Mater.2003,258/259:290-292
    [75]D. P. Kozlenko, I. NGoncharenko, B. N. Savenko et al. High pressure effects on thecrystal and magnetic structure of La0.7Sr0.3MnO3. J. Phys: Condens. Matter2004,16:6755-6762
    [76]F. L. Tang, X. Zhang. Jahn–Teller energy dependence of Curie temperature inLa1x(Ca/Sr)xMnO3. J. Phys: Condens. Matter2006,18:7851-7862
    [77]J.-H. Park, E. Vescovo, H.-J. Kim et al. Direct evidence for a half-metallicferromagnet. Nature1998,392:794-796
    [78]J. Y. T. Wei, N.-C. Yeh, R. P. Vasquez, Tunneling Evidence of Half-MetallicFerromagnetism in La0.7Ca0.3MnO3. Phys. Rev. Lett.1997,79:5150-5153
    [79]P. Postorino, A. Congeduti, P. Dore et al. Pressure Tuning of Electron-PhononCoupling: The Insulator to Metal Transition in Manganites. Phys. Rev. Lett.2003,91:175501(4)
    [80]David R. Smith, Norman Kroll, Negative Refractive Index in Left-HandedMaterials. Phys. Rev. Lett.2000,85:2933-2936
    [81]S. Anantha Ramakrishna, Olivier J. F. Martin. Resolving the wave vector innegative refractive index media. Opt. Lett.2005,30:2626-2628
    [82]V.G. Veselago. The electrodynamics of substances with simultaneously negativevalues of permittivity and permeability. Sov. Phys. Usp.1968,10:509-514
    [83]方容川.固体光谱学.安徽:中国科学技术大学出版社,2001
    [84]P. Schiffer, A. P. Ramirez, W. Bao et al. Low Temperature Magnetoresistance andthe Magnetic Phase Diagram of La1-xCaxMnO3. Phys. Rev. Lett.1995,75:3336-3339
    [85]阎守胜.固体物理基础.北京:北京大学出版社,2009
    [86]N. Kida, M. Hangyo, M. Tonouchi. Low-energy charge dynamics inLa0.7Ca0.3MnO3: THz time-domain spectroscopic studies. Phys. Rev. B.2000,62:R11965-R11968
    [87]J. R. Simpson, H. D. Drew, V. N. Smolyaninova et al. Temperature-dependentscattering rate and optical mass of ferromagnetic metallic manganites. Phys. Rev. B.1999,60: R16263-R16266
    [88]T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser et al. Transportcoefficients from first-principles calculations. Phys. Rev. B.2003,68:125210(6)
    [89]Georg K.H. Madsen, David J. Singh. A code for calculating band-structuredependent quantities. Comp. Phys. Comm.,2006,175:67-71
    [90]A. D. Boardman, N. King, L. Velasco. Negative refraction in perspective.Electromagnetics.2005,25:365-389
    [91]J. A. Kong. Electromagnetic wave theory USA: John Wiley&Sons,1986
    [1] L.E.Drain著,王仕康,沈熊,周作元译.激光多普勒技术.北京:清华大学出版社.1985.
    [2]杨国光.近代光学测试技术.浙江:浙江大学出版社.1997
    [3] V G Veselago. The electrodynamics of substances with simultaneously negativevalues of permittivity and permeability. Sov. Phys. Usp.1968,10:509-514.
    [4] Pendry J B. Negative refraction makes a perfect lens. Phys. Rev. Lett.2000,85:3966–3969.
    [5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index ofrefraction. Science.2001,292:77–79.
    [6] Kevin M. K. H. Leong, Anthony L, Tatsuo Itoh. Demonstration of reverse Dopplereffect using a left-handed transmission line. Micro. Optic. Tech. Lett.2006,48:545-547.
    [7] Alexander B. Kozyrev, Daniel W. van der Weide. Explanation of the inverseDoppler effect observed in nonlinear transmission lines. Phys. Rev. Lett.2005,94:203902.
    [8] Chiyan Luo, Mihai Ibanescu, Evan J. Reed et al. Doppler radiation emitted by anoscillating dipole moving inside a photonic band-Gap crystal. Phys. Rev. Lett.2006,96:043903
    [9] N. Seddon, T. Bearpark, Observation of the inverse Doppler effect. Science2003,302:1537-1540
    [10]Hu, X. H., Hang, Z. H., Li, J. S., Zi, J.&Chan, C. T. Anomalous Doppler effects inphononic band gaps. Phys. Rev. E73,2006,73:015602(4)
    [11]Evan J. Reed, Marin Soljacic, Mihai Ibanescu et al. Comment on "Observation ofthe Inverse Doppler Effect”. Science2004,305:778b
    [12]Alexander B. Kozyrev, Daniel W. van der Weide. Explanation of the InverseDoppler Effect Observed in Nonlinear Transmission Lines. Phys. Rev. Lett.2005,94:203902
    [13]Evan J. Reed, Marin S, J. D. Joannopoulos. Comment on ‘‘Explanation of theInverse Doppler Effect Observed in Nonlinear Transmission Lines’’. Phys. Rev.Lett.2006,96:069402
    [14]Markus Deubel, Georgvon Freymann, Martin Wegener, et al. Direct laser writing ofthree-dimensional photonic-crystal templates for telecommunications. NatureMater,2004,3:444-447
    [15]Michael S. Rill, Christine Plet, Michael Thiel, et al. Photonic metamaterials bydirect laser writing and silver chemical vapour deposition. Nature Mater,2008,7:543-546
    [16]Sean Wong, Markus Deubel, Sajeev John, et al. Direct laser writing ofthree-dimensional photonic crystals with a complete photonic bandgap inchalcogenide glasses. Adv. Mater,2006,18:265-269
    [17]Nicolas Tetreault, Georg von Freymann, Markus Deubel, et al. New route tothree-dimensional phtotnic bandgap materials: silicon double inversion of polymertemplates. Adv. Mater,2006,18:457-460
    [18]Y. Jun P. Nagpal, D. J. Norris Thermally Stable Organic–Inorganic HybridPhotoresists for Fabrication of Photonic Band Gap Structures with Direct LaserWriting. Adv. Mater,2008,20:606-610
    [19]M. Campbell, D. N. Sharp, M. T. Harrison, et al Fabrication of photonic crystals forthe visible spectrum by holographic lithography. Nature,1999,404:53-56
    [20]Notomi M. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B2000,62:10696–10705
    [21]Liang Feng, Ming-Hui Lu, Vitaliy Lomakin, Yeshaiahu Fainman. Plasmonicphotonic crystal with a complete band gap for surface plasmon polariton waves.Appl. Phys. Lett.2008,93:231105
    [22]Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos. Guidedmodes in photonic crystal slabs. Phys. Rev. B1999,60:5751-5758
    [23]Guangyong Zhou, Michael James Ventura, Martin Straub et al. In-plane andout-of-plane band-gap properties of a two-dimensional triangular polymer-basedvoid channel photonic crystal. App. Phys. Lett.2004,84:4415-4417
    [24]D. M. Whittaker, I. S. Culshaw, V. N. Astratov, et al. Waveguides in finite-heighttwo-dimensional photonic crystals. J. Opt. Soc. Am. B,2002,19:2232-2240
    [25]T. SФndergaard, A. Bjarklev, M. Kristensen, J. Erland, J. Broeng. Designingfinite-height two-dimensional photonic crystal waveguides. App. Phys. Lett.2000,77:185-787
    [26]D. M. Whittaker, I. S. Culshaw, V. N. Astratov, M. S. Skolnick. Photonic bandstructure of patterned waveguides with dielectric and metallic cladding. Phys. Rev.B2002,65:073102
    [27]Min Qiu. Band gap effects in asymmetric photonic crystal slabs. Phys. Rev. B2002,66:033103
    [28]高晋占.微弱信号检测.北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700