用户名: 密码: 验证码:
基于静动力特性的多塔长跨斜拉桥结构体系刚度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:多塔斜拉桥在二十世纪中期就已经出现,但是发展一直较缓慢,制约其发展的一个关键因素就是整体刚度偏弱,为此国内外学者开展了一定的研究。当多塔斜拉桥进入大跨径时,其刚度问题更加突出,本文在前人研究成果的基础上,结合交通运输部科技项目“多塔长大斜拉桥关键技术研究”(项目号:2013315494011),主要针对多塔长跨斜拉桥的刚度相关问题进行系统性的研究。本文的主要工作包括以下几个方面:
     (1)提出了多塔斜拉桥整体刚度指标,定义了多塔斜拉桥竖向刚度代表值,并对其限值进行了讨论,为本文的后续研究提供了判别标准。在广泛收集资料的基础上,对已建及拟建多塔斜拉桥的结构参数进行了统计并结合理论分析提出了多塔斜拉桥的合理塔跨比区间。
     (2)提出了多塔斜拉桥结构变形计算的隔离结构法,基于Matlab语言编制了相应程序,提高了刚度参数优化时主梁活载变形计算的效率。基于多塔斜拉桥不同于常规斜拉桥(双塔或单塔斜拉桥)的受力特点,推导了考虑塔梁刚度的拉索支承刚度系数的计算公式并进行了验证。推导公式时,认为中间塔两侧主梁不能与有辅助墩的边跨主梁一样视为刚性梁,而是具有一定的柔度,只对桥塔提供一定程度的约束,同时考虑了桥塔自身抵抗变形的能力,最后讨论了桥塔刚度、主梁刚度、拉索刚度以及拉索倾角等因素对拉索支承刚度的影响,得出的结论可以用于指导概念设计。
     (3)以琼州海峡大桥方案之一的主跨828m的五塔斜拉桥为工程算例,研究了多塔长跨斜拉桥刚度问题的解决方法。通过参数敏感性分析,对原方案的刚度参数进行了优化,给出了塔梁刚度取值的合理匹配区间,确定了拉索刚度以及塔跨比的合理取值范围。对采用各种加劲索的方案进行了比较分析,给出了基于静力特性优化后的琼州海峡大桥方案并进行了力学特性检算。
     (4)提出了多塔斜拉桥塔梁刚度比的概念,基于拉索支承刚度系数计算式给出了相应的数学表达式。与索的刚度相比,塔的刚度与梁的刚度对多塔斜拉桥整体刚度的影响较大,设计自由度也较大,从刚度的角度出发,可通过塔梁刚度比将多塔斜拉桥划分为柔性塔体系与刚性塔体系。
     (5)提出了一种新型的多塔斜拉桥结构体系一改进的莫兰迪结构体系(AMSS)。解决了柔性塔体系的多塔(四塔及以上)长跨斜拉桥的刚度问题。该体系是在斜拉桥索塔顺桥向两侧间隔一定距离设置塔梁竖向支座,从而同时实现塔梁之间的竖向约束和转动约束,在力学行为上接近塔梁固结,而构造上表现为塔梁分离。通过对其力学性能分析,发现其具有塔梁固结体系提高整体刚度的功能,同时避免塔梁固结处产生较大的弯矩。双支承间距的增大可以提高整体刚度也同时带来了托架根部弯矩增大的问题,通过有限元分析对双支承间距合理取值进行了研究。通过实桥试验数据分析了新型结构体系的合理性及解决柔性塔多塔长跨斜拉桥体系刚度问题的有效性。
     (6)基于动力特性及地震反应分析对琼州海峡大桥方案做了进一步优化。多塔斜拉桥刚度的增大,提高了结构的静力抗变形能力,但是对动力特性的影响不能一概而论。本文分析了提高桥塔刚度和改变塔梁支承体系等措施对琼州海峡大桥方案动力特性的影响,并基于静动力特性总结了多塔斜拉桥刚度合理取值的方法。
     (7)探讨了采用反分析对多塔斜拉桥结构刚度参数进行优化的方法。在刚度参数敏感性分析的基础上,给定一个挠度期望值,反演分析刚度参数,使得参数优化计算更具针对性,避免需要反复调整初始参数的大量有限元试探性分析。参数优化分析时,采用Ansys软件参数化建模技术建立了琼州海峡大桥方案的有限元模型,采用Matlab语言编制了相应的参数优化模型,并通过DOS内部命令,实现两种软件之间的对口连接,使其能够相互调用,降低了编程工作量,提到了工作效率。
ABSTRACT:Cable stayed bridge with multi-tower has already been built in the middle of last century, but it developed slowly. One of the key factors restricting the development of multi-tower cable stayed bridge is its weakness on rigidity, so many researches are focused on enhancing the integral rigidity of multi-tower cable stayed bridge. Then, the integral rigidity problem of long-span cable-stayed bridge with multi-tower is more prominent. On the basis of predecessors' research results, this paper mainly studies on the integral rigidity of long-span cable-stayed bridge with multi-tower systematically, which is funded by science and technology project of Ministry of Transport "The key technology research of large-span multi-tower cable stayed bridge"(project number:2013315494011). In this paper, the main work includes the following several aspects:
     (1) An integral rigidity index of multi-tower cable stayed bridge is proposed. A representative value of vertical rigidity is suggested, and the limiting value is discussed as well. It provides a reference standard for the study. On the basis of collecting data widely, statistical analysis on structure parameter of multi-tower cable stayed bridge is conducted, and a optimized range of tower-span ratio is proposed.
     (2) The isolation structure method is presented in the structural deformation calculation of multi-tower cable-stayed bridges.Based on Matlab software, corresponding program are compiled, and calculation efficiency of deformation of girder under live load is improved when the rigidity parameters need optimizing. According to the difference of loading features between multi-tower cable-stayed bridges and general ones (twin-tower or single-tower cable-stayed bridges), the formulas of cable supporting rigidity coefficient which include tower-beam rigidity are formed and verified. When the formula is derived, the flexibility of girder between middle towers cannot be ignored as the girder in side span. Middle towers are under little constraints transferred by girders. Combining with its resistance to deformation of tower, a parametric study is carried out to analyze the cable support rigidity. Parameters that potentially affect the cable support rigidity are taken into consideration, including tower rigidity, girder rigidity, cable rigidity and angle. Then the conclusion can be used to guide the conceptual design.
     (3) Based on the design scheme of Qiongzhou Strait Bridge, main span is828m of which is cable-stayed bridge with five-tower, the rigidity problem of large span multi-tower cable stayed bridge is researched. By parameters sensitivity analysis, the rigidity parameters are optimized and an appropriate value range of tower and girder rigidity is presented, as well as cable rigidity and tower-span ratio. After comparative analysis of several stiffening cable design, the static performance optimized design scheme of Qiongzhou Strait Bridge is proposed and mechanical properties checked.
     (4) The tower-beam rigidity ratio of multi-tower cable-stayed bridge are presented and its mathematical expressions are given. Compared with the rigidity of the cable, rigidity of the tower and rigidity of beam have more obvious influence impact on the on integral rigidity, and their design degrees of freedom are bigger. According to tower-beam rigidity ratio, multi-tower cable-stayed bridges are divided into flexible-tower system and rigid-tower system.
     (5) A new mechanical structure system of named advanced Morandi structure system (AMSS) is presented, which could solve the problem that integral rigidity of long-span multi-tower flexible-tower system cable-stayed bridge with four or more towers can't be improved by setting stiffening cables. In the AMSS, the vertical bearing is located on a bracket which has a distance from the tower in longitudinal direction in order to meet the requirements of both vertical and rotational constraints between tower and beam. The mechanical behavior of AMSS is approximate to the fixed tower-beam structure system and its performance is that tower and beam are separated. Based on the analysis of its mechanical properties, it can be found that the AMSS has the equivalent function as the fixed tower-beam structure system in improving integral rigidity, and it has the advantage in avoiding large bending moment of the fixed zone between tower and beam. As the bending moment of the end of bracket become larger with the increase of the space between double supporting, the reasonable value of the space between double supporting is studied by the FEM analysis. The rationality of the AMSS and the effectiveness of improving integral rigidity of long-span multi-tower flexible-tower system cable-stayed bridge are verified by the experimental data.
     (6) Based on dynamic and seismic analysis, the design scheme of Qiongzhou Strait Bridge is further optimized. The rigidity increasing leads to the improving of the structure deformation resistance, but the influence of which to the dynamic characteristics is complex and could not be simply perorated. This paper analyzed the influence of increasing tower rigidity and changing tower beam supporting system to dynamic characteristics of Qiongzhou Strait Bridge design scheme, and the method of obtaining a reasonable rigidity value of multi-tower cable stayed bridge is summarized based on static and dynamic characteristics.
     (7) The optimizing methods of rigidity of multi-tower cable-stayed bridge by inverse analysis was discussed in this paper. Based on the parameter sensitivity of rigidity, the optimal computation is more targeted by backward deducing the rigidity parameters with a given expected deflection, which in order to avoid repeatedly adjust initial parameters in tentative analysis of finite element analysis. During the parameter optimizing, the FEA model of Qiongzhou Strait Bridge was built in Ansys, and the optimizing model was in Matlab. Through the DOS command, the both programs are successfully connected to transfer from each other, which reduces the workload and enhances the work efficiency
引文
[1]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996.
    [2]NJ, Gimsing. Cable supported bridges[M]. John whiley&Sons Ltd,1983.
    [3]王应良,高宗余.欧美桥梁设计思想[M].北京:中国铁道出版社,2008.
    [4]Papanikolas. The Rion-antirion multispan cable-stayed bride.[Z]. Elsevier Science Publishing Company,2003.
    [5]Pecker A. Design and Construction of the Rion Antirion Bridge[J]. Geotechnical Special publication.,2004,126(1):216-241.
    [6]李传习,邹桂生.法国米约高架桥-7塔斜拉桥的设计与施工[J].世界桥梁,2005(04):18-20.
    [7]Michel Virlogeux. Claude Servant Millau viaduct,France.[J]. Structural Engineering International,2005(1):4-7.
    [8]Sue Armstrong. The Millau viaduct:A Steel Deck.[J]. Newsletter,2004(4):16-17.
    [9]Martin J P, Buonomo M, Servant C. The Millau viaducr.[J]. Travaux-Paris, (794):61-68.
    [10]杨晓燕,夏天.苏格兰福斯新桥设计[J].世界桥梁,2011(2):5-7,14.
    [11]Andrew A, Colford B R. Forth Road Bridge-maintenance challenges[J]. Advances in Cable-Supported Bridges,2006:57-85.
    [12]Anonymous. Satellites check state of Forth Road Bridge[J]. lee Review,2005,51(7):16.
    [13]Colford B R, Cocksedge C. Forth Road Bridge-first internal inspection, strength evaluation, acoustic monitoring and dehumidification of the main cables[J]. Advances in Cable-Supported Bridges,2006:201-214.
    [14]Colford B, Chiarello M, Hendy C, et al. Bearing replacement and strengthening of Forth Road Bridge approach viaducts, UK[J]. Bridge Maintenance, Safety, Management, Resilience And Sustainability,2012:1282-1287.
    [15]Kitakaze M. How to Bridge Troubled Valley of Death between Clinical Medicine and Basic Science in Cardiology?-The Proposals of "Back-and-forth Methodology" [J]. Journal Of Cardiac Failure,2013,19(10):S109.
    [16]Larsen K R. Dehumidification slows corrosion of Forth Road Bridge cables[J]. Materials Performance,2013,52(4):22-24.
    [17]Walther R. Cable-stayed Bridge[M]. Thomas Telford Ltd.,1988.
    [18]Troistsky. Cable-stayed Bridge [M]. Oxford:BSP Professional Books,1988.
    [19]Anonymous. Golden Ears Bridge, Vancouver[J]. Bauingenieur,2009,84:A27-A28.
    [20]Wahbeh M, Siegenthaler P, Nilsson T, et al. Innovations in fabrication of the self-anchored suspension span of the San Francisco-Oakland Bay Bridge[J]. Bridge Maintenance, Safety, Management And Life-Cycle Optimization,2010:3609-3616.
    [21]王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2003.
    [22]李国豪,项海帆等.中国桥梁[M].上海:同济大学出版社,1993.
    [23]Au F, Jiang R J, Leung C, et al. Development and calibration of finite element models for structural health monitoring of Ting Kau Bridge[J]. Proceedings Of The 3rd International Symposium On Environment Vibrations:Prediction, Monitoring, Mitigation And Evaluation, Isev 2007,2007:559-566.
    [24]Au F, Lou P, Li J, et al. Simulation Of Vibrations Of Ting-Kau Bridge Due To Vehicular Loading[J]. Environmental Vibrations:Prediction, Monitoring, Mitigation And Evaluation, Vols I And Ii,2009:1109-1116.
    [25]Au F, Lou P, Li J, et al. Simulation of vibrations of Ting Kau Bridge due to vehicular loading from measurements[J]. Structural Engineering And Mechanics,2011,40(4):471-488.
    [26]Jiang R J. The Finite Element Models For The Built Ting Kau Bridge[M]//Stafa-Zurich: Trans Tech Publications LTD,2011:794-799.
    [27]Ni Y Q, Spencer B F, Ko J M. Feasibility of active control of cable-stayed bridges:an insight into Ting Kau Bridge[M]//Bellingham:Spie-Int Soc Optical Engineering,2001:387-398.
    [28]Ni Y Q, Zhou H F, Chan K C, et al. Modal flexibility analysis of cable-stayed Ting Kau bridge for damage identification[J]. Computer-Aided Civil And Infrastructure Engineering, 2008,23(3):223-236.
    [29]陈明宪.斜拉桥建造技术[M].北京:人民交通出版社,2003.
    [30]易伦雄.三塔双主跨双线铁路斜拉桥竖向刚度问题的研究[D].中南大学,2011.
    [31]楼庄鸿.多孔斜拉桥[J].公路交通科技,2002,19(2):79-83.
    [32]陈明宪.多塔斜拉桥关键技术研究:第一届全国公路科技创新高层论坛,2002[C].
    [33]程宇鹏.新型索辅梁桥关键设计参数敏感性分析[D].重庆交通大学,2011.
    [34]高宗余.多塔缆索承重桥梁:第二十届全国桥梁学术会议,中国湖北武汉,2012[C].
    [35]高宗余,张强,王应良.组合结构主梁斜拉桥设计进展[J].铁道勘察,2007(S1):50-53.
    [36]葛恒岩.高墩多塔斜拉桥稳定性研究[D].西南交通大学,2011.
    [37]胡建华,廖建宏.多塔斜拉桥关键技术研究[J].中外公路,2002(03):32-36.
    [38]蒋望.具有自加劲板的多塔斜拉桥双曲线索塔研究[D].湖南大学,2012.
    [39]金立新,郭慧乾.多塔斜拉桥发展综述[J].公路,2010(07):24-29.
    [40]经柏林.斜拉桥的现状与展望[J].中国市政工程,2002(01):24-26.
    [41]李鹏程.多塔斜拉桥刚度分析[D].重庆交通大学,2009.
    [42]廖龙辉.大跨度多塔斜拉桥施工控制关键问题研究[D].长沙理工大学,2011.
    [43]刘海燕,陈开利.多塔斜拉桥——越南日新桥的设计[J].世界桥梁,2011(04):1-4.
    [44]刘健.三塔斜拉桥不同位置设置A形索塔的刚度分析[J].山西建筑,2012(09):182-183.
    [45]孟繁增.多塔斜拉桥合龙方法及其影响分析[D].西南交通大学,2012.
    [46]潘路平.三塔拱形塔斜拉桥的静态力学性能研究[D].合肥工业大学市政工程,2009.
    [47]彭臻.高墩多塔斜拉桥抗震研究[D].西南交通大学,2011.
    [48]邵长宇.夷陵长江大桥三塔斜拉桥结构体系及性能研究:第九届全国结构工程学术会议,中国成都,2000[C].
    [49]苏剑南.三塔PC斜拉桥总体构思及力学行为分析[D].华中科技大学,2006.
    [50]唐平建,汪宏,王鹏.下拉索对多塔斜拉桥主梁的影响[J].重庆交通大学学报(自然科学版),2011(06):1275-1277.
    [51]项海帆.世界大桥的未来趋势——2011年伦敦国际桥协会议的启示:第二十届全国桥梁学术会议,中国湖北武汉,2012[C].
    [52]严国敏.再论部分斜拉桥,兼论多塔斜拉桥:中国土木工程学会桥梁及结构工程学会第十三届年会,中国上海,1998[C].
    [53]杨华振,胡剑,程龙.大跨径多塔斜拉桥非线性静力分析[J].交通科技,2011(03):7-10.
    [54]杨怀英.三塔斜拉桥参数敏感性分析及识别研究[D].合肥工业大学,2012.
    [55]叶芳.三塔斜拉桥体系刚度改进措施分析[J].工程与建设,2012(04):490492.
    [56]喻梅.多塔斜拉桥结构特性分析[D].西南交通大学,2003.
    [57]喻梅.浅谈多塔斜拉桥[J].四川建筑,2003(03):54-55.
    [58]张广山,祝江林.多塔斜拉桥设计方案研究[J].建筑,2011(04):56-58.
    [59]张喜刚,王仁贵,林道锦,等.嘉绍大桥多塔斜拉桥创新结构体系设计[J].公路,2013(07):286-289.
    [60]张显杰,杨江国,杨冬云,等.新三条石桥桥型景观及结构设计:第十八届全国桥梁学术会议,中国天津,2008[C].
    [61]张燕飞,高宗余,梅新咏.多塔大跨铁路斜拉桥方案研究[J].桥梁建设,2010(03):55-58.
    [62]郑春,刘晓东.论多塔斜拉桥的刚度[J].公路,2002(06):98-100.
    [63]周军勇,石雪飞,阮欣.多塔斜拉桥汽车荷载总体响应分析[J].重庆交通大学学报(自然科学版),2013(S1):844-847.
    [64]周龙军.三塔双主跨铁路斜拉桥竖向刚度问题的试验研究[D].中南大学,2013.
    [65]Leonhardtf. Bridges-aesthetics and design[M]. Deutsches Verlag sanstalt,1982.
    [66]Bergerman R, Schlaich M. TingKau Bridge,HongKong[J]. Structural engineering international,1996,6(3):152-154.
    [67]Michel Virlogeux. Bridges with multiple cable-stayed spans[J]. Structural Engineering And Mechanics,2001,11(1):61-82.
    [68]朱若常.衡山湘江大桥的两大特点[J].湖南交通科技,1995(04):9-11.
    [69]叶光华.衡山湘江公路大桥顶推施工中的新技术[J].湖南交通科技,2002(02):60-61.
    [70]胡建华.岳阳洞庭湖大桥方案设计[J].湖南交通科技,1998(01):24-29.
    [71]刘建,李传习,刘扬,等.岳阳洞庭湖大桥三塔斜拉桥施工控制[J].中外公路,2005(04):120-124.
    [72]颜东煌,田仲初,陈常松,等.岳阳洞庭湖大桥三塔斜拉桥全桥静动力模型设计[J].长沙交通学院学报,1999(01):51-55.
    [73]李佳升,颜东煌,陈常松,等.湖南岳阳洞庭湖大桥模型试验实施介绍[J].中南公路工程,1999(02):38-40.
    [74]李永乐,廖海黎,强士中.三塔斜拉桥抖振的耦合行为研究[J].工程力学,2004(04):184-188.
    [75]刘沐宇,马克亮.三塔结合梁斜拉桥结合段刚度匹配研究[J].建材世界,2010(04):67-71.
    [76]林玉森,信丽华.桥塔参数变化对多塔斜拉桥整体刚度的影响[J].铁道建筑,2010(03):18-21.
    [77]喻梅,李乔,廖海黎.多塔斜拉桥的刚度配置[J].四川建筑科学研究,2010(04):67-71.
    [78]喻梅,廖海黎,李乔.多塔斜拉桥的桥塔设计构思[J].铁道建筑,2010(09):24-27.
    [79]喻梅,李乔,廖海黎.辅助墩对多塔斜拉桥力学行为的影响[J].世界桥梁,2010(03):36-39.
    [80]喻梅,李乔.结构布置对多塔斜拉桥力学行为的影响[J].桥梁建设,2004(02):1-4.
    [81]杨兴旺,赵雷.大跨度三塔斜拉桥稳定性分析[J].四川建筑,2003(04):38-40.
    [82]方圆,邓育林,李建中.大跨多塔斜拉桥动力特性及抗震性能研究[J].结构工程师,2009(05):72-77.
    [83]彭伟,彭天波,李建中.多塔斜拉桥纵向约束体系研究[J].同济大学学报(自然科学版),2009(08):1003-1009.
    [84]李阿娜,林玉森,贾晓云.论加劲索对四塔斜拉桥结构整体刚度的影响[J].国防交通工程与技术,2009(01):16-20.
    [85]陶能迁,王福敏.提高PC三塔斜拉桥整体刚度研究[J].重庆交通学院学报,2007(02):14-20.
    [86]叶梅新,靳飞.稳定索对三塔斜拉桥动力性能的影响[J].华东交通大学学报,2006(04):13-14.
    [87]奉龙成,李鹏程,刘小明.下拉索多塔斜拉桥结构体系分析研究[J].世界桥梁,2009(03):29-32.
    [88]曹艳梅.列车引起的自由场地及建筑物振动的理论分析和试验研究[D].北京交通大学 结构工程,2006.
    [89]程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析:全国桥梁结构学术大会,中国湖北武汉,1992[C].
    [90]孙训方,方效淑,关来泰等.材料力学[M].北京:高等教育出版社,1994.
    [91]张俊平,车惠民.铁路桥梁横向刚度的初步研究[J].桥梁建设,1996(02):66-70.
    [92]曾庆元.关于铁路桥梁的刚度问题[J].长沙铁道学院学报,1991(03):1-15.
    [93]汪峰.大跨径三塔结合梁斜拉桥几何非线性分析研究[D].武汉理工大学桥梁与隧道工程,2010.
    [94]李学文.三塔斜拉桥静力性能研究[D].长沙交通学院长沙理工大学桥梁与隧道工程,1998.
    [95]张宝胜.三塔斜拉桥静力性能研究[D].长安大学桥梁与隧道工程,2001.
    [96]黄晓航.夷陵长江大桥三塔斜拉桥施工监控[J].桥梁建设,2003(03):22-24.
    [97]孙献国,钟原,安长军.滨州黄河公路大桥设计与施工[J].桥梁建设,2003(06):41-43.
    [98]陆悟深.四塔矮塔斜拉桥静力分析与结构参数研究[D].武汉理工大学桥梁与隧道工程,2008.
    [99]陈艾荣,项海帆,J Rg Schlaich.多跨斜拉桥概念设计:中国土木工程学会桥梁及结构工程学会第十三届年会,中国上海,1998[C].
    [100]姚玲森.桥梁工程[M].北京:人民交通出版社,2008.
    [101]胡建华,廖建宏,向建军.预应力混凝土多塔斜拉桥设计构思[J].国外公路,1999(05):34-39.
    [102]邵旭东,程翔云,李立峰.桥梁设计与计算[M].北京:人民交通出版社,2007.
    [103]杨林.大跨度斜拉桥索塔结构设计与力学性能分析[D].北京交通大学桥梁与隧道,2011.
    [104]R. Walther. Cable Stayed Bridge[M]. American society of civil engineers,1999.
    [105]林元培.斜拉桥[M].北京:人民交通出版社,2001.
    [106]苗家武.超大跨度斜拉桥设计理论研究[D].同济大学,2006.
    [107]周孟波等.斜拉桥手册[M].北京:人民交通出版社,2004.
    [108]柳惠芬,姚玲森,易建国.双塔斜拉桥的实用简化分析[J].上海公路,1997(02):36-38.
    [109]万其柏.斜拉—刚构协作体系桥的静力特性研究[D].大连理工大学,2010.
    [110]夏国平.斜拉—悬索协作体系桥的结构体系研究及其弹性地基梁算法[D].大连理工大学,2010.
    [111]张哲,万其柏.应用弹性地基梁法计算斜拉桥无索区长度[J].大连海事大学学报,2010(02):95-99.
    [112]高小妮.多塔斜拉—自锚式悬索组合体系桥梁结构理论分析与模型试验研究[D].长安大学,2012.
    [113]柳惠芬,姚玲森.斜拉桥非线性实用简化分析[J].同济大学学报(自然科学版),2001(01):118-121.
    [114]刘丰洲.三塔斜拉桥竖向刚度解析分析[J].上海公路,2011(01):56-58.
    [115]刘丰洲,王露剑.三塔协作桥合理成桥状态的确定在ANSYS中的实现[J].上海公路,2013(02):35-39.
    [116]蔡四维.弹性地基梁解法[M].上海:上海科学技术出版社,1962.
    [117]李廉锟.结构力学[M].北京:高等教育出版社,2004.
    [118]龙驭球.结构力学[M].北京:高等教育出版社,2001.
    [119]Ko J M, Ni Y Q, He G J. Seismic response characteristics of multispan cable-stayed bridges with stabilizing cables[M]//Earthquake Engineing Frontis In The New Millennium. LEIDEN: A A BALKEMA PUBLISHS,2001:227-232.
    [120]Lin K, Zou D J, Wei M H. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation[J]. Mathematical Problems In Engineing, 2014(832432).
    [121]Ni Y Q, Wang J Y, Lo L C. Influence of stabilizing cables on seismic response of a multispan cable-stayed bridge[J]. Comput-Aided Civil And Infrastructure Engineing, 2005,20(2):142-153.
    [122]Papanikolas P. The Rion-Antirion multispan cable-stayed bridge[M]//Computational Fluid And Solid Mechanics 2003, Vols 1 And 2, Proceedings. AMSTDAM:ELSEVI SCIENCE BV,2003:548-552.
    [123]Ruiz-Teran A M, Aparicio A C. Structural behaviour and design criteria of under-deck cable-stayed bridges and combined cable-stayed bridges. Part 2:Multispan bridges[J]. Canadian Journal Of Civil Engineing,2008,35(9):951-962.
    [124]陈从春.矮塔斜拉桥设计理论核心问题研究[D].同济大学桥梁与隧道工程,2005.
    [125]勾红叶.大跨度预应力混凝土V形刚构拱组合桥受力行为研究[D].西南交通大学桥梁与隧道工程,2010.
    [126]万淑敏.大跨度多塔斜拉桥动力特性及地震响应分析[D].西南交通大学,2013.
    [127]王爱国.大跨度斜拉桥动力特性及抗震性能分析[D].武汉理工大学,2008.
    [128]李伟.大跨度斜拉桥静动力可靠度分析[D].华南理工大学,2010.
    [129]王龙飞.大跨径三塔结合梁斜拉桥极限承载能力研究[D].武汉理工大学,2012.
    [130]刘金龙.地震作用下多塔斜拉桥失效模式控制研究[D].哈尔滨工业大学,2009.
    [131]Banon H, Irvine H M, Biggs J M. Seismic damage in reinforced concrete frames[J]. Journal of the Structural Division,1981,107(9):1713-1729.
    [132]Qian D, Hansen J S. A time domain substructure synthesis method for viscoelastic structures[J]. Journal of applied mechanics,1995,62(2):407-413.
    [133]Brownjohn J M, Lee J, Cheong B. Dynamic performance of a curved cable-stayed bridge[J]. Engineering structures,1999,21(11):1015-1027.
    [134]Cunha A, Caetano E, Delgado R. Dynamic tests on large cable-stayed bridge[J]. Journal of Bridge Engineering,2001,6(1):54-62.
    [135]Fleming J F, Egeseli E A. Dynamic behaviour of a cable-stayed bridge[J]. Earthquake Engineering\& Structural Dynamics,1980,8(1):1-16.
    [136]Nazmy A S, Abdel-Ghaffar A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges:Applications[J]. Earthquake engineering\& structural dynamics, 1990,19(1):63-76.
    [137]Nazmy A S, Abdel-Ghaffar A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges:Theory[J]. Earthquake engineering\& structural dynamics, 1990,19(1):45-62.
    [138]Song Y, CHEN D. Dynamic Property Analysis of Cable-stayed Bridge[J]. Journal-Xiamen University Natural Science,2006,45(1):59.
    [139]Wilson J C, Gravelle W. Modelling of a cable-stayed bridge for dynamic analysis[J]. Earthquake engineering\& structural dynamics,1991,20(8):707-721.
    [140]龙晓鸿,李黎,唐家祥,等.澳凼第三大桥斜拉桥的动力特性及线性地震反应分析[J].工程力学,2004,21(6):166-171.
    [141]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001(03):350-360.
    [142]王爱国.大跨度斜拉桥动力特性及抗震性能分析[D].武汉理工大学,2008.
    [143]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [144]叶爱君.万箱级集装箱船动力系统研究[D].上海交通大学,2008.
    [145]叶爱君,范立础.大型桥梁工程的抗震设防标准探讨[J].地震工程与工程振动,2006(02):8-12.
    [146]叶爱君,胡世德,范立础.斜拉桥抗震结构体系研究[J].桥梁建设,2002(04):1-4.
    [147]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004(12):38-43.
    [148]叶爱君,胡世德,范立础.大跨度桥梁抗震设计实用方法[J].土木工程学报,2001(01):1-6.
    [149]杨玉民,袁万城,范立础.大跨斜拉桥横向地震反应及其分形特征[J].同济大学学报(自然科学版),2001(01):15-19.
    [150]闫冬,任胜健,何勇.桥梁倒塌模式识别方法:实例分析[J].公路交通科技, 2011(09):77-80.
    [151]闫冬,袁万城.大跨度斜拉桥的抗震概念设计[J].同济大学学报(自然科学版),2004(10):1344-1348.
    [152]中华人民共和国交通运输部.公路桥梁抗震设计细则[M].北京:人民交通出版社,2008.
    [153]Banan M R, Banan M R, Hjelmstad K D. Parameter estimation of structures from static response. Ⅱ:Numerical simulation studies[J]. Journal of Structural Engineering, 1994,120(11):3259-3283.
    [154]Chou I, Voit E O, Others. Recent developments in parameter estimation and structure identification of biochemical and genomic systems[J]. Mathematical biosciences, 2009,219(2):57-83.
    [155]Sanayei M, Imbaro G R, McClain J A, et al. Structural model updating using experimental static measurements[J]. Journal of Structural Engineering,1997,123(6):792-798.
    [156]Sanayei M, Saletnik M J. Parameter estimation of structures from static strain measurements. I:Formulation[J]. Journal of Structural Engineering,1996,122(5):555-562.
    [157]蒋华.基于静力测试数据的桥梁结构损伤识别与评定理论研究[D].西南交通大学桥梁与隧道工程,2005.
    [158]谭冬莲,肖汝诚.基于Levenberg-Marquardt算法的桥梁结构静力参数识别[J].交通运输工程学报,2005,5(3):56-59.
    [159]Jaishi B, Ren W. Structural finite element model updating using ambient vibration test results[J]. Journal of Structural Engineering,2005,131(4):617-628.
    [160]Sanayei M, Imbaro G R, McClain J A, et al. Structural model updating using experimental static measurements[J]. Journal of Structural Engineering,1997,123(6):792-798.
    [161]Teughels A, Maeck J, De Roeck G. Damage assessment by FE model updating using damage functions[J]. Computers\& structures,2002,80(25):1869-1879.
    [162]范东明.非线性最小二乘参数平差的非线性规划算法研究[J].西南交通大学学报,2001(05):476-480.
    [163]胡益.基于新分解拟牛顿方程的一类求解非线性最小二乘问题的算法[D].南京航空航天大学,2006.
    [164]李海奎,王雪峰.基于符号运算和信赖域方法的非线性最小二乘法[J].计算机应用,2004(07):22-24.
    [165]刘忠,吴玲,卢发兴.非线性最小二乘定位问题的全局收敛解法[J].火力与指挥控制,2003(S1):16-19.
    [166]孟繁雪.非线性最小二乘问题的混合算法[D].上海交通大学,2011.
    [167]宁伟.非线性最小二乘测量平差与空间数据误差分析[D].山东科技大学,2005.
    [168]孙风建.基于新拟牛顿方程的非线性最小二乘的一类新算法[D].南京理工大学,2007.
    [169]唐利民.一种新的求解非线性最小二乘问题的牛顿迭代算法[J].长沙交通学院学报,2008(03):18-23.
    [170]唐利民,朱建军.基于Landweber迭代的秩亏非线性最小二乘问题算法研究[J].大地测量与地球动力学,2010(01):95-98.
    [171]田玉刚.非线性最小二乘估计的遗传算法研究[D].武汉大学,2003.
    [172]王海鹏,赵莉,王殿生,等.基于MATLAB的均匀设计实验数据多元非线性最小二乘拟合[J].化学工程与装备,2010(09):29-32.
    [173]王玉花,邢志红,刘新柱.非线性最小二乘问题的一种求解方法[J].佳木斯大学学报(自然科学版),2012(04):590-591.
    [174]吴玲,刘忠,卢发兴.全局收敛高斯-牛顿法解非线性最小二乘定位问题[J].火控雷达技术,2003(01):75-80.
    [175]肖爱玲.非线性最小二乘法的算法(英文)[J].数学理论与应用,2004(02):86-90.
    [176]杨帆,黎宁,刘恩.非线性最小二乘法及BP神经网络在血管外给药动力学模拟中的应用[J].数理医药学杂志,2007(02):200-202.
    [177]杨柳.奇异非线性方程组及非线性最小二乘问题的求解[D].湘潭大学,2003.
    [178]张春晓.解决非线性最小二乘问题的两种方法[J].青海大学学报(自然科学版),2003(05):60-64.
    [179]Koh C G, See L M, Balendra T. Estimation of structural parameters in timedomain:a substructure. [J]. Earthquake Engineering & Structural Dynamics,1991(20):787-801.
    [180]Koh C G, Hong Etal. Substruetural and Progressive Structural Indentifieation Methods.[J]. E&Mj-Engineering And Mining Journal,2003(25):1551-1563.
    [181]Oreta A C, Tanabe T. Loealized Identifieation of Struetures by Kalman Filter[J]. Engineering and Earthquake.,1993,9(4):217-225.
    [182]Orata A C, Tanabet. Element Identification of Member Priperties of Framed Struetures[J]. Journal of structural,1994,120(7):1961-1976.
    [183]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.
    [184]窦勇芝.信赖域优化算法在桥梁结构反分析和优化设计中的应用研究[D].郑州大学岩土工程,2006.
    [185]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].同济大学桥梁隧道与结构工程,1996.
    [186]陈锋.反演理论在系杆拱桥合理成桥状态确定中的应用研究[D].兰州交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700