用户名: 密码: 验证码:
昆虫病原线虫共生菌的鉴定、培养及其抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫病原线虫共生菌代谢产物在医药卫生和农业领域具有抗细菌、抗真菌、杀虫、杀线虫、抗病毒、抗癌等多种生物活性,是一类新型的具有较大开发潜力和广泛应用前景的生物资源。前期研究发现,从陕西杨凌、太白山筛选的3株昆虫病原线虫中分离的共生菌YL001、YL002和TB菌株代谢物具有较强的抑菌活性,为进一步确定其分类及系统进化地位,并为该生物资源的后续研究及开发应用奠定基础,本论文对其分类地位、培养及抑菌活性进行了研究,得出以下主要研究结果与结论:
     1. PCR扩增、克隆并测定了YL001、YL002和TB菌株16S rRNA全序列,将此序列与GenBank中该类菌部分已知种的16S rRNA序列进行同源性比较及聚类分析。在构建的系统发育树中,3株菌与嗜线虫致病杆菌(Xenorhabdus nematophila)种内菌株形成一个类群,序列同源性均大于99%,且位于不同分支。结合前期生理生化等特征的鉴定结果,认为YL001、YL002和TB菌株属于嗜线虫致病杆菌种内的不同菌株。
     2. 3株菌对供试的26种病原真菌均有不同程度拮抗作用,不同菌株对不同病菌的拮抗作用不同,但均对辣椒疫霉病菌有很强的拮抗作用;3株菌胞外代谢物对病原菌菌丝生长的抑制作用有较大差异,但其10倍稀释液对辣椒疫霉、番茄灰霉、油菜菌核和小麦根腐病菌的抑制率都在90%以上;对金黄色葡萄球菌抑制作用最强,抑菌圈直径达30 mm;活体组织试验表明3菌株对番茄灰霉病防效均在65%以上,不同菌株治疗和保护效果存在差异,其中YL002菌株治疗效果最好(77.31%),TB菌株保护效果最好(75.30%);对番茄灰霉病、辣椒疫霉病和黄瓜霜霉病的防效均在60%以上,其中YL001菌株对黄瓜霜霉病治疗效果最好(78.21%),YL002菌株对番茄灰霉病保护效果最好(77.73%),TB菌株对辣椒疫霉病保护效果最好(76.13%),TB菌株对小麦白粉病防效在60%以上,优于其他菌株,仅TB菌株对玉米大斑病有一定的保护效果。
     3株菌胞外代谢物甲醇提取物对供试菌菌丝生长均有较强抑制作用,其中YL001菌株对辣椒疫霉病菌、YL002菌株对番茄灰霉病菌、TB菌株对油菜菌核病菌菌丝生长的抑制作用最强,EC50分别为:35.11、42.16和18.95 mg/L;对供试菌孢子萌发亦有较强抑制作用,其中对玉米大斑病菌抑制作用最强,EC50分别为28.03、36.77和26.40 mg/L;1000 mg/L时,对番茄灰霉病的防效均在70%以上(活体组织法),对番茄灰霉病和辣椒疫霉病的防效均在65%以上,不同菌株治疗和保护效果存在差异(盆栽试验)。
     3株菌胞内代谢物乙醇提取物抑菌活性测定结果表明:1000 mg/L时,对辣椒疫霉病菌菌丝生长的抑制率在80%以上;不同菌株乙醇提取物对番茄灰霉病的防效不同,其中YL002菌株的治疗和保护效果最好,分别为79.16和61.66%(活体组织法);盆栽试验表明YL002菌株对番茄灰霉病、辣椒疫霉病和黄瓜霜霉病的治疗效果最好,分别为82.19%、70.75%和81.12%,TB菌株对其保护效果最好,分别为74.40%、65.87%和78.92%。
     3.培养特性研究结果表明YL001、YL002和TB菌株的生长符合细菌生长的一般规律,发酵液中主要营养成分还原糖和氨基氮含量的变化趋势相似:在培养前期还原糖和氨基氮含量均迅速下降,后期保持相对稳定;其适宜发酵周期分别为54、66和60h。
     4.综合运用Plackett–Burman设计和响应面等方法对TB菌株发酵工艺进行了整体优化。TB菌株最佳发酵培养基组成为(g/L):蛋白胨25.60、葡萄糖5.00、NaCl 5.00、K2HPO4 2.50;最佳发酵条件为:发酵时间54.07 h、初始pH 7.59、接种量9.95%、种龄(OD600: 2.00),装液量(100/250 mL)、转速150 rpm、温度25°C。最佳工业发酵培养基组成为(g/L):麸皮10.00、棉饼粉24.20、豆饼粉6.41、NaCl 5.00、K2HPO4 5.00;最佳发酵条件为:发酵时间72 h、种龄(OD600: 2.00)、装液量(50/250 mL)、初始pH 7.96、接种量10.02%、转速150 rpm。优化后TB菌株的抑菌活性较优化前分别提高了73.52%和82.58%。
     5.不同培养方式对TB菌株生长和抗菌活性的研究结果表明70L发酵罐培养最有利于TB菌株的生长,DCW达16.70 g/L,较摇瓶和5L发酵罐分别增加25.85%和41.41%;摇瓶培养最有利于抑菌物质的产生,抑菌活性达358.3 U/mL,较5L和70L发酵罐分别增加10.83%和14.36%。
     6.以番茄灰霉病菌和枯草芽孢杆菌为靶标菌,采用活性跟踪法,对TB菌株代谢物抑菌活性成分进行了分离。从胞内代谢物中分离出1种具有抑菌活性的化合物,结构已初步确定,为双(1-羟基-2-甲氧基乙酯)邻苯二甲酸酯;从胞外代谢物中分离出5种具有抑菌活性的化合物,其结构正在鉴定之中。活性测定结果表明:0.5 mg/mL时,4#和5#对番茄灰霉病菌菌丝生长的抑制作用较强,分别为69.1%和72.8%;4#、5#和6#对枯草芽孢杆菌的抑制作用较强,抑菌圈直径分别为10.9、11.6和10.2 mm。
The metabolites of symbiotic bacteria associated with entomopathogenic nematodes own much bioactivity such as antifungal, antibacterial, insecticidal, nematicidal, antivirus and anticancer in the field of medicine, public health and agriculture, which make it become a kind of novel bioresource with high potential for development and broad prospects for application. Previous study found that strains YL001, YL002 and TB obtained from the entomopathogenic nematodes screened from Yangling, Shaanxi Province and Taibai Moutain showed obvious antimicrobial activity. In order to determine the taxonomy and systemic evolutional status of the strains, and lay basis for further study, development and application of the bioresource, we studied their taxonomic status, culture and antimicrobial activity of the metabolites. The main results and conclusions of the thesis are as follows:
     1. The 16S rRNA complete sequences of strains YL001, YL002 and TB were amplified by PCR, cloned and measured. The homology comparison and clustering analysis of the 16S rRNA sequences of the strains were conducted by comparison with the known strains in GenBank. In constructed phylogenetic tree, strains YL001, YL002 and TB formed a monophyletic clade with strains of X. nematophilus with sequence homology higher than 99%, and located at different branch. Based on previous research, we can conclude that strains YL001, YL002 and TB belong to the different strain of X. nematophila.
     2. All the three strains exhibited antagonism effect on tested 26 plant pathogenic fungi, and different strains showed different antagonism effect, but all showed high effect on P. capsici. The extracellular metabolite of different strains exhibited a greater difference in inhibitory effect on pathogen mycelium, but all exhibited high inhibitory rate (>90%) on mycelium growth of P. capsici, B. cinerea, S. sclerotiorum and B. sorokiniana at ten times diluted liquid. The strains all showed strongest inhibitory effect on S. aureus. Tissue experiment showed that the efficacy of the strains on B. cinerea all higher than 65%, and different strains showed different therapeutic and protective effect on B. cinerea, among which, YL002 showed best therapeutic effect (77.31%) and TB showed best protective effect (75.30%). Potted plant experiment showed that the efficacy of the strains on B. cinerea, P. capsici and P. cubensis all higher than 60%, among which, YL001 showed best therapeutic effect (78.21%) on P. cubensis, YL002 showed best protective effect (77.73%) on B. cinerea and TB showed best protective effect (76.13%) on P. capsici; The efficacy of strain TB to B. graminis was higher than 60%, which was better that the other strains; only strain TB showed some protective effect on E. turctcum.
     The methanol extracts of the three strains all showed strong effect on mycelium growth of tested pathogens, among which, YL001 showed strongest effect on P. capsici, YL002 showed strongest effect on B. cinerea and TB showed strongest effect on S. sclerotiorum, with EC50 of 35.11, 42.16 and 18.95 mg/L, respectively. The methanol extracts all showed strongest effect on spore germination of tested pathogens, and all exhibited highest inhibitory effect on E. turctcum with EC50 of 28.03, 36.77and 26.40 mg/L. At 1000 mg/L, the efficacy of methanol extracts to B. cirerea (tissue experiment) were all higher than 70% and to B. cirerea and P. capsici were all higher than 65% (potted plant experiment), different strains showed different therapeutic and protective effect on B. cirerea and P. capsici.
     At 1000 mg/L, the inhibitory rates of ethanol extracts of the three strains on mycelium growth of P. capsici were all higher than 80%. Tissue experiment showed that ethanol extracts of different strains showed different efficacy to B. cirerea, among which, strain YL002 showed strongest therapeutic effect (79.16%) and protective effect (61.66%). Potted plant experiment showed that strain YL002 showed best therapeutic effect on B. cirerea, P. capsici and P. cubensis with 82.19, 70.75 and 81.12%, respectively, and strain TB showed best protective effect with 74.40, 65.87 and 78.92%, respectively.
     3. Study on the culture characteristics of strains YL001, YL002 and TB showed that the strains growth was in accordance with the general discipline of bacteria growth; The changing trends of glucose and amido nitrogen of the strains were similar, which decreased sharply at first and then kept stable; The optimum fermentation period was 54, 66 and 66h, respectively.
     4. Statistical methods such as Plackett–Burman design and response surface methodology were employed synthetically to optimize the fermentation medium and conditions together so as to improve antibiotic activity of X. nematophila TB. The optimum composition of the fermentation medium (g/L): peptone 25.60, glucose 5.00, NaCl 5.00, K_2HPO_4 2.50, and the optimum fermentation condition: fermentation time 54.07 h,initial pH 7.59, inoculation volume 9.95%, inoculation age (OD_(600): 2.00), medium volume (100/250 mL),rotary speed 150 rpm,temperature 25°C. The optimum composition of the industrial fermentation medium (g/L): bran 10.00, cotton cake powder 24.20, bean cake powder 6.41, NaCl 5.00, K_2HPO_4 5.00, and the optimum fermentation condition: fermentation time 72 h, inoculation age (OD_(600): 2.00), medium volume (50/250 mL), initial pH 7.96, inoculation volume 10.02%, rotary speed 150 rpm. After optimization, the antibiotic activity of strain TB improved by 73.52% and 82.58%, respectively.
     5. Experiments of different culture mode on cell growth and antibiotic activity of strain TB showed that 70L fermenter was optimum for the cell growth with DCW of 16.70 g/L, which improved by 25.85 and 41.41% than that of 250 mL flask and 5L fermenter, respectively. Flask was optimum for the antibiotic production with antibiotic activity of 358.3 U/mL, which improved by 10.83 and 14.36% than that of 5L and 70L fermenter.
     6. The antimicrobial components of the extra and intra cellular metabolite of strain TB was separated based on activity tracking using B. cirerea and B. subtilis as the target pathogens. One compound with antimicrobial activity was separated from the intracellular metabolite, and its structure was determined initially, which was bis (1-hydroxy-2-methoxye thy) phthalate. Five compounds were separated from extracellular metabolite, and their structures are under identification. Activity experiments indicated that 4#and 5# showed stronger inhibitory effect on mycelium growth of B. cirerea, which was 69.1 and 72.8%, respectively; 4#, 5# and 6#showed stronger inhibitory effect on B. subtilis with the inhibition zone of 10.9, 11.6 and 10.2 mm, respectively.
引文
[1] Gaugler R. Entomopathogenic nematology [M]. New York: CABI Publishing, 2002.
    [2] Martens E.C., Heungens K., Goodrich-Blair H. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria [J]. J. Bacteriol., 2003, 185: 3147-3154.
    [3] Waterfield N.R., Bowen D.J., Fetherson J.D., et al. The toxin complex genes of Photorhabdus: a growing gene family [J]. Trends. Microbiol., 2001, 9: 185-191.
    [4] Webster J.M., Chen G., Hu K., et al. Bacterial metabolites. In: Gaugler R. (ed.), Entomopathogenic Nematology [M]. New York, CABI Publishing, 2002, pp. 99-114.
    [5] Bowen D., Rocheleau T.A., Blackburn M., et al. Novel insecticidal toxins from the bacterium Photorhabdus luminescens [J]. Science, 1998, 280(6): 2129-2132.
    [6] Paik S., Park Y.H., Suh S. Unusual cytotoxic phenethylamides from Xenorhabdus nematophilus [J]. Bull. Korean. Chem. Soc., 2001, 22(4): 372-374.
    [7] 曾润颖,李根,林昱.一株具抗肿瘤活性的北极细菌的筛选及分子鉴定[J].厦门大学学报(自然科学版),2002,41(6):800-803.
    [8] Farmer J.J., Jorgensen J.H., Grimont P.A.D. Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens [J]. J. Clin. Microbiol., 1989, 27: 1594-1602.
    [9] Farmer J.J. 1984. Genus Xenorhabdus Thomas and Poinar 1979, p.510-511. In Krieg N.R. and Holt J.G. (ed.). Bergey's mannul of systematic bacteriology [J]. Vol.1.The Williams Co.Baltimore.
    [10] 王立霞 , 杨怀文 , 黄大昉 . 昆虫病原线虫共生细菌的型态变异 [J]. 中国生物防治,2000,16(2):92-95.
    [11] Boemare N.E., Akhurst R.J., Mourant R.G. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbioticbacteria of entomopathogenic nematodes and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. [J]. Int. J. Syst. Bacteriol, 1993, 43: 249-255.
    [12] Suzuki T., Yabusaki H., Nishimura Y. Phylogenetic relationships of entomopathgenic nematotophilic bacteria: Xenorhabdus spp. and Photorhabdus spp. [J]. J. Basic. Microbiol, 1996, 5: 851-954.
    [13] Akhurst R.J., Boemare N.E. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of Xenorhabdus nematophilus to species [J]. J. Gen. Microbiol., 1988, 134: 1835-1845.
    [14] Liu J., Berry R.E., Poinar G.O., et al. Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16S rRNA gene sequences [J]. Int. J. Syst. Bacteriol, 1997, 41: 948-951.
    [15] Rainey F.A., Ehler R.U., Stackebrandt E. Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus [J]. Int. J. Syst. Bacteriol., 1995, 45: 379-381.
    [16] Putz J., Meinert F., Wyss U., et al. Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species [J]. Appl. Environ. Microbiol., 1990, 56(1): 181-186.
    [17] Nishimura Y., Hagiwara A., Suzuki T., et al. Xenorhabdus japonicus sp. nov. associated with the nematode Steinernemakushidai [J]. World J. Microbiol. Biotech., 1994, 10: 207-210.
    [18] Lengyel K, Lang E, Fodor A, et al. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov.,Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. [J]. Systematic and Applided Microbiology, 2005, 28:115-122.
    [19] Somvanshi V.S, Lang E, Ganguly S,et al. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp.nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000 [J]. Systematic and Applided Microbiology, 2006, 29: 519-526.
    [20] Farmer J.J., Jorgensen J.H., Grimont P.A.D. Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens [J]. J. Clin. Microbiol., 1989, 27: 1594-1602.
    [21] Fischer-Le S.M., Viallard V., Brunel B., et al. Polyphasic classification of the genusPhotorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov [J]. International Journal of Systematic Bacteriology, 1999b, 49:1645-1656.
    [22] Han R., Ehlers R.U. Pathogenicity, development, and reproduction of Heterorhabditis Bacterio-phora and Steinernema carpocapsae under axenic in vivo conditions [J]. Journal of Invertebrate Pathology, 2000, 75: 55-58.
    [23] Babic I., Fischer-Le S.M. Occurrence of natural dixenic associations between the symbiont Photorhabdus luminesceas and bacteria related to Ochrobactrum spp.in tropical Entomopathogenic Heterorhabditis spp . (Nematoda:Rhabditida) [J].Microbiology, 2000, 146: 709-7l8.
    [24] Liu J., Berry R.E., Blouin M.S.Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenie nematodes Heterorhabditis marelatus and Steinerneme oregonense based on 16S rDNA sequence [J].J. Invertebr. Pathol, 2001, 77: 87-91.
    [25] Boemare N.E., Akllurst R.J. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae) [J]. J. Gen. Microbiol, 1988, 134: 751-761
    [26] Boemare N.E., Akhurst R.J., Mourant R.G. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of ntomopathogenie nematodes and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen.nov. [J]. Int. J. Syst. Bacteriol, 1993, 43: 249-255.
    [27] Akhurst R.J. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis [J]. Journal of General Microbiology, 1980, 121: 303-309.
    [28] Akhurst R.J. Morphological and functional dimorphism in Xenorhabdus spp.bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis [J]. Journal of General Microbiology, 1980, 121: 303-309.
    [29] Moureaux N., Karjalainen T., Givaudan A., et al. Biochemical characterizeation and agglutinating properties of Xenorhabdus nematophila F1 fimbriae[J]. Applied andEnvironmental Microbiology, 1995, 61: 2707-2712.
    [30] Forst S., Nealson K.H. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp[J]. Microbiological Reviews, 1996, 60: 21-43.
    [31] Bowen D.J., Ensign J.C. Isolation and characterization of protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens [J]. Applied and Environmental Microbiology, 2001, 67: 4834-4841.
    [32] Smigielski A.J., Akhurst R.J., Boemare N.E. Phase variation in Xenorhabdus nematophila and Photorhabdus luminescens: differences in respiratory activity and membrane energization [J]. Applied and Environmental Microbiology, 1994, 60: 120-125.
    [33] Givaudan A., Lanois A., Boemare N.E. Cloning and nucleotide sequence of a flagellin encoding genetic locus from Xenorhabdus nematophila: phase variation leads to differential transcription of two flagellar genes (fliCD) [J]. Gene, 1996, 183: 243-253.
    [34] Chen G.H, Maxwell P., Dunphy G.B., et al. Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes [J]. Nematologica, 1996, 42: 124-127.
    [35] Thaler J.O., Duvic B., Givaudan A., et al. Isolation and entomotoxic properties of the Xenorhabdus nematophila F1 lecithinase[J]. Applied and Environmental Microbiology, 1998, 64: 2367-2373.
    [36] Volgyi A., Fodor A., Forst S. Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behaviour of Xenorhabdus nematophila [J]. Applied and Environmental Microbiology, 2000, 66: 1622-1628.
    [37] Clarke D.J., Dowds B.C.A. Virulence mechanisms of Photorhabdus sp. strain K122 toward wax moth larvae [J]. Journal of Invertebrate Pathology, 1995, 66: 149-155.
    [38] Bowen D., Blackburn M., Racheleau T., et al. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes [J]. Insect Biochemistry and Molecular Biology, 2000, 30: 69-74.
    [39] Wee K.E., Yonan C.R., Chang F.N. A new broad-spectrum protease inhibitor from the entomopathogenic bacterium Photorhabdus luminescens [J]. Microbiology, 2000, 146: 3141-3147.
    [40] Poinar G.O.Jr. Taxonomy and biology of Steinernematidae and Heterorhabditidae. In:Gaugler R., Kaya H.K. Eds [M]. Entomopathogemic Nematodes in Biological Control. Boca Raton: CRC Press, 1990: 23-61.
    [41] Boemare N.E., Boyer-Giglio M.H, Thaler, et al. Lysogeny and bacteriocinogeny in Xenorhabdus nematophila and other Xenorhabdus spp [J]. Applied and Environmental Microbiology, 1992, 58: 3032-3037.
    [42] Thaler J.O., Baghdiguian S., Boemare N.E. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus [J]. Applied and Environmental Microbiology, 1995, 61: 2049-2052.
    [43] Chen G.H., Dunphy G.B., Webster J.M. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis [J]. Biological Control, 1994, 4: 157-162.
    [44] Givaudan A., Baghdiguian S., Lanois A., et al. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophila [J]. Applied and Environmental Microbiology, 1995, 61: 1408-1413.
    [45] Dunphy G.B., Webster J.M. Interaction of Xenorhabdus nematophila subsp. nematophila with the haemolymph of Galleria mellonella[J]. J. Insect. Physiol., 1988, 30:883-889.
    [46] Xu J., Olson M.E., Kahn M.L., et al. Characterization of Tn5-induced mutants of Xenorhabdus nematophila ATCC 19061 [J]. Applied and Environmental Microbiology, 1991, 57:1173-1180.
    [47] Smigielski A.J., Akhurst R.J. Toxin gene from Xenorhabdus nematophila[P]. United States Patent 5972687-A1, 1999.
    [48] Susan E.B., Anh T. C., Eric R.H., et al. A novel secreted protein toxin from the insect-pathogenic bacterium Xenorhabdus nematophila [J]. J. Biol. Chem., 2004, 10:1074.
    [49] Bowen D.J., Ensign J.C. Purification and characterization of a high-Molecularweight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens[J]. Applied and Environmental Microbiology, 1998, 64:3029-3035.
    [50] Bowen D.J., Rocheleau T.A., Blackburn M., et al. Novel insecticidal toxins from the bacterium Photorhabdus luminescens [J]. Science, 1998, 6:2129-2132.
    [51] Jarrett, Morgan J., Ellis D. Insecticidal Agents [M].WO 00/30453, 2000.
    [52] 王立霞,潘映红,杨怀文等.高毒力昆虫病原线虫共生菌菌株的筛选及其杀虫活性的检测[J].昆虫学报,2000,43: 98-103.
    [53] 王立霞,杨怀文,黄大肪.A54外毒素与Bt 毒蛋白对棉铃虫的交互作用[J].微生物学通报,2002,29(5):1-4.
    [54] Waterfield N., Andrea D., Sadhana S. et al. Oral toxicity of Photorhabdus lutninescens W14 toxin complexes in Escherichia coli[J].Applied and environment Microbiology, 2001, 67(11): 5017-5024.
    [55] Morgan J.A.W., Sergeant M., Ellis D., et al. Sequence analysis of insecticidal genes from Xenorhabdus nematophila PMF1296 [J]. Applied and environmental microbiology, 2001, 5:2062-2069.
    [56] 崔龙,邱礼鸿,房媛媛等.Xenorhabdus nematophila BP品系杀虫毒素基因的克隆与鉴别[J].中山大学学报(自然科学版),2003,142(13):47-50.
    [57] Daborn P.J., Waterfield N., Silva C.P., et al. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects [J]. Proc. Natl. Acad. Sci., 2002, 99 (16): 10742-10747.
    [58] 崔龙,邱礼鸿,辛智海等.昆虫病原线虫共生菌 BP 品系杀虫毒素基因簇中各基因与杀虫活性的关系[J].微生物学报, 2003,43(6):547-552.
    [59] Ffrench-Constant R., Waterfield N., Burland V., et al. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications in virulence [J]. Applied and Environmental Microbiology, 2000, 66:3310-3329.
    [60] Ffrench-Constant R., Bowen D. Photorhabdus toxins: novel biological insecticides [J].Current Opinion in Microbiology, 1999, 2:284-288.
    [61] Martin S., Paul J., Margaret O., et al. Interactions of insecticidal toxin gene products from Xenorhabdus nematophila PMFI296 [J].Appl. Envir. Microbiol, 2003, 69:3344-3349.
    [62] McInerney B.V., Gregson R.P., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity [J]. Journal of Natural Products, 1991, 54(3):774-784.
    [63] Blackburn M., Golubeva E., Bowen D., et al. A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca) and its histopathological effects on the midgut of Manduca sexta [J].Applied and EnvironmentalMicrobiology,1998,64:3036-3041.
    [64] Chen G.H, Dunphy G.B., Webster, J.M. Antifungal activity of two Xenorhabdus Species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema Species and Heterorhabditis megidis[J]. Biological Control, 1994, 4:157-162.
    [65] Minshad A.A, Luc T., Maurice M. Antagonism between entomopathogenic fungi and bacterial symbionts of entomopathogenic nematodes [J].Bio control, 2005, 50(3):465-475.
    [66] 李骞.昆虫病原线虫共生菌 YL001 发酵液中抑菌活性物质初步研究[D].2006,西北农林科技大学硕士毕业论文.
    [67] 刘霞.昆虫病原线虫共生菌 YL001 菌株的代谢产物及其抑菌活性研究[D].2006,西北农林科技大学博士毕业论文.
    [68] Hu K.J., Li J.X., Webster J.M. 3, 5-Dihydroxy-4-isopropylstilbene: a selective nematicidal compound from the culture filtrate of Photorhabdus luminescens [J]. Canadian Journal of Plant Pathology, 1996, 18:104.
    [69] Hu K.J, Li J.X., Webster J.M. Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbionts of entomopathogenic nematodes[J]. Nematology, 1999, 1:457-469.
    [70] Fallon D.J., Kaya H.K., Gaugler R., et al. Effect of Steinernema feltiae-Xenorhabdus bovienii insect pathogen complex on Meloidogyne javanica [J]. Nematology, 2004, 6(5):671-680.
    [71] McInerney B.V., Taylor W.C., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity [J]. Journal of Natural Products, 1991, 54:785-795.
    [72] Webster J.M., Li J., Chen G. Anticancer property of dithiolopyrrolones [J]. US patent No. 6, 020, 360, February 1, 2000.
    [73] Chen G.H, Maxwell P., Dunphy G.B., et al. Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes[J]. Nematologica, 1996, 42:124-127.
    [74] Sundar L., Chang F.N. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophila[J]. Journal of General Microbiology, 1993,139:3139-3148.
    [75] Paul V.J., Frautschy S., Fenical W., et al. Antibiotics in microbial ecology. Isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp[J]. Journal of Chemical Ecology, 1981, 7:589-597.
    [76] Li J.X., Chen G.H., Webster J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophila (Enterobacteriaceae) [J]. Canadian Journal of Microbiology, 1997, 43:770-773.
    [77] 周启,王道本.农用抗生素和微生物杀虫剂[M].北京,中国农业出版社, 1995.
    [78] 储炬,李友荣.现代工业发酵调控学[M].北京,化学工业出版社, 2002.
    [79] Chen G., Maxwell P., Dunphy G.B., et al. Cultivation conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes [J]. Nematologica., 1996, 42: 124-127 .
    [80] Li J.X., Chen G.H., Webster J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae) [J]. Can. J. Microbiol., 1997, 43: 770-773.
    [81] Hu K.J, Li J.X., Webster J.M. Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UV and TLC-UV methods[J]. Journal of Chromatography B Biomedical Applications, 1997, 703:177-183.
    [82] Maxwell P.W., Chen G., Webster J.M. et al. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophila[J]. Applied and Environmental Microbiology, 1994, 60:715-721.
    [83] Hu K.J., Webster J.M. Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-Heterorhabditis infected Galleria mellonella larvae [J]. FEMS Microbiological Letters, 2000, 89:219-223.
    [1] Forst S., Clarke D. Bacteria-nematode symbiosis, In: Gaugler R. (Ed.), Entomopathogenic Nematology [M]. New York, CABI Publishing, 2002, 57-78.
    [2] Martens E.C., Heungens K., Goodrich-Blair H. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria [J]. J. Bacteriol, 2003, 185: 3147-3154.
    [3] Webster J.M., Chen G., Hu K., et al. Bacterial metabolites, In: Gaugler R. (Ed.), Entomopathogenic Nematology [M]. New York, CABI Publishing, 2002.
    [4] Ji D., Yi Y., Kang G.H., et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major pant-pathogenic bacteria [J]. FEMS Microbiology Letters, 2004, 239: 241-248.
    [5] Hffrench R., Dowlingb A., Waterfieldb N.R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture [J]. Toxicon, 2007, 49: 436-451.
    [6] Webster J.M., Li J., Chen G. Anticancer property of dithiolopyrrolones [P]. US, 6020360. 2000-02-01.
    [7] Webster J.M., Chen G., Hu K., et al. Bacterial metabolites. In: Gaugler R. (Ed.), Entomopathogenic Nematology [M]. Wallingford, UK, CAB International Inc., 2002, 99-114.
    [8] Brunel B., Givaudan A., Lanois A., et al. Fast and accurate Identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes [J]. Appl Environ Microbiol, 1997, 63: 574-580.
    [9] liu J., Berry R.E., Blouin M.S. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA Sequence [J]. Journal of Invertebrate Pathology, 2001, 77: 87-91.
    [10] Somvanshi S.S., Lang E., Ganguly S., et al. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp.nov, symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000 [J]. Systematic and Applided Microbiology, 2006, 29: 519-526.
    [11] 王永宏,张兴.2 株昆虫病原线虫共生菌的分离与初步分类鉴定[J].西北农林科技大学学报:自然科学版, 2006, 34 (12): 174-180.
    [12] 许贤,王永宏,刘霞等. 昆虫病原线虫共生菌筛选及其发酵液抑菌活性初步研究[J].西北农林科技大学学报:自然科学版, 2006, 34 (7): 50-54.
    [13] [美] 萨姆布鲁克 J.,拉塞尔 D.W.著,黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    [14] Boemare N.E. Biology, taxonomy, systematics, In: Gaugler R. (Ed.), EntomopathogenicNematology. New York, CABI Publishing, 2002, 35-56.
    [15] Lengyel K., Lang E., Fodor A., et al. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.. Systematic and Applided Microbiology, 2005, 28: 115-122.
    [1] Thomas G.M., Poinar G.O. Xenorhabdus gen. nov., a genus of entomopahogenic, nematophilic bactria of the family Enterobacteriaceae [J]. International Journal of Systematic Bacteriology, 1979, 29: 352-360.
    [2] Forst S., Dowds B., Boemare N.E., et al. Xenorhabdus spp. and Photorhabdus spp.: bugs that kill bugs [J]. Annu. Rev. Microbiol., 1997, 51: 47-72.
    [3] Webster J.M., Chen G., Hu K., et al. Bacterial metabolites. In: Gaugler R. (Ed.), Entomopathogenic Nematology [M]. CABI Publishing, New York, 2002, pp. 99-114.
    [4] Forst S., Clarke D. Bacteria-nematode symbiosis, In: Gaugler R. (Ed.), Entomopathogenic Nematology [M]. CABI Publishing, New York, 2002, pp. 57-78.
    [5] Hazir S., Kaya H.K., Stock S.P., et al. Entomopathogenic nematodes (Steinermatidae and Heterorhabditidae) for biological control of soil pests [J]. Turk. J. Biol., 2003, 27: 181-202.
    [6] Bowen D.J., Rocheleau T.A., Blackburn M., et al. Novel insecticidal toxins from the bacterium Photorhabdus luminescens [J]. Science, 1998, 6:2129-2132.
    [7] Dongjin D., Yi Y., Kang G.H., et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major pant-pathogenic bacteria [J]. FEMS Microbiology Letters, 2004, 239: 241-248.
    [8] Li J., Chen G., Webster J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae) [J]. Canadian Journal of Microbiol, 1997, 43: 770-773.
    [9] Hffrench R., Dowlingb A., Waterfieldb N.R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture [J]. Toxicon, 2007, 49: 436-451.
    [10] Hu K., Li J., Webster J.M. Nematicidal metaboiltes produced by Photorhabdus lumnescens, bacterial symbiont of entomopathogenic nematodes [J]. Nematology, 1999, 1:457-469.
    [11] Mcienerney B.V., Taylor W.C., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp.2. Benzopyran-1-one derivatives with gastroprotective activity [J]. Journal of Natural Products, 1991, 54: 785-795.
    [12] Webster J.M., Li J., Chen G. Anticancer property of dithiolopyrrolones: US, 6020360 [P]. 2000-02-01.
    [13] Mcienerney B.V., Gregson R.P., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp.1. Dithiolopyrrolone derivatives with antibiotic activity [J]. Journal of Natural Product, 1991, 54: 774-784.
    [14] 王永宏,张兴.2 株昆虫病原线虫共生菌的分离与初步分类鉴定[J].西北农林科技大学学报:自然科学版, 2006, 34(12): 174-180.
    [15] 许贤,王永宏,刘霞等. 昆虫病原线虫共生菌筛选及其发酵液抑菌活性初步研究[J]. 西北农林科技大学学报:自然科学版, 2006, 34(7): 50-54.
    [16] 郭小炜,冯俊涛,易晓华等.大花金挖耳内生真菌的分离及抑菌活性筛选[J]. 西北植物学报, 2007, 27(2): 377-383.
    [17] 刘霞.昆虫病原线虫共生菌 YL001 菌株的代谢物及其抑菌活性研究[D].西北农林科技大学博士士学位论文.
    [18] 农药室内生物测定试验准则[S]. 北京: 中国农业出版社, 2006.
    [19] 王永宏, 张兴. 2 株昆虫病原线虫共生菌代谢物的抑菌作用[J]. 西北农林科技大学学报:自然科学版, 2007, 35(2): 125-130.
    [20] 农业部农药检定所生测室编.农药田间药效试验准则(一)[M].北京:中国标准出版社,1999.
    [21] 慕立义.植物化学保护研究方法[M]. 北京:中国农业出版社, 1994.
    [22] 田丽娟,叶非.杀菌剂生物测定技术的发展[J].农药科学与管理, 2007, 28( 6).
    [23] 陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学工业出版社, 1996.1.
    [24] 倪长春,沈宙,顾必文等.杀菌剂生物筛选离体活体兼顾的重要性[J].浙江化工, 2000, 31: 61-63.
    [25] Ng K.K, Webster J.M. Antimycotic of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato [J]. Canadian Journal of Plant Pathology, 1997, 19(2): 123-132.
    [26] 杨秀芬,杨怀文,简恒.嗜线虫致病杆菌代谢物拮抗大豆疫霉[J].大豆科学, 2002, 21(4): 52-55.
    [27] 辛智海,邱礼鸿,崔龙等.线虫共生菌对水稻纹枯病和稻瘟病的抑菌活性[J].中山大学学报(自然科学版), 2004, 43(5): 69-72.
    [28] 林孔勋.杀菌剂毒理学[M].北京:中国农业出版社,1995.
    [29] Richardson W.H., Schmidt T.M., Nealson K.H. Identification of anthraquinone pigment and a hydroxystilbene antibiotic from xenorhabdus luminescens[J]. App1. Environ. Microbiol., 1988, 54: 1602-1605.
    [30] Sundar L., Chang F.N. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophila [J]. Journal of General Microbiology, 1993, 139: 3139-3148.
    [31] Boemare N.E, Boyer-Giglio M.H, Thaler J.O, et al. The phages and bacteriocins of Xenorhabdus spp, symbiont of the nematodes Steinernema spp and Heterorhabditis spp [M]. In: Bedding R.A., et al. Nematodes and the Biological Control of Insect Pests, Australia: CSIRO press, 1994, 137-145.
    [32] Webster J.M. The role of metabolites from the bacterial symbionts during nematode development [A]. In: Vllth International Colliquium on Invertebrate Pathology and Microbiol Control Japan, 1998, 136.
    [33] Isaacson P.J., Webster J.M. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave [J]. J. Invertebrate Pathology, 2002, 79: 146-153.
    [1] 李明华,杨秀芬,简恒等.嗜线虫致病杆菌 CB6 菌株对小菜蛾幼虫生物活性的研究[J].植物保护,2003,29(3):15-17.
    [2] 辛智海,邱礼鸿,崔龙等.线虫共生菌对水稻纹枯病和稻瘟病的抑菌活性[J].中山大学学报(自然科学版),2004,43(5):69-72.
    [3] 吕秋军,简恒,刘卫京等.从嗜线虫杆菌分离的叫噪衍生物抗肿瘤活性的研究[J].中国新药杂志,2002,11(11):850-852.
    [4] Akhurst R.J. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes [J]. International Journal of SystematicBacteriology, 1983, 33: 38-45.
    [5] 陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002, 97-100; 188-191.
    [6] N Y /T 1156. 2—2006.农药室内生物测定试验准则[S]. 北京:中国农业出版社,2006.
    [7] 许贤,王永宏,刘霞等.昆虫病原线虫共生菌筛选及其发酵液抑菌活性初步研究[J].西北农林科技大学学报:自然科学版, 2006, 34 (7): 50-54.
    [8] Ji D., Yi Y., Kang G.H., et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major pant-pathogenic bacteria [J]. FEMS Microbiology Letters, 2004, 239: 241-248.
    [9] 李明华,宫春波,王萍.嗜线虫致病杆菌 CB6 菌株培养特性的初步研究[J].微生物学杂志,2005,25(4):43-45.
    [10] 刘洪敏,钱海涛,董辉等.昆虫病原线虫共生菌 5-5 培养特性及杀虫活性研究[J].中国植保导航,2007,27(4):5-9.
    [1] Sharma D.C., Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods [J]. Bioresour. Technol., 2006, 97: 727-733.
    [2] Mao X.Z, Shen Y.L., Yang L., et al. Optimizing the medium compositions for accumulation of the novel FR-008/Candicidin derivatives CS101 by a mutant of Streptomyces sp. using statistical experimental methods [J]. Process Biochem., 2007, 42: 878-883.
    [3] Imandi S.B., Bandaru V.V.R., Somalanka S.R., et al. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste [J]. Bioresour. Technol., 2008, 99: 4445-4450.
    [4] Xu X., Wang Y.H., Liu X., et al. Preliminary study on the inhibition activity of fermented liquid and screening of entomopathogenic nematodes symbiotic bacterium [J]. Jour. of Northwest Agri. and For.: Nat. Sci. Ed., 2006, 34: 174-180.
    [5] Wang Y.H., Li Y.P., Zhang Q., et al. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization [J]. Bioresour. Technol., 2008, 99: 1708-1715.
    [6] Akhurst R.J. Antibiotic activity of Xenorhabdus spp, bacteria symbiotically associated with insect pathogenic nematodes of the families hettrorhabditidae and steinernematidae[J]. J. Gen. Microbiol., 1982, 128: 3061-3065.
    [7] Sundar L., Chang F.N. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus [J]. Journal of General Microbiology, 1993, 139: 3139-3148.
    [8] Akhurst R.J. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes [J]. International Journal of Systematic Bacteriology, 1983, 33: 38-45.
    [9] Maxwell P.W., Chen G., Webster J.M., et al. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus [J]. Appl. Environ. Microbiol., 1994, 60: 715-721.
    [10] Plackett R.L., Burman J.P. The design of optimum multifactorial experiments [J]. Biometals., 1946, 33: 305-325.
    [11] Kalil S.J., Maugeri F., Rodrigues M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochemistry, 2000, 35: 539-550
    [12] Ji D., Yi Y., Kang G., et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria [J]. FEMS Microbiol. Lett., 2004, 239: 241-248.
    [13] Yang X.F., Yang H.W., Jian H., et al. Effect of cultivation conditions on antibiotic production of Xenorhabdus nematophilus [J]. J. Chin. Microbiol, 2001, 28: 12-16.
    [14] Yang X.F., Qiu D.W., Jiao N.N., et al. Cultural medium and cultivation conditions of Xenorhabdus sp strain D43 [J]. Chin. J. Biol. Control., 2006, 22: 58-62.
    [15] Imandi S.B., Bandaru V.V.R., Somalanka S.R., et al. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste [J]. Bioresour. Technol., 2008, 99: 4445-4450.
    [16] Kaushik R., Saran S., Isar J., et al. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus [J]. J. Mol. Catal. B: Enzym., 2006, 40: 121-126.
    [17] Kumar P., Satyanarayana T. Optimization of cultivation variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods [J]. Bioresour. Technol., 2007, 98: 1252-1259.
    [18] Banik R.M., Santhiagu A., Upadhyay S.N. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology [J]. Bioresour. Technol., 2007, 98: 792-797.
    [19] Lotfy W.A., Ghanem K.M., El-Helow E.R. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs [J]. Bioresour. Technol., 2007, 98: 3470-3477.
    [20] Webster J.M., Chen G., Hu K., et al. Bacterial metabolites. In: Gaugler R. (ed.), Entomopathogenic Nematology [M]. CABI Publishing, New York, 2002, pp. 99-114.
    [21] Paul V.J., Frautschy S., Fenical W., et al. Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp [J]. J. Chem. Ecol., 1981, 7: 589-597.
    [22] McInerney B.V., Gregson R.P., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity [J]. J. Nat. Prod., 1991a, 54: 774-784.
    [23] McInerney B.V., Taylor W.C., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastro protective activity [J]. J. Nat. Prod., 1991b, 54: 785-795.
    [24] Li J.X., Hu K., Webster J.M. Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae) [J]. Chem. Heterocyclic Compds., 1998, 34: 1561-1570.
    [25] Li J.X., Chen G.H., Webster J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae) [J]. Can. J. Microbiol., 1997, 43: 770-773.
    [26] Akhurst R.J. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae [J]. J. Gen. Microbiol., 1982, 128: 3061-3065.
    [27] Sundar L., Chang F.N. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus [J]. J. Gen. Microbiol., 1993, 139, 3139-3148.
    [28] Doull J.L., Vining L.C. Nutritional control of actinorhodin production by Streptomyces coelicolor A3 (2): suppressive effects of nitrogen and phosphate [J]. Appl. Microbiol. Biotechnol., 1990, 32: 449-454.
    [29] Elibol M., Mavituna F. Effect of sucrose on actinorhodin production by Streptomyces coelicolor A3 (2) [J]. Process Biochem., 1998, 33: 307-311.
    [30] Elibol M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology [J]. Process Biochem., 2004, 39: 1057-1062.
    [31] 周启,王道本.农用抗生素和微生物杀虫剂[M].北京,中国农业出版社, 1995.
    [32] 陈坚,李寅.发酵过程优化原理与实践[M].北京,化学工业出版社, 2001.
    [33] 储炬,李友荣.现代工业发酵调控学[M].北京,化学工业出版社, 2002.
    [34] Chen G., Maxwell P., Dunphy G.B., et al. Cultivation conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes. Nematologica., 1996, 42: 124-127 .
    [35] 褚以文.微生物培养基优化方法及其 OPTI 优化软件[J].国外医药抗生素分册,1999,20(2):58-66.
    [36] 蔡友华,范文霞,刘学铭等.响应面法优化巴西虫草发酵培养基的研究[J].食用菌学报,2007,14 (2): 55-59.
    [37] 郝学财,余晓斌,刘志钰等.响应面方法在优化微生物生物培养基中的应用[J].食品研究与开发, 2006, 27(1): 38-41.
    [38] 阎金勇,杨江科,闫云君.单因子-响应面法优化白地霉 Y162 产脂肪酶条件[J].中国生物工程杂志,2007,27(8):69-75.
    [39] Kalil S.J., Maugeri F., Rodrigues M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochemistry, 2000, 35: 539-550.
    [40] 欧宏宇,贾士儒.SAS 软件在微生物培养条件优化中的应用[J].天津轻工业学院学报,2001,36: 14-17.
    [1] Akhurst R.J. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes [J]. International Journal of Systematic Bacteriology, 1983, 33: 38-45.
    [2] 陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002.
    [3] Wang Y.H., Li Y.P., Zhang Q., et al. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization [J]. Bioresour. Technol., 2008, 99: 1708-1715.
    [4] Maxwell P.W., Chen G., Webster J.M., et al. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus [J]. Appl. Environ. Microbiol., 1994, 60: 715-721.
    [5] 伦世仪.生化工程北京[M].北京:中国轻工业出版社,1993.
    [6] 陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2001.
    [7] Isaacson P.J., Webster J.M. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae) [J]. Journal of Invertebrate Pathology, 2002, 79: 146-153.
    [8] Ji D.J., Yi Y.K., Kang G.H., et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria[J]. FEMS Microbiology Letters, 2004, 239: 241-248.
    [9] 范代娣.细胞培养与蛋白质工程[M].北京:化学工业出版社,2000.
    [10] Li J., Chen G., Webster J.M., et al. Antimicrobial metabolites from a bacterial symbiont [J]. Journal of Natural Production, 1995, 58: 1081-1086.
    [11] Li J., Hu K., Webster J.M. Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae) [J]. Chemistry of Heterocyclic Compounds, 1998, 34: 1561-1570.
    [1] 李骞.昆虫病原线虫共生菌 YL001 发酵液中抑菌活性物质初步研究[D].2006,西北农林科技大学硕士毕业论文.
    [2] 刘霞.昆虫病原线虫共生菌 YL001 菌株的代谢产物及其抑菌活性研究[D].2006,西北农林科技大学博士毕业论文.
    [3] McInerney B.V., Gregson R.P., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity [J]. Journal of Natural Products, 1991, 54(3):774-784.
    [4] McInerney B.V., Taylor W.C., Lacey M.J., et al. Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity [J]. Journal of Natural Products,1991,54:785-795.
    [5] Richardson W.H., Schmidt T.M., Nealson K.H. Identification of anthraquinone pigment and a hydroxystilbene antibiotic from xenorhabdus luminescens[J]. App1. Environ. Microbiol. 1988, 54: 1602-1605.
    [6] Sundar L., Chang F.N. Antimicrobial activity and biosynthesis of indole antibioticsproduced by Xenorhabdus nematophila[J]. Journal of General Microbiology, 1993, 139:3139-3148.
    [7] Li J.X., Chen G.H., Wu H.M., et al. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens [J]. Applied and Environmental Microbiology, 1995, 61:4329-4333.
    [8] Sztaricskai F., Dinya Z., Batta Gy., et al Anthraquinones produced byenterobacters and nematodes[J].Acta Chem.Hungar.Models Chem.,129:697-707.
    [9] Webster J.M. The role of metabolites from the bacterial symbionts during nematode development [A].In:Vllth International Colliquium on Invertebrate Pathology and Microbiol Control Japan,1998,136.
    [10] Isaacson P.J., Webster J.M. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave[J].J Invertebrate Pathology, 2002, 79:146-153.
    [11] Chen G. Antimicrobial activity of the nematode symbionts, Xenorhabdus and Photorhabdus (Enterobacteriaceae) and the discover of two novel groups of antimicrobial substances, Nematophin and Xenorxides [D]. Ph.D. Thesis,Simon Fraser University,British Colunbia,Canada.1996.
    [12] Dongjin Ji, Youngkeun Yi, Ga-Hwa Kang, et al. Identification of an antibacterial compound,benzylideneacetone,from Xenorhabdus nematophila against major plant-pathogenic bacteria[J]. FEMS Microbiology Letters, 2004, 239:241-248.
    [13] Li, J.X., Chen, G.H. and Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophila (Enterobacteriaceae) [J]. Canadian Journal of Microbiology,1997,43:770-773.
    [14] Paik S., Park M.K, Jhun S.H., et al. Isolation and Synthesis of Tryptamine Derivatives from a Symbiotic Bacterium Xenorhabdus nematophila PC[J]. Bull. Korean Chem. Soc. 2003, 24(5): 623-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700