用户名: 密码: 验证码:
烟草苗期干旱胁迫诱导根系mRNA和miRNA快速响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是我国重要的经济作物,栽培面积和产量均居世界首位,经济效益高,是我国财政收入的重要组成部分。干旱严重影响烟叶产量和品质,是烟草生产主要的非生物胁迫因素之一。
     烟草响应干旱胁迫是一个多水平的复杂调控反应,包括了生理生化水平的调节和基因表达网络的分子适应。干旱胁迫下的基因表达调控网络十分重要,尤其是转录因子可用来提高植物对干旱胁迫的耐受性。通过对模式植物的分子生物学和基因组研究,现已发现一些干旱胁迫响应基因和各种参与调节胁迫诱导基因的转录因子。干旱胁迫增加内源脱落酸(ABA)水平,诱导依赖ABA和不依赖ABA的转录调控网络的表达。对拟南芥的相关研究已初步建立了干旱响应转录调控网络,一些重要的启动子元件,如ABA反应元件(ABREs)和耦合元件(CE),也已通过实验验证,但迄今对烟草抗旱的分子机制尚不清楚。此外,microRNAs (miRNAs)也是重要的基因表达调控因子,其主要原理是通过抑制mRNA的表达实现转录后水平的调控。拟南芥中干旱胁迫响应的转录和转录后调控之间存在复杂的相互作用,有些miRNA(如miR159和miR169等)在干旱胁迫应答反应中发挥了重要作用,但这种作用在烟草中仍未被确定。
     本研究以烟草品种红花大金元为研究材料,经过生理生化指标的检测和筛选,分别对六叶期幼苗进行6h和48h的短期干旱胁迫处理,分析对照和各处理在干旱胁迫下根系mRNA和miRNA的表达动态、鉴定差异表达的miRNA所调控的靶基因并预测干旱胁迫下的基因表达调控网络,旨在揭示烟草苗期在干旱逆境条件下诱导根系mRNA和miRNA的快速响应机理,为阐述烟草苗期耐旱性的分子机制及利用分子标记辅助育种提供理论依据。本研究取得以下结果:
     1.为选择干旱胁迫下烟草根系基因表达分析的最佳时间点,用20%的PEG6000对烟草六叶期的幼苗进行模拟干旱处理,分别于Oh,3h,6h,12h,24h,48h和96h这7个时间点取其根系(5株烟苗根系均匀混合),其中0h的样品为CK,然后测定其超氧化物歧化酶(SOD)活性、丙二醛(MDA)和脯氨酸(Pro)的含量。结果表明,SOD活性、MDA和Pro含量显着增加,6h和48h两个时间点相对于3h和24h两个时间点,其变化更为显著(P<0.05)。结合胁迫后的表型和生理生化指标的结果,本研究干旱胁迫检测的最佳时间点是6h和48h。
     2.选择0h,6h和48h的根组织样品作为测序的试验材料,分别命名为NCK(对照组),N6H和N48H。分别对三组样品提取总RNA,采用高通量测序技术构建了数字表达谱(DGE)的文库。经测序,3个文库平均获得约3.37Mb个reads,3个文库中共有21128个基因表达,注释的烟草基因占43.7%,其中3个文库中基因均表达的有13101个基因,仅有1887个基因差异表达,占烟草根系总表达基因的8.9%。qRT-PCR验证结果和测序结果基本一致。利用k-means聚类算法,依照基因功能分类和基因分组对差异基因进行Gene Ontology (GO)功能显著性富集分析,共分成6个类群(P<0.05),主要包含一些编码脂肪酸代谢、酰基转移酶活性、氧化还原酶活性、乙醇代谢及初始乙醇代谢和转移酶活性等的基因;Pathway分析发现有17条通路可能被影响,主要涉及谷胱甘肽代谢、脂肪酸延长、二苯乙烯类化合物和姜辣素的生物合成、次生代谢物的生物合成和苯丙生物合成等。
     3.根据数据库预测烟草基因组中同源的转录因子,共确定了609个转录因子,DGE的结果表明:所有的转录因子都可以在干旱胁迫下的烟草幼苗根系中检测到。这些根系中的转录因子,有82个差异表达,分属于24个转录因子家族,主要是与抗旱性相关的MYB、NAC和ERF家族,而其他差异表达的转录因子家族(HD-ZIP,NF-YA,NAC, GRAS,TCP)主要参与了发育和分生组织保持,防御/应激信号通路(HSP,WRKY和bZIP),生长素(Aux/IAA)诱导的的激素介导或胁迫介导的信号传导等。53%转录因子在NCK的表达水平最高(G1),而只有10%的转录因子是在N6H的表达水平最高(G2),另外还有37%的转录因子表达高峰在N48H(G3)。此外,我们还确定了一些家族特异性转录因子的表达趋势。C2H2、MYB、WRKY、ERF和Dof家族的转录调节因子分别有3、3、4、3、13和3个基因在NCK中高效表达,GATA、MYB和ERF家族的转录因子在干旱胁迫过程的NCK和N6H时间点分别有1、3和3个基因的表达水平最高;MYB、NAC、MYB相关、NF-YA,HD-ZIP、和ERF家族分别有6、6、2、2、2和2个基因在N6H优先表达。
     4.通过与已知基因和Nicotiana benthamiana烟草的注释信息进行序列同源性比较,我们发现了276个干旱应答候选基因(DRGs),其中,约40%(110/276)的基因是WRKY、 NAC、ERF和bZIP家族的转录因子。同时,我们也分析了这些干旱应答候选基因(DRGs)的功能,发现了其中有46个是差异表达的干旱应答候选基因(DRGs)。在这些基因中,21个(46%)是分属于NAC (6),MYB (4),ERF (10)和bZIP (1)家族的转录因子;其他干旱应答候选基因(DRGs),如GRF6、ABF1、APX2, SIPK和ZPT2,在干旱胁迫时也呈现不同的表达模式。
     5.从干旱处理和对照的根组织样品以及正常发育的叶、茎组织中,分离所有小分子RNA,构建small RNA文库并进行高通量测序,测序经生物信息学分析,共检出122个烟草miRNAs。在全部的miRNAs中,保守的miRNAs比非保守的miRNAs的表达量要高得多,如miR166和miR168家族的的表达丰度占总测序片段的57%和16%。然而,仍有43个前人报道的miRNAs未在这些样品中检测到。相对于对照,干旱胁迫的样品中有5个已知的烟草miRNA家族表达量的相对变化(log2root-ck/root-treat)大于2,表明表达差异显著或极显著。虽然miR159, miR169, miR402和miR408的表达在其它植物受干旱胁迫的差异显著,但在本实验中根系样品处理前后表达并没发生明显的改变。
     6.为了解烟草响应干旱胁迫的miRNA的功能,以前人通过降解组测序得到的已鉴定的烟草miRNA的靶基因为参考,我们的研究仅有27个靶基因GSS序列可以比对到烟草参考基因组中,并与87个转录子相对应。只有两个干旱响应的miRNA家族(miR160和miR395)找到了对应的靶基因。
     7.在干旱和低温应急反应过程中,许多研究人员提出了响应过程中的复杂的调控网络,涉及到miRNA和其调控的靶基因。本研究在前人的基础上,结合DGE、small RNA的测序数据和其调控的靶基因也绘制了一个简易的调控网络。这个网络主要包含两条通路(依赖ABA和不依赖ABA的通路)。在依赖ABA的通路中,NCED参与了对干旱胁迫的快速和应急反应。其级联转录过程,包括了AREB/ABF,MYB,bZIP, NAC和CBF/DREB1,他们参与了在应激反应中的渐进和适应的过程。SnRK2.6蛋白激酶也参与了在ABA中的信号传导。在不依赖ABA通路中,未知蛋白被认为具有渗透传感器和ERF系统的上游元件的功能。此外,响应的miRNAs (miR160、miR162、 miR394miR395,和miR827)也都表明是其表达存在时间的特异性。这个调控网络的绘制和分析将为以后研究烟草应对干旱,低温和重金属等非生物胁迫反应的基因表达调控提供参考。
Tobacco is an important agricultural and economic crop in China, and its cultivation area and yield in China were the highest in the world. Moreover, Tobacco is an important part of Chinese fiscal revenue. Drought seriously impacts on tobacco yield and quality, which is one of main environmental stresses resulting in reduction of yield loss.
     To survive under drought stress in their rooted lifestyle, tobacco has evolved a considerable degree of drought stress response, which is a complex trait regulated at multiple levels including the adjustment of various biochemical and physiological processes and molecular adaption to gene regulatory network. The regulatory networks of gene expression under drought and cold stress are critical, and that particular transcription factors can be employed to enhance drought stress tolerance in plants.Decades of research into the effects of drought on model plant physiology and development have generated a wealth of information by molecular biology and genomics. It has identified some drought responsive genes (DRGs) under drought stress and some transcription factors (TFs) involved in regulation of these DRGs. Drought stress increases endogenous abscisic acid (ABA) levels and induces ABA-dependent and ABA-independent transcriptional regulatory networks. Many of these responses can be mimicked by external application of ABA. Drought-responsive transcriptional networks have been primarily developed from related studies in Arabidopsis, and some important promoter elements were confirmed experimentally, such as ABA-responsive elements (ABREs) and coupling elements (CE). However, the networks that underlie these responses in tobacco have not been extensively characterized. In addition to DRGs and these TFs mentioned above, microRNAs (miRNAs) are short (20-22nt), endogenously expressed, non-translated RNAs that function in posttranscriptional gene regulation. There is a complex interplay between transcriptional and posttranscriptional regulation of drought response in Arabidopsis, for instance, some miRNAs (miR159and miR169) play an important role in drought stress response. Unfortunately, it has not been extensively characterized in tobacco.
     In the study, the roots of a flue-cured tobacco (Nicotiana tabacum L.) cultivar, Honghua Dajinyuan (a drought-tolerant cultivar) were treated in time-course drought stress and then detected by physiological analyses. Only these samples at6h and48h treatment and normal sample were used for analyses of mRNA and miRNA expressing profiling, identification of their target regulated by specially-expressed miRNAs, developing and mapping the transcriptional and posttranscriptional gene regulatory network. We aim to unveil the roles of mRNAs and miRNAs in rapidly responding to drought in tobacco root cell, which will give sight to mRNA and miRNA regulation mechanism under drought stress and help breeder breed excellent drought resistance inbred lines by the marker-assisted selection of DRGs.
     1. To explore the optimal time point under drought stress for gene expression analysis, uniform seedlings of tobacco with six leaves were challenged to drought stress treatments at six time points (3,6,12,24,48, and96h) with20%PEG6000. We measure three physiological indexes, Superoxide dismutase (SOD) activities and proline (PRO) and malondialdehyde (MDA) contents. These results suggest that SOD activities, PRO, and MDA contents all significantly increased at6h and48h relative to3h and24h, respectively, and the optimal time point for drought stress assays are6h and48h. Our experiments using tobacco roots with experiments at two time points and control were named as NCK (control), N6H, and N48H, respectively.
     2. Total RNA was isolated from the frozen root samples and DGE library preparation was then performed in parallel by using the Illumina gene expression sample preparation kit. The sequence reads of all libraries ranged from3.33M (million) to3.39M, and averaged about3.37M. We examined the dynamics of gene expression under drought stress using DGE data, and only1,887out of21,128genes that were differentially expressed among NCK, N6H, and N48H, represented8.9%of the root transcriptome. A sample of22transcripts with significant differences in gene expression was randomly selected for validation via qRT-PCR, which were consistent with that obtained from DGE. We used Gene Ontology annotation to assign genes to functional categories and grouped genes by expression dynamics using the K-Means clustering algorithm. We identified six clusters which contained many genes that encode enzymes for fatty acid metabolism, transferase (transferring acyl groups), oxidoreductase, ethanol metabolism, primary alcohol metabolism and transferase, etc. In addition, biological pathways influenced by drought were evaluated by enrichment analysis of all differentially expressed genes. Significantly enriched metabolic pathways and signal transduction pathways were also identified. A total of17pathways, including contained glutathione metabolism, fatty acid elongation, stilbenoid, diarylheptanoid and gingerol biosynthesis, biosynthesis of secondary metabolites were affected based on the above mentioned six clusters (P<0.05).
     3. A primary objective was to identify genes that encode TFs and resolve the dynamics of accumulation of TFs under drought stress in our DGE data. To test this, we retrieved putative orthologs of tobacco genes based on information from the EnsemblCompara gene trees at solgenomics.net, plantgdb.org, and http://www.ncbi.nlm.nih.gov/. We then queried known plant TFs in the Plant Transcription Factor Database (v2.0, http://planttfdb.cbi.edu.cn/) and identified609tobacco TFs with sequence similarities to known plant TFs. Furthermore, all TFs can be detected in roots of tobacco seedlings responding to drought stress. Of these TFs in root tissue,82were differentially expressed during time-points and belong to24TF families. These TFs associated with functions in drought tolerance (MYB, NAC, and ERF), while others played roles in development and meristem maintenance or identity (HD-ZIP, NF-YA, NAC, GRAS, and TCP), defense/stress signaling pathways (HSP, WRKY, and bZIP), hormone-mediated or stress-mediated signaling by auxin (AUX/IAA). The abundance of most of these TFs (53%) was at the highest levels in NCK (G1), whereas only10%was at the highest levels in N6H (G2). The reminder (37%) indicated peak expression in N48H (G3). We also identified family-specific expression trends. Members of the C2H2(3genes), MYB (3), bHLH (4), WRKY (3), ERF (13) and Dof (3) families of transcriptional regulators were highly expressed in NCK. Several GATA (1), MYB (3) and ERF (3) TFs accumulated to the highest levels during the stress-response phase from NCK to N6H. Transcriptional regulators including MYB (6), NAC (6), MYB-related (2), NF-YA (2), HD-ZIP (2) and ERF (2) were preferentially expressed in N48H.
     4. We identified276candidate DRGs in tobacco with sequence similarity to known genes and Nicotiana benthamiana annotation. Interestingly, about40%(110out of276genes) were TFs including WRKY, NAC, ERF, and bZIP families. In the present study, we also investigated the roles of these candidate DRGs, and found46differentially expressed DRGs under drought stress. Out of the54differentially expressed DRGs,21(46%) were TFs which belonged to NAC (6), MYB (4), ERF (10), and bZIP (1) families. Other DRGs, such as GRF6, ABF1, APX2, SIPK, and ZPT2, have different expression patterns in response to drought stress.
     5. The samples of our small RNA libraries were used based on the result of physiological index measurement as follows:equal quantities (10ug) of total RNA isolated from tobacco roots treated with two time points (6and48h) were mixed together to construct the drought-treated small RNA library (Root-treat), and total RNA prepared from the control roots sample was used to construct the control small RNA library (Root-ck). Here,122tobacco miRNAs were detected in our sequencing datasets. Conserved miRNAs were far more abundant than non-conserved miRNAs in our libraries as reported previously. MiR166and miR168were the most abundant miRNA families which accounted for about57%and16%of the total sequence reads from the known miRNAs datasets, respectively. However,44experimentally identified tobacco miRNA families (33miRNAs) were not detected in our dataset. Comparison of the normalized sequence reads of the miRNAs between the two libraries indicated that five known tobacco miRNA families had relative changes (log2root-ck/root-treat) greater than two and thus might be differentially or extremely differentially expressed. However, miR159, miR169, miR402, and miR408sequence reads displayed no meaningful changes between two libraries even though their expression had been reported to be affected by drought stress treatments in other plants.
     6. MiRNAs regulate gene expression at the posttranscriptional level by repressing mRNA expression, and some miRNA families were experimentally verified to be responsive to salt or drought stress in plants in recent research. To understand the functions of drought-responsive miRNAs in tobacco, we got the complete list of targets of tobacco miRNAs identified by degradome sequencing in a recent study, and only27target_GSS sequences can be mapped to the tobacco reference genome and correspond to87transcripts. Unfortunately, the targets of only two drought-responsive miRNAs (miR160and miR395) were obtained.
     7. With the availability of regulatory networks of gene expression in drought and cold stress responses, an integrated gene regulatory network has been proposed for the molecular mechanisms of the response of tobacco roots to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and subsequent target transcripts as a basis. Two pathways (ABA-dependent and ABA-independent) can shed light into cell mechanisms involved in stress signaling and/or adaptation at transcriptional regulation. In the ABA-dependent pathway, NCED1was involved in rapid and emergency responses to drought stress. Left parts of Figure7show transcription cascades that were involved in slow and adaptive processes in stress responses, such as those involving AREB/ABF, MYB, bZIP, NAC and CBF/DREB1. SnRK2.6protein kinases were also involved in ABA signaling. In the ABA-independent pathway, unknown proteins were thought to function as an osmo-sensor and function upstream of the ERF system. In addition, the responsive miRNAs (miR160, miR162, miR394, miR395, and miR827) also showed a transitory expression model. Right parts of Figure7show proposed regulation cascades after drought in tobacco roots. This network analysis will also serve as a reference for future studies on tobacco responses to various stresses, such as to drought, cold and heavy metals.
引文
· 陈洁.重金属铅胁迫下玉米根系miRNA的鉴定及相关miRNA的表达分析[D].四川农业大学博士学位论文,2010.
    · 刁操铨.作物栽培学各论(南方本)[M].北京:中国农业出版社,1994:386.
    · 董海涛,吴玉良,程志强等.差异显示法克隆水稻抗白叶枯病相关蛋白激酶基因[J].浙江大学学报,1998,24(5):548-552.
    · 冯起平,李云峰,孟雁等.miRNA的研究进展[J].生命科学,2003,15(4):193-198.
    · 付凤玲.玉米耐旱性的遗传及耐早材料创制研究[D],四川农业大学博士论文,2006.
    · 郭庆房,汤章城.NaCl胁迫下小麦突变体和野生型叶片中的一些有机物质积累和基因表达差异[J].植物生理学报,1999,25:263-268.
    · 何晨,谭军,陈薇等.MicroRNA研究进展[J].生物技术通报,2006,1:18-21,25.
    · 胡轶.玉米木质素合成相关基因在干旱胁迫下的差异表达[D],四川农业大学博士论文,2008.
    · 况文军,历史性干旱灾害的思考[J].亚热带水土保持,2010,22(2):30-33.
    · 郎秋蕾.番茄黄瓜花叶病毒互作分子机制研究[D],浙江大学博士学位论文,2007.
    · 林海健.玉米根系低磷胁迫响应分子机理的初步研究[D].四川农业大学博士学位论文,2010.
    · 刘大伟.灰皮支黑豆对大豆胞囊线虫3号生理小种抗性机制研究[D],沈阳农业大学博士论文,2011.
    · 刘冬梅,杨凤玺,余迪求.高表达miR396小分子导致拟南芥花柱头弯曲[J].云南植物研究,2009,31(4):353-356.
    · 龙茹,李玉花,徐启江.动植物miRNA的生物合成、作用机理及其功能[J].生命科学.2007,4(19):127-129.
    · 马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展[J].遗传学报,2003,30(7):693-696.
    · 秦一雨,全志伟,李济宇.miRNA检测方法学的研究进展[J].医学研究生学报,2007,20(11):1198-1200.
    · 秦云飞.日本三角涡虫转录组、再生表达谱及小RNA谱的鉴定与分析郑州大学硕士论文,2012.
    · 荣智媛,张晓海,杨双龙等.抗氧化系统参与循环干旱锻炼提高烟草植株抗旱性的形成[J].植物生理学报,2012,48(7):705-713.
    · 沈亚欧,林海建,张志明等.植物逆境miRNA研究进展[J]遗传,2009,31(3):227-235.
    · 沈亚欧.玉米C型细胞质雄性不育系及保持系microRNA克隆与功能分析[D],四川农业大学博士学位论文,2008.
    · 宋长年.枳和柑橘microRNA及其靶基因的识别、鉴定与表达分析[D],南京农业大学博士论文,2011.
    · 宋锐.基于生物信息学方法预测玉米抗纹枯病相关niRNA及功能分析[D],四川农业大学硕士论,文2009.
    · 孙大业,马力耕.细胞信号转导[M].第2版.北京:科学出版社,1998:350-355.
    · 汪耀富,孙德梅,徐传快等.干旱胁迫对烤烟养分吸收分配及产量品质的影响[J].干旱地区农业研究,2006,24(1):65-69.
    · 王波,冯晓黎,张富春等.植物中microRNA的合成及在发育和抗逆中的作用植物生理学通讯,2006,42(3):581-588.
    · 王丹.棉花叶片衰老相关基因的数字化表达谱分析[D],西北农林科技大学硕士论文,2011.
    · 吴绍华.不同倍性水稻miRNAs及其靶基因的鉴定与表达分析[D],四川农业大学博士论文,2011.
    · 许振华,谢传晓.植物microRNA与逆境响应研究进展[J].遗传,2010,32(10):1018-1030
    · 闫绍鹏.欧美山杨杂种扦插生根的理化与分子机理研究[D],东北林业大学博士论文,2011.
    · 鄢淑琴.采后不同时期的草菇菌柄表达谱差异分析[D],福建农林大学硕士论文,2011.
    · 袁有波,李继新,丁福章等.不同干旱胁迫对烟草叶片保护酶活性的影响[J].中国烟草科学2009,30(5):10-13.
    · 张劲松,谢灿,吴晓雷等.烟草两组分信号系统基因NTHK2.科学通报[J],2000,45(20)2190-2195.
    · 张宇,张勇,杨长成.MicroRNA表达检测技术进展[J].新乡医学院学报,2008,25(6):634-637.
    · 张宇.RNA加尾和引物延伸RT-PCR法实时定量检测胃癌中miRNAs的表达[D],中国医科大学硕士论文,2009.
    · 张志明,宋锐,彭华等.用生物信息学挖掘玉米中的microRNAs及其靶基因[J],作物学报,2010,36(8):1324-1335.
    ■ AC't Hoen P, Ariyurek Y, Thygesen HH, et al.Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms [J]. Nucleic acids research 2008,36(21):e141-e141.
    ■ Addo-Quaye C, Eshoo TW, Bartel DP,et al. Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome [J]. Current biology:CB 2008, 18(10):758-762.
    ■ Alscher RG, Erturk N, Heath L,et al. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].Exp Bot,2002,53(372):1331-1341.
    ■ Anderberg RJ,Walker-Simmons MK. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases[J]. Proc Natl Acad Sci USA,1992, 89(21):10183-10187.
    ■ Audic S, Claverie JM. The significance of digital gene expression profiles [J]. Genome research 1997,7(10):986-995.
    ■ Badawi GH, Yamauchi Y, Shimada E, et al. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco(Nicotiana tabacum) chloroplasts[J]. Plant Sci,2004,166:919-928.
    ■ Barakat A,Wall PK,Diloreto S. Conservation and Divergence of microRNAs in Populus[J]. BMC Genomics,2007:8:481.
    ■ Bartel, DP. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell,2004,116: 281-297.
    ■ Benjamini Y, Yekutieli D.The control of the false discovery rate in multiple testing under dependency [J]. The Annals of Statistics 2001,29(4):1165-1188.
    ■ Benjamini, Y. and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency [J]. The Annals of Statistics.2001,29:1165-1188.
    ■ Bindea G, Mlecnik B, Hackl H,et al. ClueGO:a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J]. Bioinformatics 2009, 25(8):1091-1093.
    ■ Bollman KM, Aukerman MJ, Park MY, et al. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. [J] Development,2003,130(8): 1493-1504.
    ■ Bombarely A, Rosli HG, Vrebalov J. A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research [J]. Molecular Plant-Microbe Interactions 2012,25(12):1523-1530.
    ■ Boualem A, Laporte P, Jovanovic M. MicroRNA166 controls root and nodule development in Medicago truncatula [J]. Plant J 2008,54(5):876-887.
    ■ Braslavsky I,Hebert B,Kartalov E. Sequence information can be obtained from single DNA molecules[J]. Proc Natl Acad Sci USA,2003.100(7):3960-3964.
    ■ Brennecke J, Aravin AA, Stark A. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila[J].Cell,2007,128 (6):1089-1103.
    ■ Brown BD,Venneri MA,Zingale A,et al. Endogenous microRNA
    ■ regulation suppresses transgene expression inhematopoietic lineages and enables stable gene transfer[J].Nat Med.2006,12(5):585-591.
    ■ Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max) [J]. Physiologia plantarum 1991,83(3):463-468.
    ■ Calin G.A., Sevignani C., Dumitru CD,et al. Human microRNA genes are frequently located at fragile sites and genomic resions involved in cancers[J]. Proc Natl Acad Sci USA,2004, 101(9):2999-3004.
    ■ Cao Y F, Song FM, Goodman R M,et al. Molecular characterization of four rice gene encoding ethylene-responsive transcriptional factors and their expression in response to biotic and abiotic stress[J]. Journal of Plant Physiology,2006,163:1167-1178.
    ■ Carthew RW, Sontheimer EJ.Origins and Mechanisms of miRNAs and siRNAs [J]. Cell 2009, 136(4):642-655.
    ■ Cartolano M, Castillo R, Efremova N. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity [J]. Nat Genet 2007, 39(7):901-905.
    ■ Catherine A, Kidnerl, Robert A, et al. The developmental role of microRNA in plants[J]. Curr Opin Plant Biol,2005,8(1):38-44.
    ■ Chaumont F, Moshelion M, Daniels MJ. Regulation of plant aquaporin activity [J]. Biology of the Cell 2005,97(10):749-764.
    ■ Chen BJ, Wang Y, Hu YL, et al. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia[J]. Plant Science,2005,168:493-500
    ■ Chen CF, Ridzon DA,Broomer AJ. Real-time quantification of microRNAs by stem-loop RT-PCR [J].Nucleic Acids Res,2005,33(20):179-180
    ■ Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].Science,2003,1126:1-2.
    ■ Cho E, Hong C. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants [J]. Plant Cell Reports 2006,25(4):349-358.
    ■ Choi H, Hong J, Ha J. ABFs, a family of ABA-responsive element binding factors [J]. J Biol Chem 2000,275(3):1723-1730.
    ■ Clarke J,Wu H C,Jayasinghe. Continuous base identification for single-molecule nanopore DNA sequencing [J].Nat Nanotechnol,2009,4(4):265-270.
    ■ Cokus SJ., Feng S, Zhang X.Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature,2008,452 (7184):215-219
    ■ Combier JP, Frugier F, De BF.MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA 169 in Medicago truncatula[J]. Genes &, 2006,20(22):3084-3088
    ■ Consortium TGO.The Gene Ontology project in 2008 [J]. Nucleic Acids Research 2008, 36(suppl 1):440-444.
    ■ Covarrubias AA, Reyes JL.Posttranscriptional gene regulation of salinity and drought responses by plant microRNAs [J]. Plant, Cell & Environment,2010,33(4):481-489.
    ■ David P, Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and fution[J]. Cell, 2004,116(2):281-297.
    ■ Delauney AJ, Verma DPS.Proline biosynthesis and osmoregulation in plants [J]. The Plant Journal,1993,4(2):215-223.
    ■ Dhindsa RS.Drought Stress, Enzymes of Glutathione Metabolism, Oxidation Injury, and Protein Synthesis in Tortula ruralis [J]. Plant Physiology 1991,95(2):648-651.
    ■ Ding D, Zhang L, Wang H.Differential expression of miRNAs in response to salt stress in maize roots [J]. Ann Bot,2009,103(1):29-38.
    ■ Engels B,Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation [J].Oncogene,2006,25(46):6163-6169.
    ■ Eveland AL, Satoh-Nagasawa N, Goldshmidt A. Digital gene expression signatures for maize development [J]. Plant Physiol,2010,154(3):1024-1039.
    ■ Fedurco M,Romieu A,Williams S, et al.a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies[J]. Nucleic Acids Res,.2006,34(3):e22
    ■ Ferreira PC,Hemerly AS.Villarroel R,et al. The Arabidopsis functional homolog of P34cdc2 protein kinase [J]. Plant Cell,1991,3 (5):531-540.
    ■ Frazier TP, Sun G. Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco [J]. Molecular biotechnology,2011,49(2):159-165.,
    ■ Gardner PP, Daub J, Tate JG, et al. Rfam:updates to the RNA families database [J]. Nucleic acids research 2009,37(suppl 1):136-140.
    ■ Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem,2010,48:909-930
    ■ Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status [J]. Current Opinion in Plant Biology,2001,4(4):301-308.
    ■ Golz JF. Signalling between the shoot apical meristem and developing lateral organs [J]. Plant Mol Biol,2006,60(6):889-903.
    ■ Goodin MM, Zaitlin D, Naidu RA, Lommel SA.Nicotiana benthamiana:Its History and Future as a Model for Plant-Pathogen Interactions [J]. Molecular Plant-Microbe Interactions 2008,21(8):1015-1026.
    ■ Grad Y,Aach J,Hayes G D,et al.Computational and experimental identifieation of C.elegans mieroRNAs.M01.Cell,2003,11(5):1253-1263.
    ■ Gramantieri L, Ferracin M, Fomari F. Cyclin G1 is a target of miR-22a,a microRNA frequently downregulated in human hepatocellular carcinoma, [J] Cancer Res,2007,67(13): 6092-6099.
    ■ Hammond SC, Bernstein E, Beach D. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells [J]. Nature,2000,404(6775):293-296.
    ■ Han HL,Tian X,Li YJ. Microarray-based Analysis of Stress-regulated microRNAs in Arabidopsisthaliana [J].RNA,2008,14:836-843.
    ■ Heinen RB, Ye Q, Chaumont F.Role of aquaporins in leaf physiology [J]. Journal of experimental botany 2009,60(11):2971-2985.
    ■ Hong SW, Jon JH, Kwak JM, et al. Identification of a receptor-likeprotein kinase gene rapidly induced by ab2 scisic acid, dehydration,high salt, and cold treatment in Arabidopsis thaliana [J]. Plant Physiol,1988,113:1203-1212.
    ■ Huang SQ,Peng J, Qiu CX. Heavy metal-regulated new microRNAs from rice [J].Journal of Inorganic Biochemistry,2009,103:282-287
    ■ Hussain SS, Kayani MA, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants [J]. Biotechnology Progress 2011,27(2):297-306.
    ■ Hutvagner G, Zamore PD. RNAi:nature abhors a doubles-trand [J]. Curr Opin Genet Dev, 2002,12(2):225-232.
    ■ Itaya A, Bundschuh R, Archual AJ.Small RNAs in tomato fruit and leaf development. Biochimica et Biophysica Acta (BBA) [J]. Gene Regulatory Mechanisms 2008, 1779(2):99-107.
    ■ Ito Y,Banno H,Moribe T,et al. NPK15, & tobacco protein-serine/threonine kinase with a single hydrophobic region near the amino-terminus [J]. Mo1 Gen Genet,1994,245(1): 1-10.
    ■ Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis [J]. Planta,2009,229(4):1009-1014
    ■ Jaglo-Ottosen KR,Gilmour SJ,Zark DG et al. Arabidopsis CBF1 Overexpression induces COR genes and enhances freezing tolerance [J]. Science,1998,280(3):104-106
    ■ Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annual Review of Plant Biology 2006,57(1):19-53.
    ■ Jover-Gil S, Candela H, Ponce M. Plant microRNAs and development[J]. Int J Dev Bio, 2005,149:733-744.
    ■ Juarez MT, Kui JS, Thomas J,et al.Timmermans MC microRNA-mediated repression of rolled leaf specifies maize leaf polarity [J]. Nature,2004,428:84-88.
    ■ Kanehisa M.The KEGG Database. In:'In Silico' Simulation of Biological Processes [J]. John Wiley & Sons, Ltd,2008:91-103.
    ■ Karakas B, Ozias-Akins P, Stushnoff C. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco [J]. Plant, Cell & Environment 1997, 20(5):609-616.
    ■ Kavi K P B, Hong Z, Miao G H, et al.Overespression of delta pynoline 5 carboxylate syrthetase increases praline production and confers osmotolerance in transgenic plants [J].Plant physiology,1995,108 (4):1387-13941
    ■ Kilili KG, Atanassova N, Vardanyan A, et al. Differential roles of tau class glutathione S-transferases in oxidative stress[J]. Journal of Biological Chemistry,2004, 279(23):24540-24551.
    ■ Kim S, An C S, Hong Y N, et al. Cold-inducible transcription factor, CaCBF, isassociated with a homeodomain Leucine Zipper protein in hot pepper[J]. Mol.Cells,2004,18:300-308
    ■ Knight H, Knight MR:Abiotic stress signalling pathways.specificity and cross-talk [J]. Trends in Plant Science 2001,6(6):262-267.
    ■ Knipfer T, Besse M, Verdeil JL, Fricke W. Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots [J]. Journal of experimental botany,62(12):4115-4126.
    ■ Krichevsky A M,King K S,Donahue C P,et al.A microRNA array reveals extensive regulation of microRNAs during brain development[J]. RNA,2003,9(10):1274-1281
    ■ Kuhlmann M,Horvay K,strathmann A,et al.The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function,both in auxin signaling and pathogenresponse [J]. J Biol Chem.2003,278:8786-8794
    ■ Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858.
    ■ Lagos-Quintana M, Rauhut R, Yalcin A,, et al. Identification of tissue-specific microRNAs from mouse [J].Curr Biol,2002,12(9):735-739.
    ■ Lai E C. MicroRNAs are complementary to 38 UTR sequence motifs that mediate negative posttranscriptional regulation. [J].Nature Genet,2002,30(256):363-364.
    ■ Lai EC, Tomancak P, Williams RW, Rubin M. Computational identification of Drosophila microRNA genes.[J] Genome Biology,2003,4(7):R42.
    ■ Lai EC. MicroRNAs:Runts of the genome assert themselves [J].Curr Biol,2003,13:925-936.
    ■ Lang Q, Jin C, Lai L. Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X [J]. Mol Biol Rep 2011,38(3):1523-1531.
    ■ Leave C,Xie Z,Kassehau KD,et al. Cleavage of Scarecrow-like mRNA targets directedBy aclass of Arabidopsis miRNA[J]. Seience,2002,297:2053-2056.
    ■ Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J].cell,1993,75(306):843-846.
    ■ Lee Y, Ahn C, Han, J, et al. The nuclear Rnase Ⅲ Drosha initiates microRNA processing [J]. Nature,2003,425 (4):415-419.
    ■ Lee Y, Kim M, Han J. MicroRNA genes are transcribed by RNA polymerase Ⅱ [J]. EMBO J,2004,23(20):4051-4060.
    ■ Lelandais BC, Naya L, Sallet E. Genome-Wide Medicago truncatula Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules [J].Plant Cell,2009,21(9):2780-2796
    ■ Lewis BP,Burge CB,Bartel DP. Conserved seed Pairing,often flanked by adenosines, indicates that thousands of human genes are microRNA target [J].Cell.2005,120(1):15-20.
    ■ Li H,Deng Y,Wu T. Misexpression of miR482, miR1512, and miR1515 Increases Soybean Nodulation [J]. Plant Physiology,2010,153(4):1759-1770
    ■ Li P, Ponnala L. Gandotra N, et al. The developmental dynamics of the maize leaf transcriptome [J]. Nat Genet 2010,42(12):1060-1067.
    ■ Li R, Yu C, Li Y. SOAP2:An improved ultrafast tool for short read alignment [J]. Bioinformatics 2009,25(15):1966-1967.
    ■ Li T, Li H, Zhang YX. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica) [J]. Nucleic acids research. 2011,39(7):2821-2833.
    ■ Liang RQ, Li W, Li Y. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe [J].Nucleic Acids Res,2005, 33(2):e17
    ■ Lin X,Feng XH, Watson JC. Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings[J]. Proc Natl Acad Sci USA,1991,88(16):6951-6955.
    ■ Liu Q, Zhang YC, Wang CY. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS [J].Lett,2009, 583(4):723-728.
    ■ Livak KJ, Schmittgen TD.Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method [J]. Methods,2001,25(4):402-408.
    ■ Llave C, Kasschau KD, Rector MA. Endogenous and silencing-associated small RNAs in plants. [J] Plant Cell,2002,14:1605-1619.
    ■ Llave C,Xie Z,Kassehau KD,Carrington JC. Claevage of Scarecrow-like mRNA targets Directed by a class of Arabidopsis miRNA[J].Seienee.2002b,297:2053-2056.
    ■ Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus [J]. Plant J 2008, 55(1):131-151.
    ■ Lu S, Sun YH, Shi R. Novel and Mechanical Stress-Responsive MicroRNAs in Populus trichocarpa That Are Absent from Arabidopsis [J]. The Plant Cell online,2005, 17:2186-2203.
    ■ Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors [J]. Science, 2004,303(2):95-98.
    ■ Ma S, Gong Q, Bohnert HJ. Dissecting salt stress pathways. [J] Journal of Experimental Botany,2006,57(5):1097-1107.
    ■ Ma X, Wang Y, Xie S. Glycinebetaine application ameliorates negative effects of drought stress in tobacco [J]. Russian Journal of Plant Physiology,2007,54(4):472-479.
    ■ Mallory AC, Bartel DP, Bartel B.MicroRNA-Directed Regulation of Arabidopsis AUXIN RESPONSE FACTOR17 Is Essential for Proper Development and Modulates Expression of Early Auxin Response Genes [J]. The Plant Cell Online,2005,17(5):1360-1375.
    ■ Mardis ER.The impact of next-generation sequencing technology on genetics [J]. Trends in Genetics,2008,24(3):133-141.
    ■ Margulies M, Egholm M, Altman WE. Genome sequencing in microfabricated high-density picolitre reactors, [J]Nature,2005,437 (7057):376-380.
    ■ Maurel C,Reizer J,Schroeder J I,et al.The vacuolar membrane protein y-TIP creates waterSpecific channels in Xenopusoocytes [J].EMBO J,1993,12:2241-2247.
    ■ Maurel C.Aquaporins and water permeability of plant membranes [J].Annu Rev Plant Biol,1997,48:399-429.
    ■ May MJ, Vernoux T, Leaver C. Glutathione homeostasis in plants:implications for environmental sensing and plant development [J]. Journal of Experimental Botany 1998, 49(321):649-667.
    ■ Mica E, Gianfranceschi L, Pe ME. Characterization of five microRNA families in maize[J]. Journal of Experimental Botany,2006,57(11):2601-2612.
    ■ Millar AA,Waterhouse PM. Plant and animal microRNAs:similarities and differences[J]. Funct Integr Genomics,2005,5:129-135.
    ■ Mirallda KC.Huynh T,Tay Y,el al. A Pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexesl [J].Cell.2006,126(6):1203-1217.
    ■ Morrissy AS, Morin RD, Delaney A. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome research,2009,19(10):1825-1835.
    ■ Moschos SA, W illiams AE, Perry MM. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in theanti.inflammatory action of glucocorticoids [J]. BMC Genomics,2007,8(1):240.
    ■ Mourelatos Z, Dostie J, Paushkin S, et al. A novel class of rebonucleoproteins containing numerous microRNAs[J]. Genes Dev,2002,16(6):720-728.
    ■ Mustilli A-C, Merlot S, Vavasseur A, et al.Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production [J]. The Plant Cell Online,2002,14(12):3089-3099.
    ■ Narusaka Y, Nakashima K, Shinwari ZK. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J 2003,34(2):137-148.
    ■ NDong C, Danyluk J, Wilson K E,et al. Cold-Regulated cereal chloroplast late embryogenesis abundant-like proteins, molecular characterization and functional analyses. [J].Plant Physiology,2002,129:1368-1381.
    ■ Nogueira FT, Chitwood DH, Madi S. Regulation of Small RNA accumulation in the Maize Shoot Apex[J]. PLoS Genetics,5(1):e1000320.
    ■ Olsen A N,Ernst H A, Lo Leggio L,et al. NAC transcription factors:structurally distinct, functionally diverse[J]. Trends Plant Sci,2005,10:79-87.
    ■ Onishi M,Tachi H,Kojima T, et al. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean(Glycine max [L.] Merr.) [J]. Plant Physiol Biochem,2006,44(10):574-580.
    ■ Park M Y, Wu G, Gonzalez-sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis [J]. Proc Natl Acad Sci USA,2005,102(10):3691-3696.
    ■ Park W, Li J J, Song R T, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana [J]. Curr Biol,2002,12(17): 1484-1495.
    ■ Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J].Nature,2000,408 (6808):8687-8688.
    ■ Pay A, Jonak C,Bogre L, et al. The MsK family of alfalfa protein kinase genes encodes homologues of shaggy/glycogen synthase kinase-3 and shows differential expression patterns in plant organs and development [J]. Plant Jouranl,1993,3(6):847-856.
    ■ Perl A,Perl-Treves R,Galili S,et al. Enhanced oxidative-stress defense in transgenic potato Expressing tomato Cu/Zn superoxide dismutase [J]. Theor Appl Genet,1993,85:568-576
    ■ Pignocchi C, Fletcher JM, Wilkinson JE et al.The function of ascorbate oxidase in tobacco [J]. Plant physiology,2003,132(3):1631-1641.
    ■ polymerase molecules in zero-mode waveguide nanostructures[J]. Proc Natl Acad Sci USA, 2008.105(4):1176-1181.
    ■ Preston GM,Carroll TP,Gugg WB, et al.Appearance of Water Channels in XenopusOocytes ExPressing Red Cell CHIP28 Protein [J].Science,1992,256:385-387
    ■ Qian WH, Shan XL, Zhu YF. Ranking regional drought events in China for 1960-2009 [J]. Adv Atmos Sci,2011,28 (2):310-321.
    ■ Rajagopalan R,Vaueheret H,Trejo J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabdopsis thaliana [J].Genes Dev.2006,20:3407-3425.
    ■ Ramagopal S. Salinity stress induced tissue specific in barley seedling [J].Plant Physiol, 1987,84(2):32.
    ■ Reddy A R, Chaitanya K V, Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants [J]. J. Plant Physiol,2004,161(11):1189-1201.
    ■ Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures [J]. Bioinformatic,s 2003,19(3):368-375.
    ■ Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants [J].Genes Dev,2002, 16(13):1616-1626.
    ■ Reinhart BJ, Slack FJ, Basson M, et al. The 21-mucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403:901-906.
    ■ Reyes JL, Chua NH.ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination [J]. Plant J,2007,49(4):592-606.
    ■ Riechmann JL, Heard J, Martin G et al. Arabidopsis Transcription Factors:Genome-Wide Comparative Analysis Among Eukaryotes [J]. Science,2000,290(5499):2105-2110.
    ■ Rivers RL.Dean RM,Chandy G, et al. Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes [J]. Biol Chem,1997,272:16256-16261.
    ■ Rizhsky L, Liang H, Mittler R.The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco [J]. Plant Physiology,2002,130(3):1143-1151.
    ■ Sandal NW,Marcker KA.Soybean nodulin 26 is homologous to the major intrinsic protein of bovine lens fiber membrane [J].Nucleic Acids Res,1988,16:9374-9353
    ■ Schwarz D S, Hulvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. [J].Cell,2003,115:209.
    ■ Sempere LF, Freemantle S,Pitha Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and human neuronal differentiation, [J]Genome Biol,2004,5(3):R13
    ■ Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. [J].Science,1996,274:1900-1902
    ■ Shen Y, Jiang Z, Yao X. Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation [J]. PloS one 2012,7(3):e32237.
    ■ Shi R, and Chiang VL. Facile means for quantifying microRNA expression by real-timePCR [J]. Biotechniques,2005,39 (4):519-525
    ■ Shimizu H, Sato K, Berberich T,et al. LIP19,a basic region leucine zipper protein,is a Fos-like molexular switch in the cold signaling of rice plants[J]. Plant Cell Physiology,2005,46:1623-1634.
    ■ Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology,2003, 6(5):410-417.
    ■ Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. J Exp Bot 2007,58(2):221-227.
    ■ Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways [J]. Current Opinion in Plant Biology 2000,3(3):217-223.
    ■ Singh KB, Foley RC, Onate-Sanchez L.Transcription factors in plant defense and stress responses [J]. Current Opinion in Plant Biology 2002,5(5):430-436.
    ■ Singh, Narendra K.,Bracker,Charles A.et al. Characterization of Osmotin:A Thaumatin-Like Protein Associated with Osmotic Adaptation in Plant Cells [J].Plant Physiol.1987,85(2):529-536.
    ■ Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc. Natl. Acad. Sci. USA 1997,94:1035-1040
    ■ Storey JD, Tibshirani R. Statistical significance for genomewide studies [J]. Proc Natl Acad Sci USA 2003,100(16):9440-9445.
    ■ Sunkar R,Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis,[J] Plant Cell,2004,16(8):2001-2019
    ■ Sunkar R,Zhou X,Zheng Y. Identification of novel and candidate miRNAs in rice by high throughput sequencing [J].BMC Plant Biols,2008,8:25
    ■ Tang G, Reinhart B J, Bartel D P, et al.A biochhemical framework for RNA silencing in plants[J]. Genes &Development,2003,17:49-63.
    ■ Tang S, Wang Y, Li Z. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum) [J]. BMC Plant Biology 2012,12(1):28.
    ■ Tatusov RL, Fedorova ND, Jackson JD et al. The COG database:an updated version includes eukaryotes [J]. BMC bioinformatics,2003,4:41.
    ■ Thomson J M,Parker J,Perou C M,et al. A custom microarray platform for analysis of microRNA gene expression[J]. Nat Methods,2004,1(1):47-53
    ■ Turcatti G,Romieu A,Fedurco M. A new class of cleavable fluorescent nucleotides:synthesis and optimization as reversible terminators for DNA sequencing by synthesis[J]. Nucleic Acids Res,2008.36(4):e25
    ■ Uno Y, Furihata T, Abe H.Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci USA,2000,97(21):11632-11637.
    ■ Vandenabeele S.Vanderauwera S.Vuylsteke M,etal. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana [J].Plant J,2004,39:45-58.
    ■ Varkonyi-Gasic E, Wu R, Wood M.Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs [J]. Plant Methods,2007,3(1):12.
    ■ Vasudevan S,Tong Y,Steitz JA. Switching from repression to activation:microRNAs can upregulate translation[J]. Seienee.2007,318:1931-1934.
    ■ Vilella AJ, Severin J.Ureta-Vidal A. EnsemblCompara GeneTrees:Complete, duplication-aware phylogenetic trees in vertebrates [J]. Genome Res 2009,19(2):327-335.
    ■ Voinnet O. Origin, biogenesis, and activity of plant microRNAs [J]. Cell,2009, 136(4):669-687.
    ■ Walker JC,Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoprotein of Brassica [J]. Nature,1990,345:743-746.
    ■ Wang H, Nussbaum-Wagler T, Li B. The origin of the naked grains of maize [J]. Nature 2005,436(7051):714-719.
    ■ Wang JF, Zhou H, Chen YQ. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res,2004,32(5):1688-1695.
    ■ Wang JW, Wang LJ, Mao YB. Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis [J]. The Plant Cell Online 2005,17(8):2204-2216.
    ■ Wang L, Feng Z, Wang X. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics 2010,26(1):136-138.
    ■ Wang M, Li S G, Luo Y P. The methods in Identifying and Predicting novel MicroRNAs [J]. Chinese Journal of Cell Biology,2007,29:503-507.
    ■ Wang X,Zhang J,Li F,et al.MicroRNA identification:based on sequence and structure alignment.Bioinformatics,2005,21 (8):3610-3614
    ■ Weinholds E,Kloosterman WP,Miska,E. MicroRNA expression in zebrafish embryonic development [J].Science,2005,309(5732):310-311.
    ■ Wiliekens H,Charmnongl S,Davcy M et al. Catalase is sink for H2O2 and is indispensable for stress defense in C3 Plants [J].EMBO J,1997,16:4806-4816.
    ■ Wu X,Shiroto Y,Kishitanis S,et al. Enhanced heat and drought tolerance in transgenic rice seedlings over expressing Os-WRKY11 under the control of HSP101 promoter [J].Plant CellRep,2009,28:21-30.
    ■ Xu X, Pan S, Cheng S,et al.Genome sequence and analysis of the tuber crop potato [J]. Nature 2011,475(7355):189-195.
    ■ Yamaguchi K,Takahashi Y, Berberich T, et al. A protective role for the polyamine spermine against drought stress in Arabidopsis [J] Biochemical and Biophysical Research Communications,2007,352:486-490
    ■ Yoshida R, Hobo T, Ichimura K. ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis [J]. Plant and Cell Physiology 2002,43(12): 1473-1483.
    ■ Zeng Y,Cullen BR. Sequence requirements for micro RNA processing and function in human cells[J].RNA (New York),2003,9(1):112-123
    ■ Zhang BH, Pan XP, Wang QL. Identification and characterization of new plant microRNAs using EST analysis[J]. Cell Research,2005,15(5):336-360.
    ■ Zhang BH,Pan XP,Cannon CH. Conservation and divergence of Plant microRNA.genes [J].Plant J,2006,46:243-259.
    ■ Zhang C,Zhao H,Liu Y, et al. Isolation and characterization of a novel glycogen synthase kinase gene,GmGSK, in Glycine max L. that enhances abiotic stress tolerance in Saccbaromyces cerevisiae [J]. Biotechnology Letters,2010,32(6):861-866.
    ■ Zhang HH,Wang XJ,Li GX. Detection of let27a microRNAby real-time PCR in gastric carcinoma [J]. World Gastroenterol,2007,13 (20):2883-2888
    ■ Zhang J, Kirkham MB. Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species [J]. Plant and Cell Physiology 1994, 35(5):785-791.
    ■ Zhang L., Chia JM., Kumari S. A genome-wide characterization of microRNA genes in maize[J]. PLoS Genet,2009,5(11) e1000716
    ■ Zhang Q, He XJ, Pan X Y. Real-time quantification of microRNAs by RNA-tailing and primer-extension RT-PCR [J]. Journal of Peking University,2007,39(1):87-91.
    ■ Zhang SZ.,Yang BP.,Feng CL.et al. Genetic Transformation of Tobacco with the Trehalose Synthase Gene from Grifola frondosa Fr.Enhances the Resistance to Drought and Salt in Tobacco [J].Journal of Integrative Plant Biology,2005,47:579-587.
    ■ Zhang ZX, Wei LY, Zou XL. Submergence-responsive microRNAs are potentially in-volved in the regulation of morphological and metabolic adaptations in maize root cells [J].Ann Bot, 2008,102(4):509-519.
    ■ Zhao B, Liang R, Ge L.Identification of drought-induced microRNAs in rice. [J] Biochem Biophys Res Commun,2007,354(2):585-590.
    ■ Zhao CZ,Xia H,Frazier TP.Deep sequencing identifies novel and conserved microRNAs in Peanuts(Arachis hypogaegaea L) [J].BMC Plant Biol.2010,10:3.
    ■ Zhou X, Wang G, Sutoh K.Identification of cold-inducible microRNAs in plants by transcriptome analysis [J]. Biochim Biophys Acta 2008,1779(11):780-788.
    ■ Zhou XF, Wang GD,Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana [J]. Mol Syst Biol,2007,3(103):1-10
    ■ Zhu JK.Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol 2002, 53:247-273.
    ■ Zou M,Guan Y,Ren H,et al. A bZIP transcription factor,Os-ABI5,is involved in rice fertility and st ress tolerance [J].Plant Molecular Biolog,2008,66:675-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700