用户名: 密码: 验证码:
浙闽白垩纪镁铁质火山岩地球化学特征及其深部动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文选择东南沿海的浙江江山、浦江、丽水、文成,福建永泰、永定等六个地区开展了晚中生代火山岩和相关辉绿岩的Ar-Ar年代学、岩石学、主微元素和Sr-Nd同位素地球化学研究,探讨了东南沿海晚中生代玄武质岩(浆)成因(源区性质、演化过程)及其动力学背景,为揭示东南沿海地区晚中生代岩浆产生、火山活动的深部动力学机制提供了重要地球化学依据。论文主要获得了以下研究结果和认识:
     (1)浙闽白垩纪镁铁质火山岩的全岩Ar-Ar年龄集中于114~109 Ma(与文献报道的基性火山岩集中形成年龄(100~113 Ma)相一致);在江绍-断裂带区域还出现99Ma的OIB型玄武岩;而穿插于同期稍早喷发的火山岩的浙江文成和福建永泰辉绿岩的Ar-Ar年龄为94~87Ma。
     (2)根据岩石的微量元素和Sr-Nd同位素地球化学特征,浙闽白垩纪镁铁质火山岩及辉绿岩可分为3种类型:①以文成和永泰镁铁质火山岩及辉绿岩为代表,该类岩石显示与岛弧火山岩类似微量元素特征(富集LILE如Ba、Rb、K和LREE,贫HFSE元素如Nb、Ta和Ti),高放射成因Sr(~(87)Sr/~(86)Sr(i)=0.7066~0.7100)和低放射成因Nd(ε_(Nd)(t)=-8.4~-3.7)同位素组成。②以江山碱性橄榄玄武岩为代表,该类岩石表现出洋岛玄武岩(OIB)的微量元素特征(无Nb-Ta负异常,轻重稀土元素分馏强烈等),弱放射成因Sr(~(87)Sr/~(86)Sr(i)=0.7049~0.7050)和高放射成因Nd(ε_(Nd)(t)=+4.4~+5.8)同位素组成。③以永定、丽水和少量浦江镁铁质火山岩为代表,该套岩石表现出前两类镁铁质岩石过渡的微量元素和Sr-Nd同位素地球化学特征,如在微量元素上富集LILE和LREE,弱Nb-Ta亏损,在Sr-Nd同位素组成上中等放射成因Sr(~(87)Sr/~(86)Sr(i)=0.7055~0.7073)和Nd(ε_(Nd)(t)=-5.4~+3.6)。这三类镁铁质岩浆为伸展背景下软流圈-岩石圈相互作用的产物,元素-同位素模拟结果显示,第一类岩浆的源区组成可能为40%-80%软流圈+20%-60%岩石圈地幔,第二类主要以对流软流圈(>90%)为主,第三类包含了80%-90%软流圈+10%-20%岩石圈地幔。
     (3)在浙江浦江劳村组发现了一套富Al_2O_3和Na_2O埃达克质安山岩,在微量元素上具有高Sr(583~643ppm),贫Y(11.4~13.2ppm)和HREE(如Yb=1.16~1.26ppm),低放射成因Sr(~(87)Sr/~(86)Sr(i)=0.7041~0.7044)和正ε_(Nd)(t)值(+0.2~+2.2),很可能为新增生大陆下地壳在榴辉岩相条件下部分熔融的结果。
     (4)区域镁铁质岩石的地球化学特征与深大断裂分布或性质存在相关性:在远离江绍深大断裂带的文成和永泰镁铁质火山岩,其软流圈对镁铁质岩浆的贡献较低(<80%);在政和-大埔域性断裂带区域产出了永定和丽水的过渡类型火山岩,软流圈对镁铁质岩浆的贡献较高(80%-90%);而在岩石圈断裂—江绍深大断裂带产出了OIB型玄武岩,软流圈的贡献大于90%。在时间上,114~109Ma可能是岩石圈的伸展-减薄的发展阶段;99Ma的OIB型玄武岩喷发标志着岩石圈的伸展-减薄达到了顶峰阶段:而94~87Ma辉绿岩脉的形成则标志着火山岩喷发后的拉张时期,预示岩石圈的伸展-减薄旋回开始转入休眠阶段。
     (5)结合华南印支期的陆内造山变形、变质核杂岩、韧性伸展构造和一系列断陷拉伸盆地的发育,浙闽晚中生代不同类型钙碱性镁铁质岩浆的形成非常类似美国西部盆岭省新生代的演化特点,以及华南地区自晚侏罗纪以来与中国东北地区乃至整个中国东部在晚中生代期间处于类似的全球构造背景,华南晚中生代火山岩活动与东北、华北地区的火山活动具有可比性等,我们认为浙闽白垩纪镁铁质岩浆的成因可归结为岩石圈伸展构造背景下,软流圈-岩石圈相互作用的产物。岩石圈的伸展减薄很可能是印支期造山后的伸展垮塌、周边多板块作用如印支陆块、古特提斯构造演化以及古太平洋板块的快速北移导致的拖曳作用等共同作用的结果。
Systematic Ar-Ar dating and petrological and geochemical (major, trace element and Sr-Nd isotope compositions) investigations on Cretaceous mafic volcanic rocks and relative diabases in the Zhejiang and Fujian Provinces, SE China, have been presented in this paper, with main focuses on the magma origins (source characteristics and magmatic evolution processes) and their geodynamic implications for the extensional tectonics in the region. The major conclusions are summarized below:
     (1) Ar-Ar dating results of nine whole rocks show that mafic volcanic rocks from these two provinces were erupted during 114-109 Ma, in accordance with the peak erupting age of 113-100 Ma reported by previous work. Along the Jiangshan-shaoxing lithosphere-scale fault occurred alkali olivine basalts of 99 Ma. Diabases from Wencheng and Yongtai that intruded the Cretaceous volcanic rocks spanned an emplacement age of 94-87 Ma, representing the latest magmatic pulses in Mesozoic time.
     (2) On the basis of trace element patterns and Sr-Nd isotope compositions, the Cretaceous mafic volcanic rocks and diabases can be subdivided into three groups:①the mafic lavas from Wencheng and Yongtai, partly from Pujiang which show arc-like trace element features, e.g., highly large ion lithophile element (LILE, such as Ba, Rb, K and Sr) and light REE enrichment with Nb-Ta-Ti depletion. These rocks have highly radiogenic Sr (~(87)Sr/~(86)Sr(i) = 0.7066 ~ 0.7100 ) and non-radiogenic Nd (ε_(Nd)(t) = -8.4~-3.7 ) compositions. (2) The alkali olivine basalts, which show oceanic island basalt (OIB)-type trace element characteristics, i.e., enriched in incompatible elements with no Nb-Ta depletion as well as highly fractionated LREE/HREE patterns. These basalts have weakly radiogenic Sr (~(87)Sr/~(86)Sr(i) = 0.7049~0.7050 ) and highly radiogenic Nd (ε_(Nd)(t) =+4.4~+5.8) isotope com- positions.③Mafic rocks show transitional elemental and Sr-Nd isotope features between the above two types. These rocks include those samples collected from Yongding, Lishui, and a few from Pujiang, which generally exhibit LILE and LREE enrichment with weak-moderate Nb-Ta depletion and have moderately radiogenic Sr (~(87)Sr/~(86)Sr(i) = 0.7055~0.7073) and variably radiogenic Nd (ε_(Nd)(t) =-5.4~+3.6 ) compositions. Combined elemental and Sr-Nd isotope data indicate that all three types of Cretaceous mafic magmas were produced by melting of mantle reservoirs with different proportional mixing between the convective asthenosphere and the underlying EM2-type subcontinental lithospheric mantle (SCLM) under an extensional regime. The source for Group 1 contains the highest ratio of the SCLM with the least contribution from the asthenosphere, whereas that for the second group comprises predominantly the convective asthenosphere (>90%). The third group of mafic rocks have the transitional geochemical features between the former two groups, its melting source also contains a proportion of SCLM in-between the other two groups.
     (3) Adakitic andesites from the Laocun Formation are characterized by enrichment in Al_2O_3, Na_2O, and Sr, and depletion in Y and HREE (e.g. Yb), low ~(87)Sr/~(86)Sr(i) (= 0.7041~0.7044) and highε)(Nd)(t) (= +0.2~+2.2). Such features are similar to adakites in modern subduction settings. On the basis of the absence of coeval ridge subduction and the extensional regime in the region, we prefer to relate the petrogenesis of these adakitic andesites to remelting of Mesozoic juvenile crust.
     (4) The geochemical features of the mafic rocks are spatially correlated with the distribution of major faults. Mafic rocks having arc-type trace element features generally occur far from the lithosphere-scale faults, whereas the Jiangshan OIB-type basalts are just located on the Jiangshan-Shaoxing lithosphere-scale fault—a boundary being considered to separate the Yangtze from the Cathysian Block. The Group 3 rocks that have transitional geochemical features between the Group 1 and 2, are distributed along the major fault (e.g., the Zhenghe-Dafu fault). Such a correlation favors a progressive extensional model in response to lithospheric extension-thinning process. From 114 Ma, the beginning of lithosphere attenuation created the Group 1 lavas, while the occurrence of asthenosphere-derived OIB-type magma at 99 Ma signified the peak stage of lithospheric thinning, and the intrusion of 94-87 Ma diabases corresponded to the end of lithospheric thinning through the Mesozoic time.
     (5) Considering the Indo-Sinian intracontinental crustal deformation in SE China, and the following development of metamorphic core complexes and a series of rift basins and eruption of calc-alkaline mafic magmas, the general aspects of the southeastern offshore areas are analogues to those observed in the basin and range province in northwestern USA. Furthermore, the temporal consistence of extensive calc-alkaline magmatic activity throughout the eastern China continent (from NE China to SE China) suggests a uniform extensional regime. The Cretaceous mafic magmas in SE China were products of asthenosphere-lithosphere interaction caused by progressive lithospheric thinning process. This process was resulted from Indosinian post-orogenic collapse and amplified by resultant effects from surrounding plate interactions, including the rapid northward movement of the Palaeo-Pacific Ocean, compressional forces from the Tethyan tectonic belt and possibly the Indo-China Block.
引文
1 蔡剑辉,阎国翰,肖成东,等.2004.太行山—大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨.岩石学报,20(5):1225-1242
    2 陈海泓,肖文交.1998.多岛海型造山作用——以华南印支期造山带为例.地学前缘,5(增):95-102
    3 陈江峰,江博明.1999.钕、锶、铅同位素示踪和中国东南大陆地壳演化.见:郑永飞主编.化学地球动力学.北京:科学出版社,262-287
    4 陈培荣,孔兴功,倪琦生,等.1999.赣南燕山早期双峰式火山岩的厘定和意义.地质论评,45(增刊):734 741
    5 陈培荣,章邦桐,孔兴功,等.1998.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义.岩石学报,14(3):22-31
    6 陈培荣.2004.华南东部中生代岩浆作用的动力学背景及其与铀矿关系.铀矿地质,20(5):266-270
    7 陈卫锋,陈培荣,徐夕生,等.2005.华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约.中国科学D辑,35(11):1007-1018
    8 邓晋福,苏尚国,刘翠,等.2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?地学前缘,13(2):105-119
    9 范蔚茗,王岳军,郭锋,等.2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘,10(3):159-169
    10 福建省地质矿产局.1996.福建省岩石地层.武汉地质大学出版社
    11 甘晓春,李惠民,李大中,等.1993.闽北前寒武纪基底的地质年代学研究.福建地质,12(1):17-31
    12 甘晓春,李惠民,李大中,等.1995.浙西南古元古代花岗质岩石的年代.矿物岩石学杂志,14(1):1-8
    13 高山,骆庭川,张本仁,等.1999.中国东部地壳的结构和组成.中国科学,29(3):204-213
    14 高晓峰,郭锋,范蔚茗,等.2005.南兴安岭晚中生代中酸性火山岩的岩石成因.岩石学报,21:737-748
    15 葛小月,李献华,陈志刚,等.2002.中国东部燕山期高Sr低Y型中酸性火成岩 的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,47(6):474-480
    16 葛小月,李献华,周汉文.2003.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究.地球化学,32(1):11-20
    17 郭锋,范蔚茗,王岳军,等.2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报,17(1):161-168
    18 胡雄健.1994.浙西南下元古界八都群的地质年代学.地球化学,23(增刊):18-24
    19 金文山,赵凤清,张惠民.1998.华南构造单元划分及其特征.浙江地质,14(1):1-10
    20 李超文.2006.吉林省东南部晚中生代火山作用及其深部过程研究[博士学位论文].广州:中国科学院广州地球化学研究所
    21 李济亮.1996.中国东南大陆及相邻海域岩石圈结构、组成与演化.地球科学进展,11(2):221-222
    22 李寄嵎.1994.澎湖地区玄武岩类与福建地区基性岩脉之定年学与地球化学研究兼论中生代晚期以来中国东南地幔之演化[博士学位论文].台北:台湾大学
    23 李兼海,王国平,郑铁藩,等.1996.福建省晚侏罗世—白垩纪陆相火山岩地层划分、对比研究.福建地质,13:240-247
    24 李金冬.2005.湘东南地区中生代构造—岩浆—成矿动力学研究[博士学位论文].武汉:中国地质大学
    25 李进堂,马金清,温友梦,等.2000.福建省闽清县池园地区早、中侏罗世地层新发现.福建地质,(4):181-187
    26 李曙光,聂永红,Jagoutz E,等.1997.大别山俯冲陆壳的再循环——地球化学证据.中国科学D辑,275(5):412-418
    27 李献华,胡瑞忠,饶冰.1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,26(2):14-31
    28 李献华,周汉文,刘颖,等.1999.桂东南钾玄质侵入岩带及其岩石学和地球化学特征.科学通报,44(18):1992-1998
    29 李献华.1999.元古宙地壳增长和演化的地球化学制约——以华南为例.见:郑永飞主编.北京:化学地球动力学.科学出版社,288-309
    30 林强.1999.东北亚中生代火山岩研究若干问题的思.世界地质,18(2):14-22
    31 刘颖,刘海臣,李献华.1996.用ICP-MS准确测定岩石样品中的40多种微量元素.地球化学,25(6):552-558
    32 陆志刚,陶奎元,谢家莹,等.1997.中国东南大陆火山地质及矿产.北京:地质出版社
    33 马振东,陈颖军.2000.华南扬子与华夏陆块古.中元古代基底地壳微量元素地球化学示踪探讨.地球化学,29(6):525-531
    34 毛景文,王志良.2000.中国东部大规模成矿时限及其地球动力学背景的初步探讨.矿床地质,19:289-296
    35 毛景文,谢桂青,李晓峰,等.2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1):45-56
    36 聂童春,朱根灵.2004.政和—大埔深(大)断裂带中段地质构造特征及其演化探讨.福建地质,(4):186-189
    37 邱检生,王德滋,Brent Ⅰ A M.1999.浙闽沿海地区A型复合花岗岩体的地球化学及成因.岩石学报,15(2):237-246
    38 沈渭洲,凌洪飞,王德滋,等.1999.浙江省中生代火成岩的Nd-Sr同位素研究.地质科学,34(2):223-230
    39 水涛,徐步台.1986.江山—绍兴古陆对接带.科学通报,(6):487-489
    40 孙涛,陈培荣,周新民,等.2002.南岭东段强过铝质花岗岩中白云母研究.地质论评,48(5):518-525
    41 汤加富.1998.华南前寒武纪地壳构造演化与成矿作用.江西地质,2(2):101-111
    42 陶奎元,高天均,陆志刚等.1998.东南沿海火山岩基底构造及火山-侵入作用与成矿关系.北京:地质出版社
    43 滕吉文,闫雅芬.2004.中国东南大陆和陆缘地带板内构造界带的地磁异常场响应.大地构造与成矿学,28(2):105-117
    44 万天丰,朱鸿.2002.中国大陆及邻区中生代—新生代大地构造与环境变迁.现代地质,(2):107-120
    45 王德滋,周金城.2005.大火成岩省研究新进展.高校地质学报,11(1):1-8
    46 王德滋,周新民.2002.中国东南部晚中生代花岗质火山岩—侵入杂岩成因与地壳演化.北京:科学出版社
    47 王非,朱日祥,李齐,等.2004.秦岭造山带的差异隆升特征——花岗岩~(40)Ar/~(39)Ar年代学研究的证据.地学前缘,11(4):445~459
    48 王鸿祯,杨巍然,刘本培.1986.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社
    49 王强,赵振华,简平,等.2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报,(3):255-268
    50 王强,赵振华,许继峰,等.2002.扬子地块东部燕山期埃达克质(adakite质安山)岩与成矿.中国科学D辑,32(增刊):127-136
    51 王岳军,Zhang Y H,范蔚茗,等.2002.湖南印支期过铝质花岗岩的形成:岩浆底侵与地壳加厚热效应的数值模拟.中国科学D辑,32(6):491-499
    52 王岳军,范蔚茗,梁新权,等.2005.湖南印支期花岗岩SHRIMP锆石U-Pb年龄及期成因启示.科学通报,12:1259-1266
    53 王岳军,廖超林,范蔚茗,等.2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学,33(2):109 117
    54 夏林圻,夏祖春,徐学义,等.2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志,26(1):77-89
    55 肖龙,Robert P RAPP,许继峰.2004.深部过程对埃达克质岩石成分的制约.岩石学报,20(2):219-228
    56 谢桂青,胡瑞忠,贾大成.2002.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,31(4):329-337
    57 谢昕,徐夕生,邢光福,等.2003.浙东早白垩世火山岩组合的地球化学及其成因研究.岩石学报,19:385-398
    58 谢昕,徐夕生,邹海波,等.2005.中国东南部晚中生代大规模岩浆作用序幕:J_2早期玄武岩.中国科学D辑,35(7):587-605
    59 谢昕,徐夕生,邹海波,等.2001.中国东南沿海中-新生代玄武岩微量元素和Nd-Sr-Pb同位素研究.岩石学报,17(4):617-628
    60 邢光福,杨祝良,毛建仁,等.2002.东南大陆边缘早侏罗世火成岩特征及其构造意义.地质通报,21(7):384-391
    61 熊绍柏,刘宏兵.2000.浙皖地区地壳—上地幔结构和华南与扬子块体边界.地球物理学进展,15(4):3-17
    62 徐夕生,谢昕.2005.中国东南部晚中生代—新生代玄武岩与壳幔作用.高校地质学报,11(3):318-334
    63 徐义刚.1999.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见:郑永飞主编.化学地球动力学.北京:科学出版社:119-167
    64 许靖华,孙枢,李继亮.1987.是华南造山带而不是华南地台.中国科学B辑,(10):1107-1115
    65 颜铁增,俞云文,陈江峰等.2005.浙江省西北部白垩纪火山岩Nd-Sr同位素特征.中国地质,32(3):417-423
    66 杨明桂,王砚耕,李镛,等.1994.华南地区区域地质特征.见:程裕淇主编.中国区域地质概论.北京:地质出版社.
    67 杨祝良,沈渭洲,陶奎元,等.1999.浙闽沿海早白垩世玄武岩锶、钕、铅同位素特征.地质科学,34(1):59-68
    68 殷鸿福,吴顺宝,杜远生,等.1999.华南是特提斯多岛洋体系的一部分.地球科学,24(1):1-12
    69 余心起,舒良树,颜铁增.2004.江山-广丰地区早白垩世晚期玄武岩的岩石地球化学及其构造意义.地球化学,33(5):465-477
    70 俞云文,徐步台,陈江峰,等.2001.浙东南中生代晚期火山岩Nd同位素组成及其地层学意义.高校地质学报,7(1):62-69
    71 俞云文,徐步台.1999.浙江中生代晚期火山—沉积岩系层序和时代.地层学杂志,23(2):136-145
    72 翟明国,樊祺诚,张宏福,等.2005.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.岩石学报,21(6):1509-1526
    73 张贵山,温汉捷,裘愉卓.2004.闽西晚中生代基性岩脉的地球化学研究.地球化学,33(3):243-253
    74 张旗,王焰,钱青,等.2001.中国东部中生代埃达克岩的特征及其构造.成矿意义.岩石学报,17(2):236-244
    75 张顺金,黄昌旗,陈泽霖,等.2000.华南武夷山区桃溪旋卷变质核杂岩构造的基本特征及形成机制探讨.福建地质,19(4):188-196
    76 赵军红.2004.福建省基性岩的年代学和地球化学:晚中生代以来中国东南部地幔演化[学位论文].贵阳:中国科学院地球化学研究所
    77 赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征.中国科学D辑,28(增刊):7-14
    78 浙江省地质矿产局.1987.浙江岩石地层.武汉:中国地质大学出版社
    79 郑建平,路风香,O'Reilly SY,等.1999.华北地台东部古生代与新生代岩石圈地幔特征及其演化.地质学报,73(1):47-56
    80 周金城,蒋少涌,王孝磊,等.2005.华南中侏罗世玄武岩的岩石地球化学研究——以福建藩坑玄武岩为例.中国科学D辑,35(10):927~936
    81 Amdt NT, Czamanske GK, Wooden JL, et al..1993. Mantle and crustal contributions to continental flood volcanism. Tectnophysics,223:39-52
    82 Atherton MP, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144-146
    83 Bedini RM., Bodinier JL, Dautria JM et al.. 1997. Evolution of LILE-enriched melt fraction in the lithospheric mantle: A case study from the East African Rift. Earth and Planetary Science Letters, 153:67-83
    84 Chen JF, Jahn BM.1998. Crustal evolution of SE China: evidence from Sr, Nd and Pb isotopic compositions of granitoids and sedimentary rocks. Tectonophysics,274:101-133
    85 Davis HJ and Stevenson DJ. 1992. Physical model of source region of subduction zone volcanics. Joumal of Geophysical Research,97:2037-2070
    86 Davis J and Hawkesworth CJ. 1993.The petrogenesis of 30-20 Ma basic and intermediate volcanics from the Mogollon-Datil Volcanic field, New Mexico,USA. Contrib Mineral Petrol, 115:165-183
    87 Defant MJ, Drummond MS. 1990.Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347:662-665
    88 Defant MJ, Kepezhinskas P. 2001.Evidence suggest s slabmelting in arc magmas. EOS: Transactions, American Geophysical Union, 82: 65-69
    89 Dewey J F. 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogue Geological Helvetia,82:717-734
    90 Engebretson DC, Cox A, Gordon RG. 1985. Relative motions between oceanic and continental plates in the Pacific basins. Geological Society of America Special Paper, 206:1-59
    91 Fan WM, Guo F, Wang YJ, et al.2001.Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China. Physics and Chemistry of the Earth(A),26:733-746
    92 Fan WM, Guo F, Wang Y J, et al.2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, NE China. Journal of Volcanology and Geothermal Research, 121:115-135
    93 Fan WM, Guo F, Wang YJ, et al.2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with wubducted continental crust relicts beneath the Dabie orogen? Chemical Geology, 209:27-48
    94 Fan WM, Menzies MA. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonics et Metallogenis, 16(3-4): 171-180
    95 Faure M. 1996. Extensional tectonics within a subduction-type orogen: The case study of the Wugongshan dome (JiangxiProvince, southeastern China). Tectonophysics, 263: 77-106
    96 Fitton JG, James D, Leeman WP. 1991.Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variation in space and time. J Geophys. Res., 96:13693-13711
    97 Gallagher K and Hawkesworth C J. 1992. Dehydration melting and the generation of continental flood basalts. Nature,358:57-59
    98 Gilder SA, Gill J, Coe RS, et al..1996.Isotope and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research 101:16137-16154
    99 Guo F, Fan WM, Wang YJ, et al..2005. Petrogenesis and tectonic implications of early Cretaceous high-K calc-alkaline volcanic rocks in the Laiyany basin of the Sulu belt, eastern China. The Island Arc, 14:69-90
    100 Guo F, Fan WM, Li CW. 2006. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implication for crustal recycling beneath continental collisional orogens. Geological Magzine, 146:1-13
    101 Guo F, Fan WM, Wang YJ, et al.2002.Geochemistry of late Mesozoic mafic rocks in west Shandong Province: characterizing the lost lithospheric mantle beneath North China Block. Geochemical Journal,37:63-77
    102 Guo F, Fan WM, Wang YJ, et al.2004.Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment process beneath continental collisional belt. Lithos,78(3):291-305
    103 Gutscher MA, Maury R, Eissen JP, et al.. 2000. Can slab melting be caused by fiat subduction? Geology, 28: 535-538
    104 Halls HC, Fahrig WC. 1987. Mafic dyke swarms. Geological society of Canada special publication 34
    105 Halls HC. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geoscience Canada, 9(3): 145-154
    106 Hawkesworth CJ, Turner S, Gallaghr K, et al.. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100:10271-10286
    107 Hooper P R and Hawkesworth C J. 1993. Isotopic and geochemical constraints on the origin and evolution of the Columbia River Basalt. J Petrol, 34:1203-1246
    108 Hunter AG and Blake S. 1995. Petrogenetic evolution of a transitional tholeiitic calc-alkaline series: Towada volcano, Japan. J Petrol,36:1579-1605
    109 Ionov DA and Hofman AW. 1995. Nb-Ta rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. EPSL, 131:341-356
    110 Jahn BM, Chen PY, Yen TP. 1976.Rb-Sr ages of granitc rocks in SE China and their tectonic significance. Geological Society of American Bulletin, 86:763-776
    111 Jahn BM, Wu FY, Lo CH, et al.. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157:119-46
    112 Kempton P D, Harmon R S, Stosch H G, et al. 1991. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. J Geophys Res, 96:13713-13735
    113 Kepezhinskas PK, McDernott F, Defant MJ,et al..1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta,61:577-600
    114 Lan C Y, Chung S L, Mertzman, et al.1995.Mafic dikes from Chinmen and Liehyu off southeast China: Petrochemical characteristics and tectonic implications. J Geol Soc China, 38(3): 183-213
    115 Lapierre H, Jahn B M, Charvet J, et al..1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics, 274:321-338
    116 Li XH, Chung SL, Zhou HW, et al. 2004. Jurassic intrap late magmatism in southern Hunan-Eastem Guangxi:~(40)Ar -~(39)Ar dating,geochemistry, Sr-Nd isotopes and imp lications for tectonic of SEChina. In: Malpas J, et al. eds. Aspects of the Tectonic Evolutionof China. Geological Society, London Specia 1 Publications,226:193 215
    117 Li XH, McCulloch MT. 1996.Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in SE China. Precambrian Research,76:67-76
    118 Li XH.2000. Cretaceous magmatism and lithospheric extension in southeast China. J Asia Earth Sci, 18:293-305
    119 Li ZX, Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182
    120 Liegeois JP, Navez J, Hertogen J, et al.. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45:1-28
    121 Lin W, Faure M, Moniep, et al. 2000.Tectonic of SE China :New insights from the Lushan massif (Jiangxi Province) .Tectonics, 19: 852-871
    122 Macdonald R, Rogers N W, Fitton J G, et al..2001. Plume-lithosphere interaction in the generation of the basalts of the Kenya rift, east Africa. J Petrol.,42:877-900
    123 Martin H, Bonin B, Capdevila R, et al.. 1994. The Kuiqi peralkaline complex(SE China): Petrology and geochemistry. J Petrol, 35:983-1015
    124 Martin H.1999.Adakitic magmas: modem analogues of Archaean granitoids, Lithos,46:411-429
    125 McKenzie DP, Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. J Petrol,32:625-679
    126 McKenzie D P. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 95:53~72
    127 Menzies MA., Fan WM, Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the loss of>120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard HM, et al. eds. Magmatic process and plate tectonics.Geo Soc Spec Pub,76:71-81
    128 Menzies MA, Rogers NW, Tindle A. 1987. Metasomatic and enrichment processes in the Earth's mantle. In: Menzies M A,Hawkesworth C J, eds. Mantle Metasomatism. London: Academic Press: 1~472
    129 Middlemost EAG. 1994. Naming materials in the magma/igneous rock system. Earth Sciences Review,37:215-224
    130 Miller C, Schuster R, Kloetzli U, et al..1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and magma genesis. J Petrol,40:1399-1424
    131 Morrison GW.1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13:97-108
    132 Northrup CJ, Royden LH, Burchfiel BC.1995. Motion of the Pacific plate relative to Euroasia and its potential relation to Cenozoic extrusion along the eastern margin of Eurasia. Geology, 23:719-722
    133 Ormerod DS, Hawkesworth CJ, Rogers NW, et al.. 1988.Tectonic and magmatic transitions in the western Great Basin, USA. Nature, 333(6171-6172):349-353
    134 Peacock SM, Rushmer T, Thompson AB. 1994. Partial melting of subducting oceanic crust. EPSL, 121:227-244
    135 Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorps R S ed. Andesites. New York: John Wiley and Sons,525-548
    136 Renne PR, Swisher CC, Deino AL, et al..1998. Inercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145:117-152
    137 Rogers NW, Hawkesworth CJ, Ormeroc DS.1995. Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. Journal of Geophysical Research, 100:10287-10301
    138 Ruppel C. 1995. Extensional processes in continental lithosphere. Journal of Geophysics Research, 100:24187-24215
    139 Smithies R H. 2000. The Archean tonalite-trondhjemite-granodiorite(TTG) series is not an analogue of Cenozoic adakite, EPSL, 182:115-125
    140 Sun SS and McDonough WF.1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and process. In: Saunder AD, et al. eds. Magmatism in the ocean basins, Geol Soc Spec Pub,42:313-345
    141 Taylor SR, McLennan SM.1985.The continental crust: its composition and evolution. Blackwell, Oxford Press
    142 Turner S, Arnaud N, Liu J, et al. 1996.Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of oceanic basalts. J Petrol,37:45-71
    143 Wang YJ, Fan WM, Guo F, et al. 2003.Geochemistry of Mesozoic mafic rocks adjacent to the Chengzhou-Linwu fault, South China: implication for the lithospheric boundary between the Yangtze and Cathaysic blocks. International Geology Review, 45:263-286
    144 Wang YJ, Fan WM, Peng TP, et al. 2005.Elemental and Sr-Nd isotopic systematics of the early Mesozoic volcanic sequence in S Jiangxi Province, South China:petrogenesis and tectonic implication. Int J Earth Sci, 94:53-65
    145 Weaver BL. 1991.The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. EPSL, 104:381-397
    146 Wilson M and Downes H.1991. Tertiary-Quaternary extension-related alkali magmatism in western and central Europe. J Petrol,32:811-849
    147 Wilson M. 1989.Igneous Petrogenesis. London: Unwin Hyman Ltd:22
    148 Windley BF. 1995. The evolving continents. 3rd ed. New York: John Wiley
    149 Xing G F, Yang ZL, Chen R, et al. 2004. Three stages ofMesozoic bimodal igneous rocks and their tectonic imp lications on the continental margin of southeast China. Acta Geologica Sinica, 78 (1): 27-39
    150 Xu J, Ma G, Tong WX, et al. 1993.Displacement of the Tancheng-Lujiang wrench fault system and its geodynamic setting in the NW Circum-Pacific. In: Xu J (ed). The Tan-Lu wrench fault system. John Wiley and Sons:51-74
    151 Xu J, Zhu G, Tong WX, et al..1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134:273-310
    152 Xu JF, Wang Q, Yu XY.2000. Derivation of high -Mg andesites and adakitic andesite from the Sanchzi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, Central China: Evidence of partial melting of the subducted Paleo-Tethyan crust. Geochemical J, 34:359-377
    153 Xu XS, Dong CW, Li WX, et al. 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significance of the gabbro-diorite-granite association. Lithos,46:299-315
    154 Zhai Y, Seguin MK, Zhou Y, et al..1992. New paleomagnetic data from the Huanan Block, China, and Cretaceous teconics in eastern China. Phys Earth Planet Inter,73: 163-188
    155 Zhou XM, Li WX. 2000. Origin of late Mesozoic igneous rocks in SE China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,326:269-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700