用户名: 密码: 验证码:
树高极限的水分限制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木是地球上生长最高的生命体。但即使资源丰富、各类胁迫因子很小,树木也不能无限长高、且不同树种最大高度不同、同一树种在不同生境下最大高度亦不同。而树高生长的停滞是造成群落生产力降低的主要因素之一。目前树高极限的限制因子引起很多学者的关注。而研究树高极限的限制因子对群落的生理生态学有重要意义,并对提高林分生产力的具有指导意义。为了更好地了解树高极限的限制因素,本文对全国典型水分分布区域西双版纳、广州、郑州、北京、贺兰山和毛乌素沙地等地区生长的望天树、浆果乌桕、小叶藤黄、柠檬桉、巨尾桉、南洋楹、毛白杨、悬铃木、银杏、油松、榆树、沙枣、小黄柳等32种较高的木本植物进行了研究。采用石蜡切片法观察叶片的解剖结构、用指甲油印模法观察叶片的气孔特性,丙酮浸提法测定叶片的光合色素含量、用Licor-6400光合仪测定叶片的气体交换特性、压力势法测定小枝的水势和用P-V法估计组织细胞的水分参数等指标随树高的变化关系以及17种广布种上述指标沿环境梯度的差异进行了研究,以初步探讨树木长高和外界环境对叶片结构、生理特性和水分参数的影响,找出影响树高极限的主要因素。本文主要得出以下结论:
     (1)叶片结构随树高的变化:研究的25种树种表现为越往树顶处:1)角质层越厚;2)栅栏组织越发达,全栅特征越明显;3)叶组织细胞排列越紧密;4)叶肉细胞越小;5)表皮层越厚,气孔越小而密、单叶的气孔总面积越小;6)叶片越小而厚,LMA越大。上部叶片趋于旱生型的形态解剖结构特征反映出了其在结构上具有较强的适应水分胁迫的能力,证实其遭受了水分胁迫。
     (2)叶片的气体交换特性随树高的变化:32树种中的大多数种的叶绿素含量随树高增加而变少、δ~(13)C与树高呈正相关而△则与树高呈负相关。而研究的4树种的叶片光合、蒸腾速率、气孔导度和胞间CO_2浓度等均与树高呈负相关。与气孔大小及开口面积随树高变小的结论一致,表明随树高水力阻力的增大限制了叶片的气体交换特性、水分利用效率和光合能力。
     (3)水分参数随树高的变化:28树种的水势与树高呈线性负相关、通过水势预测的国内树木极限高度为86~100m。随树高的增加,细胞的弹性减小、渗透调节和抗旱能力增强,而维持最大膨压的能力降低,使得细胞伸展受限。与叶片结构和生理特性的变化趋势一致。应该是水力限制影响了叶片的水势和膨压、同时造成叶片的结构发生改变,而结构的改变加剧了水力对气体交换的限制、影响了光合碳同化以及对CO_2的分馏效应、使叶片的水分利用效率和抗旱性增强。
     (4)广布种叶片结构、水分参数等对环境梯度的响应:17种广布种由南向北、随着水热条件的递减,叶片、栅栏组织、角质层、上下表皮的厚度、LMA递增或先减后增、气孔的大小和总开口面积递减、而气孔密度递增,大多树种抗旱性增强、所有树种的δ~(13)C增大,表明随着水热状况变差、叶片的气体交换受到限制、水分利用效率增加。植物叶片δ~(13)C值受到多个气候要素的影响、而水分是最重要的影响因子。降雨量、年均温与δ~(13)C呈负相关,而降雨量1100mm和年均温19℃是叶片碳同位素分辨率的分界点,在此基础上,水分变好对δ~(13)C的影响减小、而温度过高反而对碳稳定同位素分馏产生负影响。
     (5)综上,叶片的结构、生理特性和水分参数等指标随树高的变化与随水分梯度递减的变化趋势一致,证实随树高长高水力限制显著增大。水分对树高生长的限制首先是外在的水分状况,群落的总体高度随外界水分状况的变差而变矮;再就是水力限制对单株树木的结构和功能的影响,水势降低、膨压减小使细胞的分裂和扩展受限,旱生型结构加剧水力对气体交换能力的限制、使光合碳同化能力受到限制、而呼吸消耗却随着树木个体的增大而增大,制造营养物质不足、使得营养亏缺、造成投入新枝叶的营养受限,最终限制了树高继续增长。即水力限制引发了营养限制,最终限制了树高极限。
The tallest living organisms are trees.While tree height growth slows down as trees grow taller even where resources are abundant,stresses are minor.The maximum tree height is different within different tree species and the same tree species differs in height in different environments.The stop of tree height growth is one of the main factors that would reduce community production.Many researchers focus on tree height limitation factors now.Researches on tree height limitation mechanisms are significant on community ecophysiology,and are also meaningful in improving stand productivity.In order to better understand the determinants of tree height limit,32 tall tree species such as Parashorea chinensis,Sapium baccatum,Garcinia cowa,Eucalyptus citriodora,E.grandis×E.urophylla,Albizia falcataria,Populus tomentosa,Platanus hispanica,Ginkgo biloba,Pinus tabulaeformis,Ulmus pumia,Salix gordeivii,and Elaeagnus angustifolia from typical environments such as Xishuangbanna rainforest,Guangzhou subtropical area,Zhengzhou,Beijing,Helanshan mountain and Maowusu sandland in China were studied.Respectively with the method of porraffin and nail varnish method,acetone extraction,Lior-6400 portable photosynthesis system and pressure bomb and P-V method,morphological,photosynthetic pigments content,gas exchange characteristics and leaf water potential and water parameters with tree height of the 32 tree species were studied and The above indices of 17 tree species that widely spread in different environment gradients were also measured in order to find the environmental limitation factors on tree height.Main conclusions are as follows:
     (1) changes of leaf morphological and anatomical structures with tree height:25 researched tree species exhibited xeromorphic structures at tree top,that is,toward tree top,leaves were with 1) increased cuticle thickness;2) developed palisade tissue and even double-palisade structure;3) densely arranged tissue cells;4) smaller cells;5) thicker epidermis,smaller and denser stomata;6) smaller and thicker leaf,great LMA value.Xeromorphic structure reflected tree top leaves with stronger adaptability to water stress,and suggested that they were under water stress condition.
     (2) changes of gas exchange capabilities with tree height:leaf photosynthetic pigments and△value of 32 researched tree species decreased,while leafδ~(13)C value increased with tree height. Photosynthetic rate,transpiration rate,stomata conductance and internal CO_2 concentration of 4 researched tree species were negative with tree height.The results were consistent with the result of the changes of stomata structure with tree height and suggested that increased hydraulic limitation with tree height influenced gas exchange characteristics,water use efficiency and photosynthetic capability.
     (3) changes of water parameters with tree height:water potential of 28 tree species were negatively and linearly related to tree height.Maximum tree height of 86~100m was estimated with water potential in China.Water relations of 22 tree species estimated with P-V method showed that cell wall elasticity,osmotic adjustment,and drought resistant capability of most tree species were positive with tree height,while turgor maintenance capability reduced with tree height,which limit cell division and tree height growth.The trends were consistent with the changes of leaf structure and biophysical characteristics.It's possibly that increase of hydraulic limitation with tree height influenced leaf water potential and turgor as well as leaf structure,which strengthened hydraulic limitation on leaf gas exchange characteristics including photosynthesis and transpiration rate, resultantly influenced carbon assimilation and CO_2 fractionation and increased water use efficiency and drought resistance capability.
     (4) response of leaf structure and water parameters of widely spread trees species to environmental gradients:from south to north,with the reduction of water and heat condition, thickness of leaf,palisade tissue,cuticle,epidermis and LMA increased or decreased firstly then increased;stomata size and aperture reduced,while stomata density,drought resistance capability andδ~(13)C increased.It suggested that worse water and heat condition limited gas exchange capability and increased water use efficiency.Leafδ~(13)C value of tree species from different climate condition was influenced by many climate elements and water condition was the most important one.Precipitation and average temperature were negative withδ~(13)C value,rainfall and average temperature respectively at 1100mm and 19℃were dividing point for carbon isotope discrimination.Higher temperature increasedδ~(13)C,while better water condition influencedδ~(13)C less.
     (5) To sum up,the trend of leaf structure,biophysical characteristics and water parameters with tree height was similar with the change trend of these indices with water gradients.It proves that tree top leaves suffer from water stress and hydraulic limitation becomes greater with tree height.Water stress influence tree height growth in several aspects:firstly is the influence of exterior water condition,and community average tree height is positive with exterior water condition.Secondly, hydraulic limitation influences individual tree structure and function.Xeromorphic structure,Lower water potential and turgor pressure limit cell division and expansion,which restrict gas exchange and carbon assimilation capability.However,respiration consumption increases with the spread of tree crown.Shortage of nutrient limits carbon investigation on new leave growth and may ultimately limit tree growth.Thus,the main limitation of tree height is water.And hydraulic limitation may firstly cause nutrient limitation and ultimately limit tree height.
引文
[1]安锋,蔡靖,姜在民,等.八种木本树种木质部栓塞恢复特性及其与PV曲线水分参数的关系[J].西北农林科技大学学报(自然科学版),2006,34(1):38-44.
    [2]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25(1):90-98.
    [3]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J].应用生态学报,2004,15(2):201-204.
    [4]陈拓,杨梅学,冯虎元,等.青藏高原北部植物叶片碳同位素组成的空间特征[J].冰川冻土,2003,25(1):83-87.
    [5]崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J].生态学报,2006,26(6):1842-1847.
    [6]董学军.九种沙生灌木水分参数的实验测定及生态意义[J].植物学报,1998,40(7):657-664
    [7]范泽鑫,曹坤芳.树木高生长限制的几个假说[J].植物学通报,2005,22(5):632-640.
    [8]方精云,费松林,樊拥军,等.贵州梵净山亮叶水青冈解剖特征的生态格局及主导因了分析[J].植物学报,2000,42(6):636-642.
    [9]冯玉龙,巨关升,朱春全.杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J].林业科学,2003,39(3):29-36.
    [10]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报.2002,22(6):901-910.
    [11]郭玉华,蔡志全,曹坤芳,等.四种热带雨林树种光合和形态解剖特对不同生长光强的适应[J].武汉植物学研究.2004,22(3):240-244.
    [12]韩兴国,严昌荣,陈灵芝.暖温带地区几种木本植物碳稳定同位素的特点[J].应用生态学报,2000,11(4):497-500.
    [13]黄玉清,莫凌,赵平等.高大乔木原位与离体叶片气体交换特征的比较—以三种环境下的青冈栎为例[J].生态学报,2008,28(9):4508-4517.
    [14]胡海姿,张睿,尚爱芹,等.金叶植物色素含量对光强的响应[J].园艺学报,2007,34(3):717-722.
    [15]柯世省,陈贤田.珊瑚树离体叶片光合、蒸腾特性的变化[J].浙汀林业科技,2002,22(2):11-15.
    [16]李合生主编.现代植物生理学[M].高等教育出版社,2002,146.
    [17]李吉跃,张建国,姜金璞.北方主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1-11.
    [18]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9):1380-1386.
    [19]李吉跃.内聚力-张力学说的新证据[J].北京林业大学学报,2002,24(4):135-138.
    [20]李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅰ)~(Ⅵ)[J].北京林业大学学报,1991a,13(增):1-24.
    [21]李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京林业大学博士学位论文.北京:北京林业大学图书馆,1990.
    [22]李吉跃.太行山主要造林树种耐旱特性的研究(I)[J].北京林业大学学报,1991,13(增刊):1-9.
    [23]李吉跃.油松侧柏苗木抗旱特性初探[J].北京林业大学学报,1988,10(2):23-30.
    [24]李吉跃.PV技术在油松侧柏苗木抗旱特性研究中的应用[J].北京林业大学学报,1989,11(1):3-11.
    [25]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991b,13(3):92-100.
    [26]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报.2006,26(2):0266-0275.
    [27]李正理、张新英编著.植物解剖学[M].高等教育出版社.1983.
    [28]林植芳,林桂珠,孔国辉,等.生长光强对亚热带自然林两种木本植物δ(13)C和WUE的影响[J].热带亚热带植物学报,1995,3(2):77-82.
    [29]刘文杰,李庆军,张光明,等.西双版纳望天树林林窗小气候特征研究[J].植物生态学报,2000,24(3):356-361.
    [30]刘晓宏,赵良菊,Menassie Gasaw,等.东非大裂谷埃塞俄比亚段内C_3植物叶片δ~(13)C和δ~(15)N 及其环境指示意义[J].科学通报,2007,52(2):199-207.
    [31]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:农业出版社,1993,168-183.
    [32]吕建林,陈如凯,张木清,等.甘蔗净光合速率、叶绿素和比叶重的季节变化[J].福建农业大学学报,1998,27(3):285-290.
    [33]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂稳定碳同位素组成的空间分布特征[J].第四纪研究.2006,26(6):947-954.
    [34]孟令曾,张教林,曹坤芳,等.迁地保护的4种龙脑香冠层叶光合速率和叶绿素荧光参数的日变化[J].植物生态学报 2005,29(6):976-984.
    [35]孟庆杰,王光全,董绍锋,等.桃叶片组织结构与其抗旱性关系的研究[J].西北林学院学报2005,20(1):65-67.
    [36]米海莉,许兴,李树华,等.水分胁迫对牛心朴子、甘草叶片色素、可溶性糖、淀粉含量及碳氮比的影响[J].西北植物学报,2004,24(10):1816-1821.
    [37]渠春梅,韩兴国,苏波,等.云南西双版纳片断化热带雨林植物叶片δ~(13)C值的特点及其对水分利用效率的指示[J].植物学报,2001,43(2):186-192.
    [38]瞿礼嘉等主译,B.B.Buchanan主编.植物生物化学与分子生物学[M].科学出版社,2004:466-472.
    [39]容丽.喀斯特石漠化区植物水分适应机制的稳定同位素研究[D].中国科学院研究生院(地球化学研究所),博士学位论文,2006,78.
    [40]上官周平,陈培元.土壤干旱对小麦叶片渗透调节和光合作用的影响[J].华北农学报,1989,4(3):49-55.
    [41]上官周平.小麦~(13)C分辨率和水分利用效率对氮素和水分的响应[J].植物营养与肥料学报,2000,6(3):345-348.
    [42]史刚荣和邢海涛.淮北相山8个树种叶片的生态解剖特征[J].林业科学,2007a,43(3):28-33.
    [43]苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ~(13)C值及水分利用效率对环境梯度的响应[J].植物生态学报,2000,24:648-655.
    [44]孙谷畴,林植芳,林桂珠,等.亚热带人工林松树~(13)C/~(12)C比率和水分利用效率[J].应用生态学报,1993,4(3):325-327.
    [45]孙佳音,杨逢建,庞海河,等.遮荫对南方红豆杉光合特性及生活史型影响[J].植物研究,2007,27(4):439-444.
    [46]万贤崇,孟平.植物体内水分长距离运输的生理生态学机制.植物生态学报,2007,31(5):804-813.
    [47]王国安,韩家懋,刘东生.中国北方黄土区C~3草本植物碳同位素组成研究[J].中国科学(D 辑):地球科学,2003,33(6):550-556.
    [48]王国安,韩家懋,周力平.中国北方C_3植物碳同位素组成与年均温度关系[J].中国地质,2002,29(1):55-57.
    [49]王国安,韩家懋.中国西北C_3植物的碳同位素组成与年降雨量关系初探[J].地质科学,2001,36(4):494-499.
    [50]王国富,李连国,李晓燕,等.沙棘叶片表面形态特征与抗旱性的关系[J].园艺学报,2006,33(6):1310-1312.
    [51]王建伟,周凌云.土壤水分变化对金银花叶片生理生态特征的影响[J].土壤,2007,39(3):479-482.
    [52]王丽霞,李心清,郭兰兰.中东亚干旱半干旱区C_3植物δ~(13)C值的分布及其对气候的响应[J].第四纪研究.2006,26(6):955-961.
    [53]王万里.压力室(PRESSURE CHAMBER)在植物水分状况研究中的应用[J].植物生理学通讯,1984,(3):52-57.
    [54]王学奎主编.植物生理生化实验原理与技术[M].高等教育出版社,2006,134-136.
    [55]武维华.植物生理学[M].北京:科学出版社,2003,38-40.
    [56]熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志,2005,24(4):417-421.
    [57]许大全等.毛竹叶光合作用的气孔限制研究[J].植物生理学报,1987,13(2):154-160.
    [58]严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境关系研究[J].生态学报,2001,21(11):1952-1956.
    [59]严昌荣,韩兴国,陈灵芝,等.暖温带落叶阔叶林主要植物叶片中δ~(13)C值的种间差异及时空变化[J].植物学报,1998,40(9):853-859.
    [60]杨广,吴晓平,程华斌.基于模糊隶属函数的一类灰色关联度问题研究[J].海军工程大学学报,2004,16(2):95-98.
    [61]杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,364-370.
    [62]姚允聪,高遐虹,程继鸿.苹果种质资源抗旱性鉴定研究Ⅶ:干旱条件下苹果幼树生长与叶片形态特征变化[J].北京农学院学报,2001,16(2):16-21.
    [63]喻方圆,徐锡增,Robert D G.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44.
    [64]张川红,臧道群,罗军民.乔木极限高度的决定机制[J].植物生理学通讯.2002,38(4):370-375
    [65]张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅰ)[J].北京林业大学学报,1994a,16(1):1-12.
    [66]张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ)[J].北京林业大学学报,1994b,16(4):46-54.
    [67]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].中国林业出版社.2000,6-8.
    [68]张建国.中国北方主要造林树种耐旱特性及其机理的研究[D].北京林业大学博士学位论文.北京:北京林业大学图书馆,1993.
    [69]张友胜,张苏峻,李镇魁.植物叶绿素特征及其在森林生态学研究中的应用[J].安徽农业科学,2008,36(3):1014-1017.
    [70]招礼军,李吉跃,于界芬,等.干旱胁迫对苗木蒸腾耗水日变化的影响[J].北京林业大学学报,2003,25(3):42-47.
    [71]郑敬刚,张景光.试论贺兰山植物多样性的若干特点[J].干旱区地理,2005,28(4):526-530.
    [72]郑淑霞,上官周平.近70年来黄土高原典型植物δ~(13)C值变化比较[J].植物生态学报,2005,29(2):289-295.
    [73]郑万钧.中国树木志(第一卷)[M].北京:中国林业出版社,1984.
    [74]周云龙.植物生物学[M].北京:高等教育出版社,1999.
    [75]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报.1999,16(4):332-338.
    [76]Alves A C & Setter T L.Response of cassava leaf area expansion to water deficit:cell proliferation,cell expansion and delayed development.Annals of Botany,2004,94:605-613.
    [77]Anderson J E,Kriedemann P E,Austin M P,et al..Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment[J].Australian Journal of Botany,2000,48(6):759-775.
    [78]Araus J L,Slafer G A,Romagosa I,et al..FOCUS:Estimated wheat yields during the emergence of agriculture based on the carbon isotope discrimination of grains:evidence from a 10th millennium BP site on the Euphrates[J].Journal of Archaeological Science.2001,28:341-350.
    [79]Bailing A,Zimmermann U.Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe[J].Planta,1990,182:325-338.
    [80]Baquedano F J,Castilo F J.Comparative ecophysiogical effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spender Quercus coccifera and Quercus ilex[J].Trees,2006,20(6):689-700.
    [81]Barbour M M,Farquhar G D.Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves[J].Plant,Cell and Environment,2000,23(5):473-685.
    [82]Barker M,Becker P.Sap flow rate and sap nutrient content of a tropical rain forest canopy species,Dryobalanops aromatica,in Brunei[J].Selbyana,1995,16(2):201-211.
    [83]Barlow D J,Thomton J M.Journal of Molecular Biology,1983,168:867-885.
    [84]Barnard H R & Ryan M G.A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna.Plant,Cell and Environment,2003,26,1235-1245.
    [85]Barrieu F,Chaumont F,Chdspeels MJ.High expression of the tonoplast aquapodn ZmTIP1in epidermal and conduction tissues of maize[J].Plant Physiology,1998,117:1153-1163.
    [86]Batchelor G K.An Introduction to fluid dynamics[M].Cambridge University Press,UK.2000.
    [87]Bauerle W L,Hinckley T M,Cermak J,et al..The canopy water relations of old-growth Douglas-fir trees[J].Trees,1999,13:211-217.
    [88]Begg J E,Turner N C.Water potential gradients in field tobacco[J].Plant Physiology,1970,46:343-346.
    [89]Benkert R,Bailing A,Zimmermann U.Direct measurements of the pressure and flow in the xylem vessels of Nicotiana tabacum and their dependence on flow resistance and transpiration rate[J].BotanicaActa,1991,104:423-432.
    [90]Benkert R,Zhu J J,Zimmermann G,et al.Long-term xylem pressure measurements in the liana Tetrastigma voinierianum by means of the xylem pressure probe[J].Planta,1995,196:804-813.
    [91]Bohn B A & Kershner J L.Establishing aquatic restoration priorities using a watershed approach[J].Journal of Environmental Management,2002,64(4):355-363.
    [92]Bolger T P,Turner N C.Transpiration effciency of three Mediterranean annual pasture species and wheat[J].Oecologia 1998,115:32-38.
    [93]Bowman W D,Roberts S W.Seasonal changes in tissue elasticity in chaparral shrubs[J].Physiol Tree,1985,(65):233-236.
    [94]Boyer J S.Plant physiology[M].1970(46):233-235.
    [95]Boyer J S.Measuring the water status of plants and soils[M].Academic Press:San Diego.1995.
    [96]Brodribb T J,Holbrook M.Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J].Plant Physiology,2003,132(4):2166-2173.
    [97]Brodribb T J,Holbrook N M.Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer[J].Plant Physiology.2005,137:1139-1146.
    [98]Brooks J R,Flanagan B,Buchmann N,et al.Carbon isotope composition of boreal plants:functional grouping of life forms[J].Oecologia,1997,110:301-311.
    [99]Brugnoli E,Scartazza A,Lauteri M,et al.Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions.In:Griffiths H,ed.Stable isotopes integration of biological,ecological,and geochemical processes[M].Bios Scientific Publishers Ltd.,Oxford.1998,133-146.
    [100]Buchmann N,Brooks J R,Ehleringer J R.Predicting daytime carbon isotope ratios of atmospheric CO_2 within forest canopies[J].Functional Ecology,2002,16:49-57.
    [101]Burgess S and Dawson T.Predicting the limits to tree height using statistical regressions of leaf traits[J].New Phytologist,2007,174:626-636.
    [102]Burgess S O,Pittermann J,Dawson T E.Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens(D.Don)crowns[J].Plant,Cell and Environment,2006,29:229-239.
    [103]Caldwell M M,Teramura A H,Tevini M,et al.Effects of increased solar ultraviolet radiation on terrestrial ecosystems[J].Journal of Photochemistry and Photobiology B:Biology,1998,46:40-52.
    [104]Cannell M G R.World forest biomass and primary production data[M].New York:Academic Press,1982.
    [105]Canny M J.A new theory for the ascent of sap-cohesion supported by tissue pressure[J].Annals of Botany,1995b,75:343-357.
    [106]Canny M J.The transpiration stream in the leaf apoplast:water and solutes[J].Philosophical Transactions of the Royal Society of London B,1993,341:87-100.
    [107]Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivers[J].Scientia Horticulturae,2002,95(1):39-50.
    [108]Cochard H,Froux F,Mayr S,et al.Xylem wall collapse in water-stressed pine needles[J].Plant Physiology.2004,134:401-408.
    [109]Condon A G,Richards R A,Rebetzke G J,et al.Improving intrinsic water-use efficiency and crop yield[J].Crop Science,2002,42:122-131.
    [110]Connor K F,Lanner R M.Effects of tree age on secondary xylem and phloem anatomy in stems of Great Basin bristle-cone pine(Pinus longaeva)[J].American Journal of Botany,1990,77:1070-1077.
    [111]Damesin C S,Rambal S,Joffre R.Between tree variations in leaf δ~(13)C of Quercu silex among Mediterranean habitats with different water availability[J].Oecologia,1997,111:26-35.
    [112]Dawson T E,Mambelli S,Plamboeck AH,et al.Stable isotopes in plant ecology[J].Annuual Revition Ecological System,2002,33:507-59.
    [113]Dawson T E.Fog in the California redwood forest:ecosystem inputs and use by plants[J].Oecologia,1998,117:476-485.
    [114]Day M E,Greenwood M S,White A S.Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age[J].Tree Physiology,2001,21:1195-1204.
    [115]Deines P.The isotopic composition of reduced organic carbon.In:Fritz P,Fontes J C eds.Handbook of Environmental Isotope Geochemistry T:The Terrestrial Environment[J].Amsterdam:Elsevier,1980,329-406.
    [116]Ebdon J S,Petrovic A M,Dawson T E.Relationship between carbon isotope discrimination,water use efficiency,and evapotranspiration in Kentucky b!uegrass[J].Crop Science.1998,38:157-162.
    [117]Ehleringer J R,Cook C S.Carbon isotope discrimination and xylem D/H ratios in desert plants[J].Stable Isotopes in Plant Nutrition,Soil Fertility,and Environmental Studies.Vienna,IAEA,1991,489-497.
    [118]Ehleringer J R,Hall A E,Farquhar G D.Stable Isotopes and Plant Carbon-Water Relations[M].New York:Academic Press,1993,155-172.
    [119]Ehleringer J R,Cooper T A.Correlations between carbon isotope ratio and microhabitat in desert plants[J].Oecologia,1988,76(4):562-566.
    [120]El-Sharkawy M A,DeTafur S M.Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics[J].Photosynthetica,2007,45(4):515-526.
    [121]England J R,Attiwill P M.Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species,Eucalyptus regnans F.Muell[J].Trees,2006,20:79-90.
    [122]Esau K.Anatomy of Seed Plants,2nd edn[M].John Wiley and Sons Press,New York.1977,351-372.
    [123]Fahn A.plant anatomy(3rd edition)[M],England pergamon press,1982.
    [124]Farmer J G problems in interpreting tree-ring δ~(13)C records[J].Nature,1979,279:229-231.
    [125]Farquhar G D,Ehleringer J R,Hubick K T.Carbon isotope discrimination and photosynthesis[J].Annual Review of Plant Physiology,1989,40:503-537.
    [126]Farquhar G D,O'Leary M H,Berry J A.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Austrilian Journal of Plant Physiology.1982,9:121-137.
    [127]Farquhar G D,Richards R A.Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes[J].Australian Journal of Plant Physiology,1984,11:539-552.
    [128]Francey R J,Gifford R M,Sharkey T D,et al..Physiological influences on carbon isotope discrimination in huonpine[J].Oecologia,1985,44:241-247.
    [129]Friend A D.The prediction and physiological significance of tree height[J].In:Solomon Am,Shugurt HH(eds).Vegetation dynamic & Global Change.London:Chapman and Hall,1993.101-105.
    [130]Gholz H L,Fisher R F.Organic matter production and distribution in slash pine(Pinus elliottii)plantation[J].Ecology.1982,63:1827-1839.
    [131]Giardina C P,Ryan M G,Binkley D,et al.Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest[J].Global Change Biology,2003,9:1438-1450.
    [132]Gower S T,McMurtrie R E,Murty D.Aboveground net primary production decline with stand age:potential causes[J].Trends in Ecology and Evolution.1996,11:378-382.
    [133]Grassi G,Colom M R,Minotta G Effect of nutrient supply on photosynthetic acclimation and photo inhibition of one-year-old foliage of Picea abies[i].Physiol Plant,2001,111:245-254.
    [134]Green D,Skkpuger E L.Light mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species[J].Tree Physiology,2001,21:1341-1346.
    [135]Greenwood M S.The effect of phase change on annual growth increment in eastern larch(Larix laricina(Du Roi)K.och)[J].Annates des Sciences Forestieres,1989,46:171-177.
    [136]Grulke N E,Miller P R.Changes in gas exchange characteristics during the life span of giant sequoia:implications for response to current and future concentrations of atmospheric ozone.Tree Physiology,1994,14:659-668.
    [137]Guillemette M,Stephen J B.Carbon isotopes in Ombrogenic peat bog plants as climatic indicators:calibration from and altitudinal transect in Switzerland[J].Organic Geochemistry,2001,32:233-245.
    [138]Hacke U G,Sperry J S.Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo[i\.Plant,Cell and Environment,2003,26:303-311.
    [139]Han X G,Yan C R,Chen L Z.Stable carbon isotope characteristics of some woody plants in warm temperate zone[J].Chinese Journal of Applied ecology.2000,11(4):497-500.
    [140]He C X,Li J Y,Zhou P,et al.Changes of leaf morphological,anatomical structure and carbon isotope ratio with the height of the Wangtian tree(Parashorea chinensis)in Xishuangbanna,China[J].Journal of Integrative Plant Biology.2008,50(2):168-173.
    [141]Hill A E,shachar-Aill B,Shachar-Hill Y.What are aquaporins For[J].Journal of Membrane Biology,2004,197:1-32.
    [142]Holbrood N M,Zwieniecki M A.Embolism repair and xylem tension:Do we need a miracle[J]? Plant Physiology.1999,120:7-10.
    [143]Holbrook N M,Burns M J,Field C B.Negative xylem pressures in plant:a test of the balancing pressure technique[J].Science,1995,270:1193-1194.
    [144]Impa S M,Nadaradjan S,Boominathan P,et al.Carbon isotope discrimination accurately reflects variability in WUE measured as a whole plant level in rice[J].Crop Science,2005,45(6):2517-2522.
    [145]Ishii H,Ford E D,Boscolo M E,et al.Variation in specific needle area of old-growth Douglas-fir in relation to needle age,withincrown position and epicormic shoot production[J].Tree Physiology,2002,22:31-40.
    [146]Jackson L W R.Effect of shade on leaf structure of deciduous tree species[J].Ecology,1967,48:498-499.
    [147]Johansson I,Karlsson M,Johanson U,et al.The role of aquaporins in cellular and whole plant water balance[J].Biochimica et Biophysica Acta,2000,1465:324-342.
    [148]Johnson R C,Yangyang L.Water relations,forage production,and photosynthesis in tall Fescue divergently selected for carbon isotope discrimination[J].Crop Science,1999,39:1663-1670.
    [149]Joshua L A,Ann S E.Physiological variation among Populus fremotii populations:short and Iongterm relationships between δ~(13)C and water availability[J].Tree Physiology,2001,21:1149-1155.
    [150]Karl J N.Plant biomechanics-an engineering approach to plant form and function[M].Chicago & London,The University of Chicago Press.1992.
    [151]Kenzo T,Ichie T,Watanabe Y,et al..Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest[J].Tree Physiology,2006,26:865-873.
    [152]Kirby A R,Gunning A P,Waldron KW,et al..Visualization of plant cell walls by atomic force microscopy[J].Biophysical Journal,1996,70:1138-1143.
    [153]Kierin,DeJong,Weinbaum,et al..Specific Leaf Weight and Nitrogen Allocation Responses to Light Exposure within Walnut Trees[J].HortScience,1991,26(2):183-185.
    [154]Koch G W,Sillett S C,Jennings G M,et al..The limit to tree height[J].Nature,2004,428:851-854.
    [155]Korner C H,Farquhar G D,Wang S C.Carbon isotope discriminate by plants follows latitudinal and altitudinal trends[J].Oecologia,1991,88:30-40.
    [156]K(?)rner C.A re-assessment of high elevation treeline positions and their explanation[J].Oecologia,1998,115:445-459.
    [157]K(o|¨)rner C.Carbon limitation in trees[J].Journal of Ecology,2003,91:4-17.
    [158]Korol R L,Kirschbaum M U F,Farquhar G D.Effects of water status and soil fertility on the C-isotope signature in Pinus radiate[J].Tree Physiology,1999,19:551-562.
    [159]Kozlowski T T,Pallardy S G.Physiology of woody plants,2~(nd) edn[M].Academic Press,San Diego,1997.
    [160]Kramer P J,Kozlowski T T.Physiology of trees(2nd edition)[M].New York:McGraw-Hill,1979.
    [161]Kramer P J,Boyer J S.Water Relation of Plants and Soil[M].Academic Press,San Diego.1995.
    [162]Kramer,P T.water relations of plants[J].New York and London:Academic Press,1983
    [163]Lajtha K,Getz J.Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New-Mexico[J].Oecologia,1993,94:95-101.
    [164]Larcher W.Physiological plant ecology(4th edition)[M].New York:Heidelberg Springer-Verlag,2003,231-245.
    [165]Larcher W.Physiological plant ecology(Third edition)[M].New york;Berlin:Heidelberg,Aufl.Springer-verlag,1995.
    [166]Leavitt S W,Long A.evidence for ~(13)C/~(12)C fractionation between tree leaves and wood[J].Nature,1982,298:742-743.
    [167]Lee D W,Bone R A,Tersis S,et al..Correlates of leaf optical properties in tropical forest sun and extreme-shade plants[J].American Journal of Botany,1990,77:370-380.
    [168]Levitt J.Responses of plants to environmental stresses.Ⅱ.Water,radiation,salt and other stresses(second edition)[M].New York:Academic Press,1980.
    [169]Li J Y,Blake T J.Effect of repeatod cycles of dehydration-rehydration on gas exchange and water use efficiency in jack pine and black spruce[J].Journal of Beijing Forestry University, (English Edition),1996.5(2):78-87.
    [170]Lin Z F,Lin G Z,Kong G H,et al.Effect of growth irradiance and stable carbon isotope ratio,intercellular CO_2 concentration and water-use efficiency of two woody plant in subtropical natural forest[J].Journal of Tropical and Subtropical Botany,1995,3(2):77-82.
    [171]Milbum J A.Water flow in plants[M].Longman,London.1979.
    [172]Ma J Y,Chen F H,Xia D S,et al.Spatial distribution characteristics of stable carbon isotope compositions in desert plant Reaumuria soongorica[J].Quaternary Sciences,2006,26(6):947-954.
    [173]Ma J Y,Chen T,Qiang W Y,et al.Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaum uria soongorica(Pall.)Maxim[J].Journal of Integrative Plant Biology,2005,47(9):1065-1073.
    [174]Ma R P,Calos henquire B A,Zhang WH.Analysis on the daily courses of water potential of nine woody species from Cerrado vegetation during wet season[J].Journal of Forestry Research,2000,11(1):7-12.
    [175]Magnani F,Mencuccini M,Grace J.Age-related decline in stand productivity:the role of structural acclimation under hydraulic constraints[J].Plant,Cell and Environment.2000,23:251-263.
    [176]Marshall J D,Monserud R A.Foliage height influences specific leaf area of three conifer species[J].Canadian Journal of Forest Research,2003a,33:164-170.
    [177]Marshall J D,Zhang J.Carbon isotope discrimination and water use efficiency in native plants of the north central Rockies[J].Ecology,1994,75:1887-1895.
    [178]Marshall J D,Monserud R A.Foliage height influences specific leaf area of three conifer species[J].Cannadian Journal of Forestry Research,2003,33:164-170.
    [179]Marshall J D,Monserud R A.Erratum:foliage height influences specific leaf area of three conifer species[J],2003.Canadian Journal of Forest Research,2003b,33:1591-1591.
    [180]McCulloh K A,Sperry J S,Adler F R.Water transport in plants obeys Murray's law[J].Nature,2003,421:939-942.
    [181]Mencuccini M,Martfnez-Vilalta J,Vanderklein D,et al.Size-mediated ageing reduces vigour in trees[J].Ecology Letters.2005,8:1183-1190.
    [182]Milburn J A.Cavitation.A review:past,present and future.In Borghetti M.,Grace J.,Raschi A.,eds,Water Transport in Plants under Climatic Stress[M].Cambridge University Press,Cambridge,UK,1993,14-26.
    [183]Miller J M,Williams R J,Farquhar G D.Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia[J].Functional Ecology,2001,15:222-232.
    [184]Mook W G,Koopmans M,Carter A F,et al..Seasonal,latitudinal and secular variation in the abundance and isotopic ratios of atmospheric carbon dioxidel.Results from land stations[J].Journal of Geophysical Research-atmospheres,1983,88:10915-10933.
    [185]Moore P H,Cosgrove D J.Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane[J].Plant Physiology,1991,96:794-801.
    [186]Morecroft M D,Woodward F I.Experimental investigations on the environmental determination of δ~(13)C at different altitudes[J].Journal of Experimental Botany,1990,41(231):1303-1308.
    [187]Murty D,McMurtrie R E,Ryan M G Declining forest productivity in aging forest stands—a modeling analysis of alternative hypotheses[J].Tree Physiology,1996,16:187-200.
    [188]Nabeshima E,Hiura T.Size dependency of photosynthetic water-and nitrogen-use efficiency and hydraulic limitation in Acer mono[J].Tree Physiology,2004,24:745-752.
    [189]Niinemets U.Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris[J].Tree Physiology,2002,22:515-535.
    [190]Niklas K J.Size dependent allometry of tree height.Diameter and trunk taper[J].Annual Botany,1995,75:217-227.
    [191]Oguchi R,Hikosaka K,Hirose T.Does the photosynthetic light-acclimation need change in leaf anatomy[J]? Plant,Cell and Environment,2003,26:505-512.
    [192]O'Leary M H.Carbon isotope fractionation in plants[J].Phyto-chemistry,1981,20:553-567.
    [193]O'leary M H.Carbon isotopes in photosynthesis[J].Bioscience,1988,38(5):328-336.
    [194]Pearman G I,Francey R J,Fraser P B.Climatic implications of stable isotopes in tree rings[J].Nature,1976,260:771-772.
    [195]Penuelas J.A big issue for trees[J].Nature.2005,437:865-866.
    [196]Phillips N G,Ryan M G,Bond B J,et al.Reliance on stored water increases with tree size in three species in the Pacific Northwest[J].Tree Physiolology,2003,23:237-245.
    [197]Pittermann J,Sperry J S.Analysis of freeze-thaw embolism in conifers.The interaction between cavitation pressure and tracheid size[J].Plant Physiology.2006,140:374-382.
    [198]Pockman W T,Sperry J S,O'Leary J W.Sustained and significant negative water pressure in xylem[J].Nature.1995,378:715-716.
    [199]Prentice I C,Helmisaari H.Silvis of north European trees:Comilation,comparisons and implications for forest succession modeling[J].Forestry Ecology Management,1991,42:79-93.
    [200]Pruyn M L,Gartner B L,Harmon M E.Respiratory potential in sapwood of old versus young ponderosa pine trees in Pacific Northwest[J].Tree Physiology,2002,22:105-106.
    [201]Qu C M,Han X G,Su B,et al.The characteristics of foliar δ~(13)C values of plants and plant water use efficiency indicated by δ~(13)C values in two fragmented rainforests in Xishuangbanna,Yunnan[J].Acta Botanica Sinica,2001,43(2):186-192.
    [202]Rao N R C,Wright G C.Stability of the relationship between specific leaf area and carbon isotope discrimination across environment in peanut[J].Crop Science 1994,34:98-103.
    [203]Rosati A,Esparza G D,Ejong T M,et al.Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees[J].Tree Physiology,1999,19:173-180.
    [204]Ryan M G,Yoder B J.Hydraulic limits to tree height and tree growth[J].Bioscience,1997,47:235-242.
    [205]Ryan M G,Phillips N,Bond B J.The hydraulic limitation hypothesis revisited[J].Plant,Cell and Environment,2006,29:367-381.
    [206]Ryan M G,Binkley D,Fownes J H,et al.An experimental test of the causes of forest growth decline with stand age[J].Ecological Monographs,2004,74:393-414.
    [207]Ryan M G,Waring R H.Maintenance respiration and stand development in a subalpine lodgepole pine forest[J].Ecology,1992,73:2100-2108.
    [208]Sakaki T,Kondo N,Sugahara K.Breakdown of photosynhetic pigment and lipids in spinach leaves with ozone fumigation:role of active oxyge[J].Physiol Plant,1983,59:28-34.
    [209]Schleser G H,Jayasekera R.δ~(13)C-variations of leaves in forests as an indication of reassimilated CO_2 from the soil[J].Oecoolgia,1985,65:536-542.
    [210]Schneider H,Wegner L H,Haase A,et al.Long-distance water transport under controlled transpirational conditions:minimalinvasive investigations by means of pressure probes and NMR imaging[M].Dordrecht,The Netherlands:Kluwer Academic Publishers,submitted.2004.
    [211]Schneider H,Wistuba N,Reich R,et al.Minimal-and noninvasive characterization of the flow-force pattern of higher plants[M].In:Terazawa M,ed.Tree sap Ⅱ.Sapporo,Japan:Hokkaido University Press,2000a,77-91.
    [212]Schneider H,Wistuba N,Wagner HJ,et al.Water rise kinetics in refilling xylem after desiccation in a resurrection plant[J].New Phytologist,2000b,148:221-238.
    [213]Schulze E D,Williams R J,Farquhar G D,et al.Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J].Australian Journal of Plant Physiology,1998,25:413-425.
    [214]Shen Y K.Some factors limiting photosynthesis in nature[C].In:Baltschefesky M BALTSCHEFFSKY M(ed).Current research in photosynthesis(vol 4).Dordrecht:Kluwer Academic,1990,843.
    [215]Smith A M.Xylem transport and the negative pressures sustainable by water[J].Annals of Botany,1994,74:647-651.
    [216]Sternberg LSL,Mulkey SS,Wright SG Ecological interpretation of leaf carbon isotope ratios:influence of respired carbon dioxide[J].Ecology,1989,70:1317-1324.
    [217]Stiller V,Sperry J S.Canny's compensating pressure theory fails a test[J].American Journal of Botany,1999,86:1082-1086.
    [218]Stuiver M,Braziunas T F.Tree cellulose ~(13)C/~(12)C isotope ratios and climatic change[J].Nature,1987,328:58-60.
    [219]Taiz L,Zeiger E.Plant Physiology,4~(th)edn[M].Massachusetts:Sinauer Associates,2006.
    [220]Taiz L,Zeiger E,Plant Physiology,3rd ed[M].Sinauer Associates,Sunderland,MA USA,2002.33-65.
    [221]Tans P P and Mook W G Past atmospheric CO_2 levels and ~(13)C/~(12)C ratios in tree rings[J].Tellus,1980,32:268-283.
    [222]Thomas S C,Bazzaz F A.Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees.Ecology,1999,80:1607-1622.
    [223]Turner N C.Drought resistance and adaptation to water deficits in crop plants.In:Mussell H,Staples R C(eds).Stress physiology in cfrop plants[M].New York:John Wiley,1979,175-190.
    [224]Tyerman S D,Niemietz C M,Bramley H.Plant aquaporins:multifunctional water and solute channels with expanding roles[J].Plant Cell Environ,2002,25:173-194.
    [225]Tyree M T,Hammel H T.The measurement of the measurement of the turgor pressure and the water relation of trees by the pressure-bomb technique[J],Journal of Experimental Botany,1972,(23):267-282.
    [226]Tyree M T.The ascent of water[J].Nature 2003,423,923.
    [227]Tyree M T,Zimmermann M H.Xylem Structure and the Ascent of Sap[M].Springer,Berlin,2002.
    [228]Tyree M T,Sperry J S.Do wood plants operate near the point of castastrophic xylem disfunction caused by dynamic water stress[J]? Plant Physiology,1988,88:574-580.
    [229]Tyree M T.The Cohesion-Tension theory of sap ascent:current controversies[J].Journal of Experimental Botany,1997,48(315):1753-1765.
    [230]Tyree M T.The forgotten component of plant water potential:a reply-Tissue pressures are not additive in the way M.J.Canny suggests[J].Plant Biology,1999,1:598-601.
    [231]Vande Water P K,Leavitt S W,et al.Leaf δ~(13)C variability with elevation,slope aspect,and precipitation in the southwest United States[J].Oecologia,2002,132:332-343.
    [232]Vincent G.Leaf photosynthetic capacity and nitrogen content adjustment to canopyopenness in tropical forest tree seedlings[J].Jounal of Tropical Ecology,2001,17,495-509
    [233]Wegner L H,Zimmermann U.Simultaneous recording of xylem pressure and trans-root potential in roots of intact glycophytes using a novel xylem pressure probe technique[J].Plant,Cell & Environment,1998,21:849-865.
    [234]Weigel D,Nilsson O.A development switch sufficient for flower initiation in diverse plants[J].Nature,1995,377:495-500.
    [235]West G B,Brown J H,Enquist B J.A general model for the structure and allometry of plant vascular systems[J].Nature,1999,400:664-667.
    [236]Wieser G.Ozone impact on photosynthetic capacity of mature and young Norway spruce(Picea abies(L.)Karst.):external versus internal exposure.Phyton-Annales Rei Botanicae,1997,37:297-302.
    [237]Williams D G,Ehleringer J RXarbon isotope discrimination in three semi-arid woodland species along a monsoon gradient[J].Oecologia,1996,106:455-460.
    [238]Winter K,Holtum J A M,Edwards G E,et al.Effect of low relative humidity on δ~(13)C value in two C_3 grasses and in Panicummilioides,a C_3-C_4 intermediates species[J].Journal of Experimental Botany,1982,132:88-91.
    [239]Woodruff D R,Mcculloh K A,Warren J M,et al.Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir[J].Plant,Cell and Environment,2007,30:559-569.
    [240]Woodruff D R,Bond B J,Meinzer F C.Does turgor limit growth in tall trees[J]? Plant,Cell and Environment,2004,27:229-236.
    [241]Yates D J,Hutley L B.Foliar uptake of water by wet leaves of Sloanea woolsii,an Australian subtropical rainforest tree[J].Australian Journal of Botany,1995,43:157-167.
    [242]Zheng S X,Shangguan Z P.Spatial patterns of foliar stable carbon isotope compositions of C_3 plant species in the Loess Plateau of China[J].The Ecological Society of Japan,2007,22:342-353.
    [243]Zhu Z,Zheng H L.Plant Aquaporins[J].Chinese Journal of cell biology,2005,27:539-544.
    [244]Zimmerman J K,Ehleringer J R.Carbon isotope ratios are correlated with irradiance levels in the Panananian orchid Catasetum viridiflavvm[J].Oecologi,1990a,83:247-249.
    [245]Zimmermann M H.Xylem structure and the ascent of sap[M].Springer-Verlag,Berlin,1983
    [246]Zimmermann U,Meinzer F C,Benkert R,et al.Xylem water transport:is the available evidence consistent with the cohesion theory[J]? Plant,Cell & Environment,1994a,17:1169-1181.
    [247]Zimmermann U,Schneider H,Th(u|¨)rmer F,et al.Pressure probe measurements of the driving forces for water transport in intact higher plants:effects of transpiration and salinity[J].The Netherlands:Kluwer Academic Publishers,2002a,249-270.
    [248]Zimmermann U,Schneider H,Lars H,et al.Water ascent in tall trees:does evolution of land plants rely on a highly metastable state[J]? New phytologist,2004,10(1111):1469-8137.
    [249]Zwieniecki M A,Holbrook N M.Bordered pit structure and vessel wall surface properties.implications for embolism repair[J].Plant Physiology,1999,123:1015-1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700