用户名: 密码: 验证码:
大跨度拱桥地震反应特性及减震控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内大跨度拱桥的已建和在建项目日益增多。大跨度拱桥作为生命线工程,它们在地震作用下的安全性格外重要,一旦地震使交通线遭到破坏,可能导致的生命财产以及间接经济损失将会非常巨大。然而拱桥被认为是抗震性能相对较差的桥型,拱桥的轴压比较高,延性较低,难于设计成延性抗震结构。因此,对于重要的大跨度拱桥有必要在弄清其地震反应特性的基础上,采取适当的减震措施,以提高和改善其抗震能力。目前对这种桥型结构的减震控制尚缺乏系统地综合性研究,故探索合理可行、有效经济的拱桥耐震、减震新途径,为我国拱桥抗震、减震设计提供理论依据和参考成为主要的研究目标。本文围绕大跨度拱桥地震反应特性及减震控制技术,主要开展了以下几个方面的研究工作。
     ①基于空间非平稳地震动功率谱模型,考虑地震动的部分相关效应以及时滞效应等因素,应用谐波合成法模拟了空间变化的地震动加速度时程,作为大跨度拱桥多点激励地震反应分析的空间地震动输入。
     ②构建大跨度拱桥结构的理论分析模型,确定拱桥结构多点激励下的动力学方程以及相应的求解方法,编制三维动力有限元分析程序,实现了大跨度拱桥多点激励地震反应时程分析。
     ③对大跨度拱桥结构进行模型降阶,提出按最大模态位移方法确定控制模态。采用基于模态分析和平衡降阶的方法来对拱桥模型降阶,解决了大跨度拱桥减震控制中由于模型离散自由度较多,难以进行仿真控制分析的困难。对按振型贡献率选择控制模态的方法进行了改进,按最大模态位移方法确定控制模态,分析表明,该方法考虑了外部激励的影响,克服了振型贡献率只考虑结构动力特性选取控制模态的缺点,这对于必须考虑多点地震激励影响的大跨度拱桥更为合理。
     ④探索合理可行的拱桥减震措施。考虑拱桥的结构特点,给出了在拱桥上设置阻尼器的减震方案。对于上承式拱桥,由于拱脚为嵌固,可考虑采用阻尼器斜撑的减震方案。对中承式拱桥除了在桥墩与桥面主梁间设置阻尼器外,还可在拱桥吊杆端部布置阻尼器。实例分析表明,上述减震措施对于减小拱桥地震反应是有效的。
     ⑤将粘滞阻尼器用于拱桥的被动减震控制。对阻尼器表现非线性阻尼性能的拱桥被动减震系统非线性时程分析,将非线性阻尼力等效为外部控制作用,对处于弹性状态的主体结构进行模型降阶,采用基于现代控制理论的状态空间分析方法或状态方程精细时程积分法进行求解,可提高计算效率,而且实现了拱桥被动减震分析与半主动减震控制仿真分析程序的统一。并对粘滞阻尼器阻尼力计算模型中的阻尼系数、速度指数等参数的取值进行了模拟计算与分析。
     ⑥综合研究了磁流变阻尼器用于大跨度拱桥的半主动减震控制。结合磁流变阻尼器半主动控制特性,选定磁流变阻尼器的力学模型,基于H∞控制器-Sign函数的半主动控制策略建立了半主动减震控制系统。对控制系统中的半主动控制算法、阻尼器的布置和参数等进行了优化分析。为解决大跨度拱桥模型降阶控制中由于含有未建模频域不确定性所导致的溢出问题,提出采用基于混合灵敏度的鲁棒控制策略来消除溢出不稳定。分析表明,该方法能有效地抑制溢出,保证系统具有更好的鲁棒性能。
     ⑦选取大跨度拱桥中具有代表意义的桥型,一座上承式拱桥-西藏尼木大桥和一座中承式系杆拱桥-重庆菜园坝长江大桥为例,分别进行了一致激励、行波输入及多点激励输入下的地震反应分析和粘滞阻尼器被动减震以及磁流变阻尼器半主动减震控制分析。深入探讨了行波效应对大跨度拱桥被动、半主动减震效果的影响,得出了有益的结论,为提高大跨度拱桥的抗震安全性以及将阻尼器用于大跨度拱桥减震控制的工程应用提供了理论参考。
Recently, long-span arch bridges are widely used in our country. And being traffic lifeline, the safety of long-span arch bridge by seismic excitation is very important. Once traffic line damaged, loss on life and property may be serious. However, the seismic behavior of arch bridge is poor, and traditional ductile design is unsuitable because of the high axial compressive ratio of arch rib. Moreover, it is lacking in research on seismic control of arch bridge. So making an investigation on some new, proper, effective, economical approaches of seismic control of arch bridge is the principal objective of this paper .The research is mainly focused on the following aspects.
     ①The spatial variable seismic acceleration time history is simulated. Based on a power spectral model of spatial nonstationary earthquake ground motion and considering the spatial partial coherence and traveling wave effect , the seismic acceleration time history are simulated by the wave superposition method.
     ②Establishing finite element model of long-span arch bridge and dynamic equation, and selecting analysis methods, the finite element dynamic analysis program is realized to make analysis on seismic response of arch bridge by multi-support excitation.
     ③In order to solving the primary difficult in seismic control of long-span arch bridge that designing control system based on original model of long-span arch bridge is almost impossible because of the very large degree of freedom (DOF), methods of model reduction including critical modal analysis and balanced model reduction are proposed. As for the critical modes selection, an approach based on the maximum modal displacement is presented, which consider the effect of seismic excitation and is more reasonable than the method based on modal contribution ratio that only considers dynamic characteristics of bridge.
     ④The seismic control schemes for arch bridge are presented after considering the structural characteristics of arch bridge. For top-through arch bridge, diagonal bracing with damper can be mounted on bridge. As for half-through arch bridge, dampers can be installed at the connection of deck and bridge pier, and the dampers can also be set at the end of suspenders. Numerical results show that the seismic control schemes mentioned above are effective for seismic control of arch bridge.
     ⑤For the long-span arch bridge with nonlinear viscous dampers, an efficient method considering nonlinear damping force is presented. In the nonlinear time-history analysis of long-span arch bridge, this paper regards the nonlinear damping force as external control force which act upon bridge, and arch bridge is in the state of elasticity where the initial critical modes of the bridge are used in the model reduction. Then the state space method based on modern control theory or the precise integration method is used to command the state equations. The solving process for the nonlinear dynamic equation has high computation efficiency and realize a program which can perform passive control as well as semi-active control analysis .Taking Nimu arch bridge as an example, analysis are carried out to determine the optimal values of damping coefficient and velocity exponent for viscous damper for which the Maxwell model is used as computation model .
     ⑥For semi-active control, Magnetorheological Fluid damper (MRFD) is used for seismic control of arch bridge. Modified phenomenological model is selected as the mechanical model of MRFD, and H∞-based Sign function control algorithm is proposed to command MRFD. Optimum analysis for semi-active control system consisting of installation position and number of MRFD and comparison between different semi-active control algorithms are performed. About the problem of overflow in the model reduction control, equivalent normal H∞control system of mixed sensitivity optimization is established to eliminate destabilization due to overflow. The analysis results demonstrate that this method can suppress overflow efficiently and has better robust performance.
     ⑦At last, taking a top-though arch bridge, Nimu arch bridge in Tibet, and a half-though arch bridge,CaiYuanBa arch bridge in Chongqing , as examples, the seismic responses of the two bridges under uniform excitation and traveling wave excitation and multi-support excitation, and seismic absorption with viscous dampers and semi-active control with MR dampers, are numerically simulated. The traveling wave effect on the seismic control is investigated, and some valuable suggestions have been got. These works provide an important theoretical reference for improving seismic safety of the long-span arch bridge.
引文
[1]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社. 2001年.
    [2]周云,周福霖,李新平.桥梁震害与减震防灾新对策[J].世界地震工程, Vol. 13, No.1, 1997. 3.
    [3]张海,阎石,焦莉.桥梁结构振动控制发展综述[J].沈阳建筑工程学院学报,Vol.18,No.1,2002.1.
    [4] J. P Yao. Concept of Structural Control [J]. J. Struct. Div. , ASCE, 1972, 98(7): 1567~1574.
    [5]范立础.桥梁抗震[M].同济大学出版社, 1997.
    [6]交通部公路规划设计院. JTJ 004-89公路工程抗震设计规范[S].北京:人民交通出版社. 1990.
    [7] American Association of State Highway and Transportation Officials. STANARD SPECIFICATION for HIGHWAY BRIDGES [S], Division I-A SEISMIC DESIGN, SIXTEENTH EDITON, 1996.
    [8] Eurocode 8: Structures in Seismic Regions Design, Part 2: Bridges(draft)[S]. April 1993.
    [9]日本规范.道路桥示方书.同解说. V耐震设计篇[S]. 1996.
    [10]袁万城.大跨桥梁空间非线性地震反应[D].同济大学, 1990.
    [11]叶爱君.大跨度桥梁抗震设计[D].同济大学, 1998.
    [12]郑史雄等.大跨度钢管混凝土拱桥的地震反应性能[J].西南交通大学学报, 1999, 34 (3).
    [13]史志利,周立志,李忠献.空间变化地震激励下大跨度桥梁地震反应分析[J].特种结构, Vol. 20 , No. 4, 2003(12), 71~79.
    [14] RayW. Clough. Dynamics of structure [M]. Computers & Structures, Inc. 1995 University Ave. Berkeley, USA.
    [15]王君杰,王前信.江近仁.大跨拱桥在空间变化地震动下的响应[J].振动工程学报, 1995, 8 (2).
    [16]许金华,王向坚.大跨度拱桥在地震行波作用下的响应[J].重庆交通学院学报, 1998, 6.
    [17]赵灿晖.大跨度钢管混凝土拱桥的地震响应研究[D].成都:西南交通大学, 2001.
    [18]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津大学, 2003.
    [19]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J].同济大学学报, 1999, 27 (2).
    [20] R. S. Harichandran and W. Wang. Response of Simple Beam to A Spatially Varying Earthquake Excitation [J]. Journal of Engineering Mechanics. ASCE. 114(9). 1526-1541. 1988.
    [21] M. Berrah and E. Kausel. Spectrum Analysis of A Beam Under Non-uniform Seismic Motion [C].Proc. Second European Conf. on Structural Dynamics. Trondheim, Norway, 1 Balkena, Rotterdam, 27-32. 1993.
    [22] A Rutenberg and A. Heidebrecht. Approximate Spectral Multiple Support Seismic Analysis: Traveling Wave Approach [C]. Proc. Instn. Civil Engineering. Part 2. 85. 223-236. 1988.
    [23] H. Hao. Arch Response to Correlated Multiple Excitations [J]. Earthquake Engineering and Structural Dynamics. 22, 389-404. 1993.
    [24] Housner G W. Characteristic of strong motion earthquakes [R]. Bull Seism. Soc, Am. , 1947, 37: 1731.
    [25] Kanai K. Semi-empirical formula for seismic characteristic of the ground [R].东京大学地震研究所汇报, 1957 35(2).
    [26] Ruiz P, Penzien J. Probabilistic study of the behavior of structures during earthquakes [J]. Earthquake Eng. C. , UCB, CA, Report No. EERC 69-03, 1969.
    [27] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time [J]. J Eng Mechanics, ASCE, 1986, 112(2): 154-174.
    [28] Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement [J]. EESD, 1988, 16: 583-596.
    [29] Abrahamson N. A etc. Empirical spatial coherence functions for application to soil-structure interation analysis [J]. Earthquake Spectra, Vol 7(1), 1991, 1~27.
    [30]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报, Vol. 18, No. 1, 1996, 55~62.
    [31]冯启民,胡幸贤.空间相关地面运动的数学模型[J].地震工程与工程振动, 1981, 1(2): 18.
    [32]郑家树.大跨度钢管混凝土拱桥非线性地震反应分析[D].西南交通大学, 2000, 1.
    [33] Nazmy A. S. Earthquake response characteristics of long-span arch bridge [C]. Proc of 1th WCEE. Elsevier Science Ltd. 1996 1309.
    [34]周福霖.工程结构减震控制[M].地震出版社, 1997.
    [35] G. W. Housner et al. Structural Control: Past Present and Future [J]. Journal of Engineering Mechanics, Vol. 123, 1997.
    [36]张俊平,李新平,周福霖.桥梁结构振动控制发展及存在的问题[J].世界地震工程, Vol14. No2. 1998, 6.
    [37]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报, Vol 23, No. 2, 2002. 4.
    [38] Franklin Y. Cheng and Hong ping Jiang. Stability and efectiveness of hybrid control for seismic-resistant structure [C]. 6th U. S. National Conference on Earthquake Engineering, 1998.
    [39] Michael D. Symans a, Michael C. Constantinou. Semi-active control systems for seismicprotection of structures: a state-of-the-art review [J]. Engineering Structures 21 (1999) 469–487.
    [40]范立础,王志强.我国桥梁隔震技术的应用[J]. Journal of Vibration Engineering, 1999. 6.
    [41]高波. 65000KN大吨位抗震盆式橡胶支座的应用[J].华东公路, NO. 137, 2002(4): 75~77.
    [42] Gordon P. Warn, Andrew S. Whittaker. Performance estimates in seismically isolated bridge structures [J]. Engineering Structures 26 (2004) 1261–1278.
    [43] H.M.Alif and A.M. Abdel-Ghaffar. Modeling the Nonlinear Seismic Behaviour of Cable-Stayed Bridges with Passive Control Bearing [J]. Computer & Structure, Vol. 54, No. 3, 1995.
    [44]李建中,袁万城.连续梁桥减、隔震体系的优化设计[J].土木工程学报, 31 (3), 1998.
    [45]李建中,辛学忠.连续梁桥减、隔震体系非线性地震反应分析[J].地震工程与工程振动, Vol. 18 No. 3 1998. 9.
    [46]王丽,阎贵平,方有亮.隔震桥梁非线性地震反应分析[J].北方交通大学学报. Vol. 26, No. 1, 2002. 2.
    [47]王丽,李金霞,阎贵平.隔震桥梁减震效果分析[J].世界地震工程, EARTHQUAKE ENGINEERING Vo1. 18, No. 2 Jun. 2002.
    [48]曾攀.减震和被动控制装置对桥梁抗震性能的影响研究[D].北方交通大学, 2001.
    [49]张耀宏,顾金钧.使用粘性阻尼器的桥梁抗震设计——利用粘性阻尼器降低地震力[J].国外桥梁. 1997. 4.
    [50]蒋建军,李建中,范立础.桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究[J].公路, 2004. 11.
    [51]李建中,袁万城.斜拉桥减震、耗能体系非线性纵向地震反应分析[J].中国公路学报, VOL. 11, NO. 1, 1998. 1.
    [52] Bridge and Structural Committee of Japan Society of Civil Engineers. Earthquake Resistant Design of Bridge, 1994. [Z]
    [53] http: //www. bluelakeint. com/chinese/kangzhen/bridge01. htm. [Z]
    [54]余钱华,胡世德,范立础.桥梁结构MTMD被动控制的理论研究和实桥分析[J].世界地震工程, Vo1. 17. No. 3 Sep. , 2001.
    [55] K. Ogawa et al. Application of impact mass damper to a cable-stayed bridge pylon [J].J. of Wind Engineering and Industrial Aerodynamics, Vol72, 1997.
    [56] Song, T. T. Active Structural Control: Theorry and practice [M]. Longman Scientific&Technical, john Wiley&Sons, inc. , NewYork , 1990.
    [57] R. M. Mure. F. Bossens, A. Preumont. Active damping and flutter control of cable-stayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics , 1998, 913-921.
    [58] Y. Achkire and A. Preumont. Active tendon control of cable-stayed bridges [J]. EESD, Vol25, 1996.
    [59] Liu S C, Lagorio H J, et al. Application of Active Control Technology to Building and Bridges. China-Japan-USA [Z] Trilateral Symposium/ Workshop on Earthquake Engineering, Harbin, China, 1991.
    [60] G. Turan. Active control of a cable-stayed bridge against earthquake excitations [D]. PHD thesis. Department of Civil Engineering . University of Illinois . 2001.
    [61] S. J. Dyke, J. M. Caicedo, G. Turan, L. A. Bergman, and S. Hague. Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges [Z]. 2000.
    [62] J. M. Caicedo, S. J. Dyke (Corr. Au. ), S. J. Moon, L. A. Bergman, G. Turan, and S. Hague. Phase II Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges [Z]. 2001.
    [63] A. G. Schemmann and H. A. Smith. Vibration control of cable-stayed bridges- Part 1: modeling issues [J]. EESD, Vol 27, 1998.
    [64] A. G. Schemmann and H. A. Smith. Vibration control of cable-stayed bridges- Part 2: control analyses [J]. EESD, Vo1. 27, 1998.
    [65]王克海,朱晞.斜拉桥结构基于模态分析的减震控制研究[J].工程力学, Vol. 19, No. 1, 2002. 2.
    [66]李小珍,蔡婧,强士中.南京长江二桥南汊桥地震反应的主动控制及AMD系统参数设计[J].工程力学, Vol. 20 No. 4 Aug. , 2003.
    [67] Y. Achkia. Seismically Excited Cable-Stayed Bridge Using MR Dampers [Z]. 2000.
    [68] Baris Erkus, Masato Abe′, Yozo Fujino. Investigation of semi-active control for seismic protection of elevated highway bridges [J]. Engineering Structures , 24 (2002), 281–293.
    [69] Michael D. Symans and Steven W. Kelly. Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Isolation Systems [J]. Earthquake Engng. Struct. Dyn. , 28, 37-60, 1990.
    [70] Sang-Won Cho, Byoung-Wan Kim, Hyung-Jo Jung and In-Won Lee, M. ASCE. Implementation of Modal Control for Seismically Excited Structures using Magnetorheological Dampers [J]. Journal of Engineering Mechanics, Vol. 131, No. 2, February 1, 2005.
    [71]欧进萍,隋莉莉.结构振动控制的半主动磁流变质量驱动器(MR-AMD) [J].地震工程与工程振动, Vol. 22, No. 2 Apr. , 2002.
    [72]代泽兵,黄金枝,王红霞.基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制[J].振动与冲击, Vol. 24. No. 2 2005 67-70.
    [73]欧进萍.结构振动控制—主动、半主动和智能控制[M].科学出版社,北京, 2003.
    [74]亓兴军.桥梁减震半主动控制研究[D].中国地震局地球物理研究所, 2006, 6.
    [75] J. N. Yang AND J. C. WU. Hybrid Control of Seismic-excited Bridge structure [J]. EarthquakeEngineering and Structural Dynamics, Vol. 24, 1437-1451, 1995.
    [76] K. Maebayashi et al. Hybrid mass damper system for response control of building [C]. Earthquake Engineering, Tenth World Conference, 1992, Balkema, Roterdam.
    [77] Gina. J. Lee-Glauser et al. Integrated passive/active vibration absorber for multistory buildings [J]. Journal of Structural Engineering, l997.
    [78] Kyu-Sik Park , Hyung-Jo Jung, In-Won Lee. Hybrid control strategy for seismic protection of a benchmark cable-stayed bridge [J]. Engineering Structures , 25 (2003) 405–417.
    [79] M. D. symans and S. WKelly. Seismic protection of bridge structure using hybrid isolation system [C]. 6th U. S. National Conference on Earthquake Engineering, 1998.
    [80]刘洪兵,朱晞.铁路高墩连续梁桥抗震控制系统的研究[J].铁道学报, Vol. 22, No. 5, 2000.
    [81]刘保东.混凝土桥梁结构减震控制及其鲁棒性研究[D].北方交通大学, 2001.
    [82] R. C. Ehrgott, S. F. Masri. Modelling the oscillatory dynamic behavior of electrorheological materials in shear [J]. Smart Materials and Structures, 1992, 1: 275-285.
    [83] N. H. McClamroch, H. P. Gavin. Closed loop structural control using electrorheological dampers [C]. In Proceedings of the American Control Conference, Seattle, Washington, USA, 1995: 4173– 4177.
    [84] R. Stanway, J. L. Sproston, N. G. Stevens. Non-linear modeling of an electro-theological vinration damper [J]. Journal of Electrostatics, 1987, 20: 167- 184.
    [85] D. R. Gamota, F. E. Filisko. Dynamic mechanical studies of electrorheological materials: moderate frequencies [J]. Journal of Rheology, 1991, 35: 399-425.
    [86] N. Makris, A. B. Scott, P. T. Douglas. Electrorheological damper with annular ducts for seismic protection application [J]. Smart Materials and Structures, 1996, 5(5): 551-564.
    [87] B. F. Spencer Jr. , S. J. Dyke, M. K. Sain, et al. Phenomenological model of a magnetorheological damper [J]. Journal of Engineering Mechanics. ASCE, 1997, 123(3): 230-238.
    [88] Y. K. Wen. Method for random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division. ASCE, 1976, 102(EM2): 249-263.
    [89] G. Yang. Large-scale magnetorheological fluid damper for vibration mitigation: modeling testing and control [D]. University of Notre Dame, Indiana. USA. 2001.
    [90]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击, 2001, 20(1): 5~8.
    [91]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验研究[J].地震工程与工程振动. 2002, 22(4): 144- 150.
    [92]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构, 2003 33(1): 68- 70.
    [93] Brogan, W. L. (1991). Modern control theory [M], Prentice-Hall. Englewood Cliffs, N. J.
    [94] Leitmann, G. (1994). Semiactive control for vibration attenuation. [J]. Intell. Mater. Syst. Struct. , 5, 841–846.
    [95] D. H. Wang and W. H. Liao. Modeling and Control of Magnetorheological Fluid Dampers Using Neural Networks [J]. Smart Materials and Structures, Vol. 1 pp. 111-126, 2005.
    [96]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].中南大学,博士论文, 2004.
    [97]杜成斌,赵光恒.拱型结构振动控制的研究[J].地震学刊, 1998. 3 .
    [98]苗雨.大跨度拱式结构考虑地震激励行波效应的主动控制研究. [D]四川大学, 2001.
    [99]王晓艺,贺学锋.将液压式构件用于拱桥主动控制的探讨[J].重庆交通学院学报, Vol. 23, No. 6, 2004. 12 .
    [100]屈铁军,王前信.空间相关的多点地震动合成-合成实例[J].地震工程与工程振动. Vo1. 18, Jun, No. 2, 1998.
    [101]杨咏漪、廖海黎、郑史雄.空间变化的非平稳地震场模拟[J].四川建筑科学研究.第31卷第6期. 2005年12月.
    [102] M. Shinozuka. Stocahstic fields and their digital simulation [M]. Columbia University. New York, 1986: 93~140.
    [103] M. Amin, A. H-S. Ang. Nonstationary stochastic model of earthquake motions [J]. ASEC, Eng Mech, Vol 94(2), 1968.
    [104]欧进萍,牛荻涛,杜修力.设计压随机地震动的模型及其参数确定[J].地震工程与工程振动, 1991, 11(3): 45-53.
    [105]洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定[J].地震工程与工程振动, 1994, 14(2): 46 -51.
    [106]孙景江,江近仁.与规范反应谱对应的金井清谱的谱参数[J].世界地震工程, 1990 8(1) 42~48.
    [107]赖明,叶天义,李英民.地震动的双重过滤白噪声模型[J].土木工程学报, Vol. 28, 6, 1995(12): 60~66.
    [108]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报, Vol. 36, 5, 2003: 5~10.
    [109]陈国兴,金永彬,宰金珉.高层建筑随机地震反应的简捷计算[J].南京建筑工程学院学报, 1999, (1): 29-37.
    [110] Rice S O. Mathematic analysis of random noise. Selected papers on noise and stochastic processes [M]. N Wax. ed Dover publish Inc. New York, N Y, 1954, 133-294.
    [111] Borgman L E. Ocean wave simulation for engineering design. [J]. Wtrway Hard. Div ASCE, 95(4), 1969, 557-583.
    [112] Shinozuka M. Simulation of multivariate and multidimensional random processes. [M]. Acoust. Soc. Amer, 49(1), part 2, 1971, 357-367.
    [113] Yang J N. Simulation of random envelope processes [J]. Sound and Vibration. 25(1), 1972, 73-85.
    [114] Shinozuka M, Jan C M. Digital simulation of random processes and its application [J]. Sound Vibr. 25(1), 1972, 111-128.
    [115] Deodatis G. Simulation of ergodic multivariate stochastic processes [J]. Engrg Mech ASCE, 122(8), 1996, 770-778.
    [116]王勖成.有限单元法[M].清华大学出版社,北京, 2003.
    [117]洪锦如.桥梁结构计算力学[M],同济大学出版社, 1996.
    [118]王敏,秦肖臻.自动控制原理[M],化学工业出版社,北京, 2003.
    [119]赵文峰.控制系统设计与仿真[M],西安电子科技大学出版社, 2002.
    [120]潘永仁.悬索桥的几何非线性静力非线性分析和试验研究[D].同济大学, 1996.
    [121]丁泉顺,陈艾荣,项海帆.空间杆系结构实用几何非线性分析[J] .力学季刊, Vol22(1): 301~306.
    [122] John F F. Nonlinear static analysis of cabled-stayed bridge structures [J]. Computers & Structures, 1979. 10.
    [123]吕毅刚.高墩大跨桥梁几何非线性及稳定性有限元分析[D].长沙:长沙理工大学, 2004.
    [124]晏致涛.大跨度中承式拱桥风致振动研究[D].重庆大学, 2006.
    [125] R. J. Guyan. Reduction of stiffness and mass matrices [J]. AIAA Journal, 3(2): 380, 1965.
    [126] M. Paz. Dynamic condensation [J]. AIAA Journal, 22(5): 724, 1983.
    [127] M. Paz. Modified dynamic condensation [J]. Journal of Structural Engineering, 115(1): 234, 1989.
    [128] J. C. O’Callahan. A procedure for an improved reduced system (IRS) model [C]. Seventh International Modal Analysis Conference, 1989.
    [129] B. C. Moore. Principal component analysis in linear systems: Controllability, observability and model reduction [J]. IEEE Trans. Automat. Contr. , AC-26: 17-32, 1981.
    [130]刘栋栋.降阶的主动质量阻尼结构控制方法[J].振动与冲击, 1998. 17(2).
    [131]刘佳璐,陈雪波.系统模型降阶平衡法的改进[J].鞍山钢铁学院学报, Vol. 22 No.5, Oct. 1999.
    [132] A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms [J]. IEEE Trans. Automat. Contr. , AC-32(2): 17~32, February 1987.
    [133] J. C. Wu, J. N. Yang and W. E. Schmitendorf. Reduced-order H∞and LQR control forwind-excited tall buildings[J]. Engineering Structure. 1998. Vol. 20, No. 3. pp. 222-236.
    [134] Jian Pang. Modeling and Experimental Modal Analysis of Highway Bridge[D]. PHD Dissertation . Norman, Oklahoma, 1996.
    [135]李杰,李国强.地震工程导论[M].地震工程出版社, 1992: pp98.
    [136] Nielsen E J. , Lai M L, Soong T T and Kelly J. M . Viscoelastic Damper Overview for Seismic and Wind Application[C]. Proceedings of the First World Conference on Structural Control, Los Angeles, California 1994, 3: pp. FP3-42 -FP3-51.
    [137]欧进萍,吴斌.摩擦型和软钢屈服型耗能器的性能与减振效果的试验比较[J].地震工程与工程振动, 1995, 15(3): 73-87.
    [138]汪春生等.铁路钢桥铅挤压阻尼减振器的设计[J].工程力学增刊, 1998.
    [139]宋智斌.粘滞消能减震技术在结构抗震加固中的研究与应用[D]北京:中国建筑科学研究院, 2001.
    [140] Taylor Devices Seismic Dampers and Seismic Protection Products [Z]. Http : //vww. tavlordevices. com/tayd. Htm.
    [141] Nicos MaKris, M. C Constantinous. Fractional-Derivative Maxwell Model for viscous Damper [J]. Journal of Structural Engineering , Vol. 117, No. 9, Sept. 1991.
    [142]叶爱君,范立础.附加阻尼器对超大跨度斜拉桥的减震效果[J].同济大学学报, Vol. 34, No. 7, 2006(7): pp859-863.
    [143]徐赵东,郭迎庆. MATLAB语言在建筑抗震工程中的应用[M].科学出版社, 2004.
    [144]张志勇等.精通MATLAB6. 5版[M].北京:北京航空航天大学出版社, 2003: 360-429.
    [145]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报, 1994, 34(2): 131~136.
    [146]汤昱川,张玉良,张铜生.粘滞阻尼器减震结构的非线性动力分析[J].工程力学, 2004, Vol. 21, No. 1: 67-71.
    [147] S. J. Dyke, B. F. Spencer, M. K. Sain, et al. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smart Material and Structures, Vol. 5, pp. 565-575, 1996.
    [148]吉明,姚绪梁.鲁棒控制理论[M].哈尔滨工程大学出版社, 2002.
    [149] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicatire seminorms and approximation inverses [J]. IEEE Trans. Auto. Contr. 1981, Vol. AC-26: 301~320.
    [150]李一平.磁流变阻尼器的控制器及其应用[D].重庆大学, 2005.
    [151]林嗣廉,孙涛,徐博侯.柔性结构控制中的溢出问题的研究[J].力学进展, 1997, 27(4): 447-456.
    [152] Fumitoshi M, Michinori H, Hideaki S, et al. Model and control of a flexible solar array paddleas a clamped-free rectangular plate [J]. Automatica, 1996, 32(1): 49~58.
    [153]聂云靖,张旭红,张善元.粘滞阻尼器在结构中的位置与参数优化[J].工程力学增刊, 2002: 344-347.
    [154]张琴,楼文娟,陈勇.粘弹性阻尼器位置优化目标函数及其实现方法[J].工业建筑, Vol. 23, 2003(6): 9-13.
    [155] YANG J N, LIN S, KIM J H, et al. Optimal design of passive energy dissipation systems based on H∞and H 2 performances [J]. Earthquake Engineering & Structural Dynamics, 2002, 31: 921-936.
    [156]滕军.结构振动控制系统优化理论与方法[D].哈尔滨:哈尔滨建筑工程学院, 1992.
    [157]郭惠勇,蒋健,张陵.改进遗传算法在MRFD半主动控制系统优化配置中的应用[J].工程力学, 2004, 21(2): 145-150.
    [158]马光文,王黎.遗传算法在桁架结构优化设计中的应用[J].工程力学, 1998, 15(2): 38-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700