用户名: 密码: 验证码:
菌根真菌和生物有机肥结合对棉花土传黄萎病防控作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花土传黄萎病是棉花连作障碍的主要病害之一,是一种典型的土传病害,其病原菌为大丽轮枝菌(Verticillium dahliae Kleb).传统的化学防控通常会带来环境问题而田间防控措施如轮作和采用抗病品种等也存在许多限制性因素,生物防控日渐成为克服土传植物病害的重要途径。已有的研究表明菌根真菌或死谷芽孢杆菌菌株(Bacillus vallismortis,HJ-5)单独施用对防控棉花土传黄萎病有效果,但二者共同接种对防控棉花土传黄萎病的防控效果和协同作用机制尚未见报道。本文首先通过盆栽试验筛选了适于双接种试验的菌根菌菌株和菌株HJ-5的菌剂接种量。通过三次独立的温室盆栽试验研究了结合施用地表球囊霉(Glomus versiforme, Gv)和死谷芽孢杆菌强化的生物有机肥对棉花土传黄萎病的防病效果。采用绿色荧光蛋白(Green fluorescent protein, GFP)标记技术构建了菌株HJ-5的GFP标记菌株(GHJ-5),研究了菌株GHJ-5在植株根表和根际的定殖行为。在温室条件下利用分根试验研究了菌株HJ-5和Gv单独接种和混合接种对棉花根系分泌物及抑病效果的影响。另外,还通过一系列的实验室和温室试验了研究病原菌和拮抗菌之间的互作关系。主要结果如下。
     1.筛选菌根菌和菌株HJ-5接种量的试验结果表明,双接种处理的最适菌根菌菌剂为菌株Gv,菌株HJ-5的最适用量为107CFU·g-1.菌株Gv和HJ-5双接种处理的土传黄萎病发病率最低,发病指数下降了26.71%,植株生物量显著增加。
     2.三次独立的盆栽试验一致表明,育苗时先接种菌根真菌菌株Gv,移栽时再在连作土壤中施用死谷芽孢杆菌发酵的生物有机肥,防控棉花土传黄萎病的效果最好,发病指数平均降低65%,植株地上部高度,叶面积,地上,下部干重量三次平均分别增加75%,44%,216%,和71%。植株地上部和地下部N和P含量显著增加。对照相比,植株地上部和地下部N含量分别增加83%和65%;地上部和地下部P含量分别增加49%和45%。根际土壤Verticillium dahliae数量显著降低,下降幅度达83%。值得注意的是,菌株Gv在植物根的定殖没有受施用HJ-5生物有机肥的影响。
     3.实验室分析表明,菌株HJ-5能产生脂肽类物质、吲哚乙酸(IAA)、铁载体、氰化氢(HCN)、氨气,但不产脱氨酶(ACC),不具有解磷能力。GFP标记菌株GHJ-5能够定殖在土传黄萎病病原菌的菌丝上并使其变形和裂解,表明菌株HJ-5为土传黄萎病的拮抗菌。
     4.双接种菌株Gv和GHJ-5的盆栽试验结果表明,与单接种菌株GHJ-5或Gv相比,棉花植株的生物量、根系密度、植株磷含量、棉花植株根内和根际的菌株GHJ-5的数量都有显著增加,说明菌株Gv与GHJ-5双接种能够促进棉花的生长。
     5.分根试验表明,双接种菌株Gv和HJ-5处理棉花土传黄萎病发病指数比对照下降了63.3%。棉花根系分泌物中发现4种酚酸,所有酚酸在低浓度时促进大丽轮枝菌的生长和孢子的萌发,浓度升高到一定程度,抑制病原菌孢子的生长。接种菌株Gv和HJ-5显著地减低了根系分泌物中酚酸类物质的浓度。接种V. dahliae、菌株Gv或HJ-5均系统性地改变了根系分泌物的组成。
     6.对盆栽试验植株样品的分析表明,双接种菌株Gv和HJ-5显著提高了植株防卫酶如内过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、几丁质酶等酶的活性,增加了叶片水杨酸和叶绿素含量、降低了植株茎基部胼胝质含量,减轻棉花土传黄萎病发病症状。
     综上所述,本文证实了菌株Gv和HJ-5双接种处理具有协同促进植物生长和抑制植物病原菌生长的作用。菌株Gv能够帮助植物吸收土壤中的养分元素,菌株HJ-5具有产生拮抗物质的能力,二者在土壤和植株上的成功定殖是防控棉花土传黄萎病的关键。接种菌株HJ-5和Gv对棉花根系分泌物的改变作用与植物系统抗性有关,这与接种菌株HJ-5和Gv之后植物防御性酶活性等特征的变化是一致的。本文的研究结果有助于研发新型棉花土传黄萎病防控技术。今后应进一步研究生物有机肥中功能菌在修复土壤障碍因子中的分子生物学机制。
Verticillium wilt of cotton caused by fungal pathogen Verticillium dahliae Kleb is a severe disease that limits the development of the cotton industry in the world. While chemical control is challenged by environmental problems and field control practices such as crop rotation and disease-resistant cultivar adoption exists many limting factores, biological control becomes increasingly an important way in control of soilborne plant diseases. Previous reports have shown that arbarscular mycorrhizal fungi (AMF) and Bacillus vallismortis HJ-5have biological control effects against Verticillium wilt of cotton. However, little has been known the effect of dual inoculation of soil with AMF and the bacterium and their synergetic mechanisms. Greenhouse pot experiments were firstly conducted to study several AMF and the inoculation doses of HJ-5for dual inoculation. Three independent greenhouse pot experiments were conducted to study the effects of the combined application of Glomus versiforme (Gv) propagules and HJ-5fortified bio-organic fertilizer on control of Verticillium wilt of cotton. Green fluorescent protein (GFP) labeled strain (GHJ-5) of strain HJ-5was constructed by using green GFP labeling techniques and the ability of GHJ-5to colonize roots and rhizosphere soil of cotton was also studied. To identify the effects of HJ-5and Gv alone or both on root exudates during the incidence of the wilt disease, a split-root experiment was conducted in greenhouse. Additionally, a series of laboratory experiments were performed on observation of the interaction between the plant pathogen and the biocontrol agents. Results were listed as follows.
     (1) The primary screening experiments for selection of the best AMF strain and dosage of HJ-5showed that Gv was the suitable AMF strain and the proper innoclation dose of HJ-5was107CFU·g-1. The dual inoculation treatment with Gv and HJ-5had the lowest disease incidence of Verticillium wilt, which was reduced by26.71%as compared with other treatments, and the highest increase of plant biomass.
     (2) Inoculation of nursery soil with propagula of Gv and application of the HJ-5enhanced bio-organic fertilizer in the diseased pot soil achieved agreeable high effecenies in suppressing Verticillium wilt by three independent pot experiments. Combined treatment decreased the disease index of Verticillium wilt by65%and increased plant height, leaf area, shoot and root dry weigh by75%,44%,216%, and71%respectively, on the average of three trials as compared with the non-inoculation control. Dual inoculation also significantly increased N in shoot and root and P in shoot and root by83%and65%,49%and45%on the average, respectively, while decreased the number of phytopathogenic Verticillium dahliae in rhizosphere soil of cotton by83%on the average, as compared with the non-inoculation control. Interestingly, the colonization of cotton roots by Gv was not infected by inoculation with HJ-5.
     (3) Measurement from laboratory tests showed that the HJ-5was able to produce lipopeptide substances, growth-promoting substances indole acetic acid (IAA), siderophore, hydrogen cyanide (HCN) and ammonia, but not produce deaminase (ACC) and was unable to dissolve P in medium. Colonization, deformation and dissociation of hypha of pathogen V. dahliae Kleb by the green fluorescent protein labelled HJ-5(GHJ-5) was also obsverved, suggesting that HJ-5was an effective antagonist against the pathogen of Verticillium wilt of cotton.
     (4) Dual inoculation of soil with GHJ-5and Gv in the greenhouse experiment showed that the cotton plant biomass, root density, plant phosphorus content significantly as well as the number of colonization of the rhizosphere of GHJ-5increased as compared with single inoculation with GHJ-5or Gv, suggesting that synergistic effect existed in promotion of the growth of cotton and suppression of Verticillium wilt of cotton.
     (5) In root-splicing experiment, the co-inoculation with HJ-5and Gv reduced disease index by63.3%as compared with the control. Four phenolic acids were found in the cotton root exudates, and all the phenolic acids at low concentrations stimulated germination of V. dahliae spores, while higher concentrations were inhibitory. The phenolic acid concentrations in the root exudates decreased significantly with the application of HJ-5and Gv. The the exudation pattern of cotton roots by HJ-5, Gv and V. dahliae was systemically altered.
     (6) In the pot experiment, inoculation of Gv and HJ-5significantly increased the activities of plant defence enzymes such as polyphenoloxidase (PPO), phenylalanine ammonialyase (PAL) and chitinase, increased salicylic acid chlorophyll in plant leaves, and decreased callose in crown of cotton, and consequently relieved the symptoms of Verticillium wilt of cotton.
     In conclusion, the present study confirmed that co-inoculation of soil with AMF and rhizosphere bacteria had synergetic promotion of plant growth and resistance to phytopathogens. Abilities of Gv to facilitate plant uptake of nutrients and abilities of HJ-5to produce beneficial secondary metabolics against V. dahliae Kleb as well as successful colonization of soil and plant roots were essential to control Verticillium wilt of cotton. The alteration of the exudation pattern of cotton roots by HJ-5and Gv was related to plant systemic resistance to the phatopathogen. This was also supported by the enhanced activities of plant defence enzymes after inoculation of Gv and HJ-5. Results in this study would be useful in the developping new methods to better control cotton wilt disease. Further researches should be given to the molecular microbilogical aspects of the functions performed by bio-organic fertilizers in remediation of continuously cropping obstacles and in the promotion of plant growth and health exerted by soil functional microbes.
引文
Abdel-Fattah GM, El-Haddad SA, Hafez EE, and Rashad YM. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol Res,2011,166(4):268-281
    Abo-Ghalia, H.H., Effect of Arbuscular Mycorrhizal Fungus Glomus mosseae and Bacillus subtilis on the Infection of Tomato Roots by Fusarium oxysporum. Egyptian Journal of Microbiology,2007, 42:29-49
    Agely AA, and Sylvia DM. Compatible host/mycorrhizal fungus combinations for micropropagated sea oats:Ⅱ. Field evaluation. Mycorrhiza,2008,18(5):257-261
    Ahmad F, Ahmad I, Khan MS. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res,2008,163:173-181
    Akkopru A, Demr S. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum F. s p. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology, 2005,153 (9):544-550
    Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol,2001,91: 551-561
    Alguacil MM, Roldan A, Salinas-Garcia JR, and Querejeta JI. No tillage affects the phosphorus status, isotopic composition and crop yield of Phaseolus vulgaris in a rain-fed farming system. J Sci Food Agric,2011,91(2):268-272
    Amico ED, Cavalca L, Andreoni V. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol,2005,52:153-162
    Artursson V, Finlay RD, Jansson JK. Combined bromideoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the actives oil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology, 2005,7(12):1952-1966
    Artursson V, Jansson JK. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Applied and Environmental Microbiology.2003,69 (10):6208-6215
    Asghar HN, et al. Screening rhizobacteria for improving the growth, yield and soil content of canola (Brassica napus L.). Aust. J. Agric. Res,2004,55:187-194
    Atkinson D, Berta G, Hooker JE. Impact of Arbuscular Mycorrhizal on Sustainable Agriculture and Natural Ecosystems. Switzerland, Basel:Birkhauser Verlag,1994,892100
    Attia M, Awad NM. Assessment the impact of certain growth promoting rhizobacteria strains on symbiotic effectiveness of arbuscular mycorrhizal fungi. Egyptian Journal of Microbiology,2003, 38(1):75-88
    Ausher R, Katan J, and Ovadia S. An improved selective medium for the isolation of Verticillium dahliae. Phytoparasitica,1975,3:133-137
    Azcon-Aguilar C and Barea JM. Saprophytic growth of arbuscular mycorrhizal fungi. In:Hock B, Varma A eds. Mycorrhizal Structure, Function. Molecular Biology and Biotechnology, Heidelberg: Springer Verlag,1995,391-407
    Azcon-Aguilar C, Diaz-Rodriguez RM, Barea, JM. Effect of soil microorganisms on spore germination of the vesicular arbuscular mycorrhizal fungus (Glomus mosseae). Trans Br Mycol Soc,1986,86: 337-340
    Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World Journal of Microbiology and Biotechnology,24:1133-1137
    Barea J M, PozoM J, Azcon R, et al. Microbial co2 operati on in the rhizos phere. Journal of ExperimentalBotany,2005,56 (417):1761-1778
    Barea JM, Toro M, Orozco MO, et al. The application of isotopic 32P and 15N-dilution techniques to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems,2002,63 (1):35-42
    Barea JM, Werner D, Azc6n-Aguilar C, et al. Interactions of arbuscularmycorrhiza and nitrogen fixing simbiosis in sustainable agriculture. In:
    Baslam M, Pascual I, Sanchez-Diaz M, Erro J, Garcia-Mina JM, Goicoechea N. The Improvement of Nutritional Quality of Greenhouse-Grown Lettuce by Arbuscular Mycorrhizal Fungi (AMF) is Conditioned by the Source of Phosphorus Nutrition. J Agric Food Chem,2011, (3):471-478
    Berg G, Ballin G. Bacterial antagonists to Verticillium dahliae Kleb. Journal of Phytopathology,1994, 141:99-110
    Bethlenfalvay G J, Andrade G and Azcon-Aguilar C. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nit rate fertilized peas (Pisumsativuin L.). Biol Fertil Soils,1997, 24:164-168
    Bethlenfalvay G J, Schuepp H. Arbuscular mycorrhizal and agrosystem stability. In:Gianinazzi S, Schuepp H. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Switzerland, Basel:Birkhauser Verlag,1994,117-132
    Bianciotto V, Andreotti S, Balestrini R, et al. Mucoid mutants of the biocontrol strain Pseudomonus fluorescens CHAO show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Molecular Plant-Microbe Interactions,2001,14 (2):255-260
    Bianciotto V, Bonfante P. Arbuscular mycorrhizal fungi:a s pecialized niche for rhizospheric and endocellular bacteria. Antoni Van Leeuwenhoek,2002,81 (124):365-371
    Cai XM, Zhang QF, Zheng WW. Effect of VA mycorrhizal fungi and Acetobacter diazotrophicus on the growth of super sweet corn. Fujian Journal of Agriculture Sciences,2004,19 (3):156-159
    Cao Y, Zhang ZH, Ling L, Yuan YJ, Zheng XY, Shen B, Shen QR. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils,2011b,47,495-506
    Cappuccino JC, Sherman N. Negative staining. In:Cappuccino, J.C., Sherman, N. (Eds.), Microbiology: A Laboratory Manual, thirded. Benjamin/Cummings Pub Co, Redwood City,1992,125-179
    Cattelan AJ, Hartel PG, Fuhrmann JJ. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J.1999,63:1670-1680
    Chanway CP. Inoculation of tree roots with plant growth promoting soil bacteria:an emerging technology for reforestation. For. Sci,1997,43:992112
    Chelius MK, Triplett EW. Immunolocalization of dinitrogenase reductase produced by Klebsiela pneumoniae in association with Zea mays L. Appl. Environ. Microb,2000,66:783-787
    Chen F, Wang M, Zheng Y, Luo J, Yang XR, Wang XL. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biot.2012,26 (4):675-684
    Chen N, Hsiang T, Goodwin PH. Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J. Microbiol. Meth.2003,53:113-122
    Citernesi AS, Filippi C, Bagnoli G, and Giovannetti M. Effects of the antimycotic molecule Iturin A2, secreted by Bacillus subtilis strain M51, on arbuscular mycorrhizal fungi. Microbiol Res,1994, 149(3):241-246
    Collavino MM, Sansberro PA, Morginski LA, Aguilar OM. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fertil. Soils,2010,46:727-738
    Das M, Royer TV, Leff GC. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied Environmental Microbiology,2007,73:756-767
    Dong HZ, Li WJ, Zhang DM, et al. Differential expression of induced resistance by an aqueous extract of killed penicillium chrysogenum against verticillium wilt of cotton.Crop Protection,2003, (22): 129-134
    Dor E, Joel DM, Kapulnik Y, Koltai H, and Hershenhorn J. The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta,2011,234(2):419-427
    Dupannois R, and Garbaye J. Effect of dual inoculation of Douglus fir with the ectomycorrhizal fungus, Laccaria laccata and Mycorrhiza Helper Bacteria (MHB) in two bare root forest nurseries. Plant and Soil,1991,138:169-176
    Duponnois R, Plenchette CA. Mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis ofAustralian Acacia s pecies. Mycorrhiza,2003,13 (2):85-91
    Dwivedi D, Johri B N, Ineichen K, et al. Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza,2009, 19:559-570
    Fahima T, Henis Y. Quantitative assessment of the interaction between the Antagonistic fungus Talaromyces flavus and the wilt pathgen Verticillium dahliae on eggplant roots. Plant and Soil, 1995, (176):129-137
    Fridlender M, Inbar J, Chet I. Biological control of soil-borne plant pathogens by a b-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem.,1993,25:1211-1221
    Garbaye J. Helper bacteria:a new dimension to the mycorrhizal symbiosis. New Phytology,1994,128 (2):197-210.
    Glick BR, Patten CL, Holquin G, Penrose DM. Biochemical and genetic mechanisms used by plant growth Promoting bacteria. Imperial College Press, London.1999.
    Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by concentrations by plant growth promoting bacteria. J. Theor. Biol.1998,190:63-68
    Glick BR. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol,1995,41: 109-117
    Gordon SA, Weber RP. Colorimetric estimation of indole acetic acid. Plant Physiol,1951,26:192-195
    Gosling P, Ozaki A, Jones J, Turner M, Rayns F, and Bending GD. Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi. Agriculture, Ecosystems & Environment,2010,139:273-279
    Gyuricza V, Boulois H, and Declerck S. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity,2010, 101:482-487
    Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature,2001,413 (6853):297-299
    Hoitink HAJ., Boehm M.J. Biocontrol within the context of soil microbial communities: asubstrate-dependent phenomenon. Annu. Rev. Phytopathol,1999,37:427-446
    Hu J, Lin X, Wang J, Cui X, Dai J, Chu H, and Zhang J. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Appl Microbiol Biotechnol,2010,88(3):781-787
    Johnson WM, Johnson EK, Brinkerhoff LA. Symptomatology and formation of microsclcrotia in weeds inoculated with Verticillium dahliae from cotton. Phytopathogy,1980,70(1):31-35
    Kamnev AA, Lelie D. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Rep,2000,20:239-258
    Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science,2005,10(1):22-29
    Khaosaada T, Garcia-Garridob JM, Steinkellnera S, Vierheilig H. ake-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry,2007, T 39(3):727-734
    Khaosaada T, Garcia-Garridob JM, Steinkellnera S, Vierheilig H. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry,2007,39:727-734
    Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R. FZB24(r) Bacillus subtilis mode of section of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer,2000,1: 72-93
    Kinsella K, Cristian P, Schulthess, Thomas F Morris, James D Stuart. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem,2009,41:374-379
    Kinsella K, Cristian P, Schulthess, Thomas F Morris, James D Stuart.. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem,2009,41:374-379
    Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C. Plant root bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Austr. Plant Pathol,1999,28:21-26
    Koide RT, Mosse B. A history of research on arbuscular mycorrhizal. Mycorrhiza,2004,14:145-163
    Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P. Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol.2004,186:1084-1096
    Landy M, Warren GH, Rosenman SB, Colio LG An antibiotic from Bacillus subtilis active against pathogenic fungi, Proc. Soc. Exp. Med.1948,67:539-541
    Lee YH, Lee WH, Lee DK, Shim K. Factors relating to induced systemic resistance in watermelon by plant growth promoting Pseudomonas species. J. Plant Pathol,2001,17:174-179
    Li L, Mo M, Qu Q, Luo H, Zhang KQ. Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur. J. Plant Pathol,2007,117:329-340
    Linderman RG. Mycorrhizal interaction with the rhizosphere microflora:The mycorrhizosphere effect. Phytopathol,1988,78 (3):366-37O
    Liu RJ. Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza, 1995,5(4):293-297
    Lu ZX, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol,2004,70:3073-3081
    Luo J, Ran W, Hu J, et al. Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Biology Biochemistry,2010,74:2039-2048
    Ma Y, Chang ZZ, Zhao JT, Zhou MG Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol. Control,2008,44:24-31
    Mamatha G, Bagyaraj DJ, Jaganath S. Inoculation of field established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza,2002,12 (2): 313-316
    Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem, 2010,42(8):1229-1235
    Marschner P, Baumann K. Changes in bacterial community structure induced by mycorrhizal colonization in split root maize. Plant and Soil,2003,251 (2):279-289
    Mayok DR and Motta J. Stimulation of germination of spores of Glomus versiforme by spore associated bacteria. Mycologia,1986,78:426-431
    McDonald IR, Riley PW, Sharp R.J, McCarthy AJ. Factors affecting the electroporation of Bacillus subtilis. J. Appl. Bacteriol,1995,79:213-218
    Menge JA, Johnson ELV, Platt RG. New Phytologist,1978,81:553-559
    Meyer JR, Linderman RG Response of subterranean clover to dual inoculation with vesicular arbuscular fungi and a plant growth promoting bacterium Pseudomonas putida. Soil Biol. Biochem,1986, 18:185-190
    Miroslav V, Milan G Response of micropropagated potatoes transplanted to peat media to post vitro inoculation with arbuscular mycorrhizal fungi and soil bacteria. Applied Soil Ecology,2000,15 (2): 145-152
    Mizumoto S, Shoda M. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biot,2007,76: 101-108
    Moyne A, Thomas EC, Sadik T. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiology Letters,2004,234(1):43-49
    Nagorska, K., Bikowski, M., Obuchowskji, M., Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol.2007,54:495-508
    Nakatsua CH, Torsvikb V,Ovreas L. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal,2000,64:1382-1388
    Nakayama S, Takahashi S, Hirai M, Shoda M. Isolation of newvariants of surfaction by a recombinant Bacillus subtilis. Appl Microbiol Biotechnol,1997,48(1):80-82
    Nautiyal C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett,1999,170:265-270
    Nehl DB, Allen SJ and Brown J F. Deleterious rhizosphere bacteria:An integrating perspective. A ppl Soil Ecol,1996,5:1-20
    Nelson, L.M., Plant-growth-promoting rhizobacteria (PGPR):prospects for new inoculants. Crop Manag, 2004, doi:10.1094/CM-2004-031-05-RV
    Olsson PA, Rahm J, and Aliasgharzad N. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol,2010,
    Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol,2008,16:115-125
    Pan B, Bai YM, Leibovitch S, Smith DL. Plant growth promoting rhizobacteria and kinetin as ways to promote corn growth and yield in short season areas. Eur. J. Agron,1999,11:179-186
    Paulitz TC, Linderman RG. Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phyto 1,1989,113:37-45
    Perner H, Schwarz D, Bruns C, Mader P, and George E. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza,2007,17:469-474
    Preston GM. Plant perceptions of plant growth promoting Pseudomonas Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences,2004,359 (1446):907-918
    Ramos HJ, Roncato-Maccari LD, Souza EM, Soares-Ramos JR, Hungria M, Pedrosa FO. Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotechnol,2002,97:243-252
    Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology,2001,28:897-906
    Roberts MS, Nakamura LK, Cohan FM. Bacillus vallismortis sp. Nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Microbiological Societies,1996, 46(2):470-475
    Roesti D, Gaur R, Johri B N, et al. Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhiz obacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry,2006,38 (5):1111-1120
    Schwyn, B., Neilands, J.B., Universal chemical assay for the detection and determination of siderophores. Anal. Biochem,1987,160:47-56
    Secilia J, Bagyaraj DJ. Bacteria and actinomycetes associated with pot cultures of vesicular2arbuscular mycorrhizas. Can J Microbiol,1987,33:1069-1073
    Serfoji P, Rajeshkumar S, and and Selvaraj T. Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa Ruby, by using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus coagulans Journal of Agricultural Technology,2010, 6(1):37-45
    Siasou E, Standing D, Killham K, et al. Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biology and Biochemistry,2009,41:1341-1343
    Siddiqui ZA, Akhtar MS. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza,2007,43:603-609
    Srivastava R, Aragno M, Sharma AK. Cow dung extract:a medium for the growth of pseudomonads enhancing their efficiency as biofertilizer and biocontrol agent in rice. Indian Journal of Microbiology,2010a,349-354
    Srivastava R, Khalid A, Singh US, Sharma AK. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. Lycopersici for the management of tomato wilt. Biological Control,2010b,53:24-31
    Tamietti G, Valentino D. Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot,2006,25:389-397
    Tang WH. Advances in biological control of plant disease:proceeding of the international workshop on biological control of plant diseases. Beijing, China Agricultural University Press,1996
    Tjamos EC. Strategies in developing methods and applying techniques for the biological control of Verticillium dahliae. American Phytopathological Society Press, St. Paul, Minnesota.2000
    Toljander JF, Artursson V, PaulL R, et al. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiology Letters,2006,254 (1):34-40
    Trouvelot A, Kough JL, and Cianiazzi-Pearson V. Physiological and Genetical Aspects of Mycorrhizae[M]. INRA Press,1986,217-221
    Turgeon N, Laclamme C, Ho J, Duchaine C. Elaboration of an electroporation protocol for Bacillus cereus ATTC14579. J. Microbiol. Meth,2006,67:543-548
    Turner JT, Backman PA. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis.,1991,75:347-353
    Vessey JK. Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil,2003,255,571-586
    Vestberga M, Kukkonena S, Saaria K, et al. Microbial inoculation for improving the growth and health of micropropagated strawberry. App lied Soil Ecology,2004,27 (3):243-258
    Vigo C, Norman JR, Hooker JE. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology,2000,49 (4): 509-514
    Volpin H, Phillips DA, Okon Y, et al. Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiology,1995,108:1449-1454
    Weisskopf L, Fromin N, Tomasi M, et al. Secretion activity of white lupin's cluster roots influences bacterial abundance, function and community structure. Plant and Soil,2005,268 (122):181-194
    Werner D, Newton WE. Nitrogen fixation in agriculture, forestry, ecology and the environment. The Netherlands:Kluwer Academic Publishers,2005.199-222
    Whipps JM. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany,2004,82 (8):1198-1227
    Whitelaw M A. Growth promoti on of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy,2000,69:99-151
    Wu HS, Yang XN, Fan JQ, Miao WG, and Ling N. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl,2009, 54:287-300
    Xavier LJC, Germida JJ. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biology and Biochemistry,2003,35
    Xiao X, Chen H, Chen H, et al. Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World Journal of Microbiology and Biotechnology,2008,24:1133-1137
    Yang LP, Xie JT, Jiang DB, Fu YP, Li GQ, Lin FC. Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J. Microb. Biot, 2008,24:909-915
    Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 2006,64:991-997
    Zaki A, Siddiqui M, and Sayeed A. Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils, 2007,43:603-609
    Zhang L, Zhang J, Christie P, and Li X. Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biology and Fertility of Soils,2008a,45:205-211
    Zhang N, Wu K, He X, Li S, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, and Shen QR. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil,2011b,344:87-97
    Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang, QW, Shen, QR, A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil,2011,344,87-97
    Zhang SS, Raza W, and Yang XM. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils,2008c,44:1073-1080
    Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F. Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillusflavus. World J. Microb. Biot,2008,24:783-788
    Zhao B, He SJ. Microbiology experiment (Bilolgical Science Series).First editon.Science press 2002.
    Zheng G, Shvik M. Isolation partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Bacteriol,1999,28:363-367
    Zhou T, Paulitz C. Induced resistance in the biocontrol of Pythiu aphanidermatum by Pseudomonas spp. on cucumber. J. Phytopathol,.1994,142:51-63
    Zocco D, Aarle IMV, Oger E, Lanfranco L, and Declerck S. Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza,2011,21:363-374.
    鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000
    边秀举,胡林,李晓林,等.VA菌根对坪草矿质养分吸收及草坪质量影响的研究.草业学报,2001,10(3):4246
    毕银丽,任婧.接种菌根对根际微生物群落和磷营养的影响.能源环境保护.2007,21(3):25-28
    陈凌.几丁质酶在抗真菌感染中的研究现状及展望.国外医学预防诊断治疗用生物制品分册,2005,28(5):208-210
    陈捷胤,戴小枫.棉花对黄萎病的抗病机制研究进展.分子植物育种,2005,3(3):427-435
    傅正擎,夏正俊.内生菌对棉花黄萎病病菌及毒素的抑制作用和对棉花的促生作用.植物病理学报,1999,29(4):374-375
    甘莉,吕金殿,汪沛洪.棉花黄萎病菌分泌的糖蛋白毒素与其致病力的关系.中国农业科学,1995,28(2):58-65
    顾真荣,吴畏,高新华,马承铸.枯草芽抱杆菌G3菌株的抗菌物质及其特性.植物病理学报,2004,34(2):166-172
    郝永娟,魏军,刘春艳,王勇,王万立.生物土壤添加剂对连作黄瓜防御酶系及酚类物质含量的影响.植物病理学报,2009,39(4):444-448
    何红,蔡学清,关雄,胡方平,谢联辉.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报,2003,33(4):373-378
    黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展.浙江农业科学,2005,3:213-215
    简桂良,邹亚飞,马存,等,棉花黄萎病连年流行的原因及对策.中国棉花,2003,30(3):13-14.
    江龙,黄建国,袁玲.不同丛枝菌根真菌对烟苗生长营养状况和生理活性的影响.贵州农业科学,2009,37(12):53-57
    金,赵洪,李博.我国菌根研究进展及展望.应用与环境生物学报,2004,10(4):515-520
    金利容,万鹏,孔令甲,黄民松.棉花黄萎病菌生理型鉴定的主要方法综述.湖北农业科学,2008,47(11):1357-1360
    孔佩佩,杨树华,贾瑞冬,葛红.不同丛枝菌根真菌对切花菊生长的影响.中国农学通报,2011,27(31):222-227
    李成伟,丁锦平,刘冬梅,周瑞阳,李付广.棉花黄萎病及抗病育种研究进展.棉花学报,2008,20(5):385-390
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    李靖等.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,1991,21(4):277-27
    李敏,刘润进,赵洪海.AM真菌和镰刀菌对西瓜根系几种酶活性的影响.菌物系统,2001,(20):547-551
    李社增,马平,刘杏忠,等.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,2001,20:422-425L黎起秦,林纬,等.植物土传病害拮抗真菌的筛选.西南农业学报,1999,12(3):81-84.
    李社增,鹿秀云,马平,等.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定.植物病 理学报,2005,35(5):451-455
    李社增,马平.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,2001,20(5):410-414
    刘时轮,李勇,傅俊范,丁万隆,方焕民.绿色木霉Tv04-2菌株固体发酵物人参防御酶活性的影响.中国农学通报,2009,25(03):63-65
    骆世明,彭少麟.农业生态系统分析.广州:广东科学技术出版社,1996
    李树林,赵士杰.VA菌根对茄子、黄瓜、籽瓜促生防病作用.内蒙古农牧学院学报,1996,17(1):55-58
    刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析.微生物学报,1999,39(5):441-447
    刘振宇,柳韶华,赵春青,于月芹.枯草芽孢杆菌对桑炭疽病菌的抑制作用.蚕业科学,2005,31(4):409-412
    林茂松,沈素.厚壁孢子轮枝菌防治南方根结线虫研究初报.生物防治通讯,1994,10(1):7-10
    刘大群,杨文香.拮抗链霉素菌Men-myco-93-63及其发酵液对棉花黄萎病菌生长的影响.河北农业大学学报,1999,22(4):79-82
    刘凤权,王金生.水杨酸对水稻防卫反应酶系的系统诱导.植物生理学通讯,2002,38:121-123
    刘润进,沈崇尧,裘维蕃.关于VAM菌与黄萎病菌存在侵染中的竞争作用.土壤学报,1994,31(增):224-229
    刘润进,裘维蕃.内生菌根菌诱导植物抗病性研究的新进展.植物病理学报,1994,24(1):1-5
    骆世明,彭少麟.农业生态系统分析.广州:广东科学技术出版社,1996
    刘杏忠,刘文敏,张东升.定殖大豆胞囊线虫的淡紫拟青霉生物学特性研究.中国生物防治,1995,11(2):70-74
    马平.棉花黄萎菌的生态学及棉花黄萎病的生物防治.武汉:华中农业大学,2001
    马平.棉花黄萎病生物防治研究进展.河北农业科学,2003,7(3):38-44
    潘超美,郭庆荣,邱桥姐.VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,2000,9(4):304-306
    商闯,马春红,李运朝,陈霞,郭秀林,崔四平.低浓度玉米小斑病菌C小种毒素培养滤液对玉米叶片过氧化物酶活性的诱导作用.中国生物防治,2007,23:42-46
    史刚荣.植物根系分泌物的生态效应,生态学杂志.2004,23(1):97-101
    宋福强,杨国亭,孟繁荣等.丛枝菌根化大青杨苗木根际微域环境的研究.2004,13(2):211-216
    宋晓妍,陈秀兰,等.棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究.山东大学学报(理学版),2005,40(6):98-102
    宋勇春,李晓林,冯固.接种VA菌根真菌对红三叶草利用土壤有机磷的影响.草业学报,2000,9(2):38-44
    宋勇春,李晓林,冯固.泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响.应用生态学报,2001, 8(12):4
    陶刚,刘杏忠,王革,李世东.产几丁质酶木酶生防菌株的生化测定.西南农业学报,2005,18(4):453-454
    王莉梅,石磊岩.北方棉花黄萎病落叶型菌系鉴定.植物病理学报,1999(29):181-189
    王燕,宗兆锋,程联社.放线菌在植物病害生物防治中的应用.杨凌职业技术学院学报,2005,4(3):21-23
    吴蔼民,顾本康,傅正擎,等.内生菌73a防治棉花黄萎病机理.江苏农业学报,2002,18(1):48-51
    吴蔼民,顾本康,傅正擎.内生菌对棉花黄萎病的田间防效及增产作用.江苏农业科学,2005(5):38-39
    夏正俊,顾本康.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性研究.中国生物防治,1996,12(1):7-10
    夏正俊,顾本康.棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化.江苏农业学报,1997,13(2):99-101
    姚青,冯固,李晓林.不同作物对VA菌根真菌的依赖性差异.2000,26(6)
    杨华,蔡立旺,潘群斌,陈建平,施庆华,张萼,王海洋,陈丽萌,杨明凤,霍金泉.棉花黄萎病研究进展浅述.江西棉花,2006,28(6):3-6
    殷锡圣,刘润进.棉花黄萎病研究进展.中国棉花,1996,23(5):2-6
    于汉寿,吴汉章,等.VA菌根对西瓜生长和枯萎病的影响.中国蔬菜,1997,6:26-27
    张功,旺庆,峥嵘,王瑞君.不同AMF对马铃薯生长的影响.华北农学报2001,16(4):115-118
    张慧,杨兴明,冉炜,等.土传棉花黄萎病拮抗菌的筛选及其生物效应.土壤学报,2008,45(6):1095-1101
    赵斌,何绍江.微生物学实验.北京:科学出版社.2002:213-214.
    张庆春,李永才,毕阳,孙小娟,王化俊.柠檬酸处理对马铃薯干腐病的抑制作用及防御酶活性的影响.甘肃农业大学学报,2009,44(2):146-150
    张雯,倪莉,刘国坤,肖顺,张绍升.淡紫拟青霉产几丁质酶特性及其对根结线虫卵的侵染作用.莱阳农学院学报,2004,2(2):13-142
    张铎,解莉,张丽萍,赵宝华.棉花黄萎病生物防治研究.安徽农业科学,2007,35(11):3302-3303
    张振珏.植物体内的胼胝质.植物学通报,1984,2(2):37-38
    周兆华,张天真,潘家驹,等.大丽轮枝菌在棉花品种上的致病力分化研究.中国农业科学,2000,33(2):51-57.
    左豫虎,芮海英,杨传平,刘惕若.几丁质酶活性与大豆抗疫霉根腐病的关系.植物保护,2008,34(6):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700