用户名: 密码: 验证码:
ZnO溶胶—凝胶电化学生物传感器的构建及精准甄别肽类兴奋剂rhEPO/EPO的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     构建超灵敏ZnO溶胶-凝胶电化学生物传感器,实现肽类兴奋剂rhEPO/EPO的快速精准甄别,并通过系列实验验证传感器甄别检测rhEPO/EPO的有效性和优越性。
     方法:
     1.将乙酸锌溶于无水乙醇中,在超声波作用下加入氢氧化锂,制备ZnO溶胶-凝胶溶液。
     2.利用电极表面化学修饰技术,将促红细胞生成素受体通过ZnO溶胶-凝胶固定于玻碳电极表面,制备促红细胞生成素受体修饰电极,作为传感器的识别元件。
     3.以促红细胞生成素受体修饰电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极,构建成促红细胞生成素和/或重组人促红细胞生成素电化学生物传感器。
     4.以含有2mmol/L K_3Fe(CN)_6/K_4Fe(CN)_6的磷酸盐缓冲液(6.2~9.0,0.05mol/L)为测试底液,采用循环伏安法进行扫描测定,电位扫描范围为-0.9V~0.7V,电位扫描速率为10~100mv/s,进修样品检测。
     5.根据电位0.14~0.17V处的峰电流和促红细胞生成素标准曲线计算样品溶液中促红细胞生成素的浓度,和/或根据电位0.06~0.09V处的峰电流和重组人促红细胞生成素标准曲线计算样品溶液中rhEPO/EPO的浓度。根据电流的变化和rhEPO/EPO浓度之间对应的关系来确定生物传感器的检测灵敏度及检测范围。
     6.通过系列实验研究,探索ZnO溶胶-凝胶电化学生物传感器检测rhEPO/EPO灵敏度、重复性、稳定性及特异性等传感器的性能参数,并对rhEPO治疗患者的临床血清样本进行检测,并进行方法学比较。
     7.用三明治型“纳米金-ZnO溶胶凝胶-纳米金”为生物信号放大系统提高传感器的检测灵敏度,探索并优化两次纳米金电沉积的最佳时间和纳米金的反应浓度。
     结果:
     1.当ZnO溶胶-凝胶的贮备液与无水乙醇最佳稀释比为1:2, ZnO溶胶-凝胶与EPOR体积比为1:1,电极的溶胶-凝胶的最优pH值为9.0时修饰的ZnO溶胶-凝胶EPOR电极在杂交反应前后引起的峰电流响应变化值最大。
     2.自主创建的ZnO溶胶-凝胶电化学生物传感器在电解液的最优pH值为7.4,工作电位为-0.3V-0.7V, EPOR浓度为1μg/L,孵育时间为20min时,传感器杂交反应前后引起的电流响应变化值最大。
     3.利用ZnO溶胶-凝胶具有多孔性、高的热稳定性和化学惰性及良好的生物兼容性等优点,采用循环伏安法进行扫描测定,由于EPO与rhEPO有等电点的差异,导致EPOR-rhEPO复合物与EPOR-EPO复合物的工作电位略有差异,从而将EPO和rhEPO精确甄别。
     4.随着EPO/rhEPO浓度从5pg/L到5μg/L变化时,孵育前后所引起的电流响应变化值先上升后趋于饱和,以500ng/L为饱和点;在5pg/L到500ng/L的EPO/rhEPO浓度范围内,rhEPO的线性回归方程为:y=1.5737x+14.765,相关系数为0.9935; EPO的线性回归方程为:y=2.1674x+17.691,相关系数0.9966。
     5. EPOR浓度分别是0.10、1.00及10.00μg/L时,天内重复性和天间重复性的实验CV值分别为3.99%和7.21%,3.29%和5.15%,6.76%和8.44%。上述三种不同EPOR浓度的天内和天间重复性实验平均CV值分别是4.39%和6.13%,均小于10%。
     6. EPOR修饰传感器4℃避光放置20天、40天、50天后其响应电流分别为初始值的95%、82%、77%,变异系数分别为是2.79%、7.59%、10.50%。传感器放置60天后的电流响应曲线与裸电极的电流响应极其相似,传感器响应电流的变化较小。
     7.传感器分别检测EPO、rhEPO和干扰物质的实验结果表明,在仅含有干扰物质的溶液中孵育的电极在孵育前后响应电流基本保持不变,而在含有EPO和rhEPO溶液中孵育的电极在孵育前后响应电流变化值(I)分别为8.2μA和9.7μA。
     8. HAuCl4溶液第一次电沉积时间为60s,第二次电沉积时间为30s,HAuCl4溶液浓度为10mmol/L时,传感器的响应电流变化值最大(I)。
     9.通过实验的优化,自主创建的纳米金溶胶-凝胶电化学生物传感器的检测rhEPO/EPO线性范围是5pg/L到500n g/L,rhEPO的线性回归方程为:y=3.7068x+31.796,相关系数为0.9912,EPO的线性回归方程为:y=3.4389x+29.685,相关系数0.9925。
     10.纳米金/凝胶受体/纳米金修饰电极4℃避光放置10天、30天、50天、70天后其响应电流分别为初始值的97.45%、94.33%、83.29%、75.07%,变异系数分别为是1.83%、2.57%、6.38%、10.48%。传感器放置80天后的峰电流变化较小,电流响应曲线与阴性电极的电流响应极其相似。
     11.纳米金/凝胶受体/纳米金生物传感器的EPOR浓度为0.1.00μg/L时,其天内和天间重复性实验的CV值分别为2.22%和4.32%;EPOR浓度是1.00μg/L时,天内及天间的重复性实验CV值分别是2.25%和4.17%;当EPOR浓度是100.00μg/L时,其天内和天间重复性实验的CV值分别为2.40%和3.68%%。
     12.纳米金/凝胶受体/纳米金修饰电化学生物传感器分别检测EPO、rhEPO和干扰物质的实验结果表,而在含有rhEPO和EPO溶液中孵育的电极在孵育前后响应电流变化值(I)分别为29.50μA和27.31μA,在含有rhEPO及干扰物质和EPO及干扰物质溶液中中孵育的电极在孵育前后响应电流变化值(I)分别为28.63μA和26.42μA,在仅含有干扰物质的溶液中孵育的电极在孵育前后响应电流基本保持不变。
     10.根据传感器的线性曲线计算rhEPO治疗的患者及健康志愿者血清样本中浓度,将血清样品浓度倍比稀释,rhEPO浓度在0.125ng/L~125ng/L的范围内时,其线性回归方程为:y=3.647x+13.555,相关系数为0.9893; EPO浓度在0.073ng/L~73ng/L的范围内时,其线性回归方程为:y=3.180x+12.380,相关系数0.9891。
     结论:
     1.自主创建了rhEPO/EPO精确甄别的电化学生物传感器,利用二者只有等电点的细微差别进行检测,实现rhEPO和EPO的快速精确区分。
     2. ZnO溶胶-凝胶电化学生物传感器可达到pg/L级的检测限灵敏度,与其他检测方法相比,其检测灵敏度有了很大提高,并实现了rhEPO/EPO的快速甄别检测。
     3. ZnO sol-gel具有很强的吸附能力,并可使电极表面修饰的EPOR保持良好的生物活性,因而确保了传感器的稳定性。
     4.三种不同EPOR浓度的天间精密性实验的平均CV值为6.16%,略高于天内精密性实验的平均CV值3.89%,但二者均小于10%。因此,ZnO溶胶-凝胶电化学传感器具有良好的重复性,从而保证了检测结果的可靠性。
     5.自主构建的电化学生物传感器抗干扰能力强,对EPO和rhEPO具有良好的选择性,并能对EPO和rhEPO进行精确甄别。
     6. ZnO溶胶-凝胶电化学生物传感器实现了对临床标本中rhEPO/EPO的直接检测。与其他定量方法相比,ZnO溶胶-凝胶电化学生物传感器法不但对rhEPO/EPO进行了定量检测,而且还精确甄别,所用检测时间更短。
     7.纳米金颗粒与ZnO溶胶-凝胶相结合可以有效提高传感器的检测灵敏度,线性范围更宽,并且灵敏度、稳定性、重复性、特异性均较好。
Objectives:
     The aim of this study was to construct an ultrasensitive electrochemical biosensordetection system to rapidly detect the rhEPO/EPO, and to examine the superiority of thesystem by detecting the rhEPO/EPO.
     Methods:
     1. Zn (CH_3COO)22H_2O was weighed and added into absolute alcohol. Then,LiOH H_2O was weighed and added into absolute alcohol, followed by sonication at roomtemperature to facilitate dissolution.
     2. To prepare the recognition element of the novel sensor, the surface of a glassycarbon electrode (GCE) was modified with erythropoietin receptor (EPOR) using ZnOsol-gel as matrix.
     3. The rhEPO/EPO electrochemical biosensor system was made up of an EPORmodified GCE as working electrode, a saturated calomel electrode as reference electrode, aplatinum electrode as counter electrode.
     4.2mmol/L K_3[Fe(CN)_6]/K_4[Fe(CN)_6] PBS solution (pH6.2~9.0,0.05mol/L) as testbase solution. The electrochemical properties of EPOR modified electrodes werecharacterized by cyclic voltammetry. The electric potential scanned ranged between-0.9Vand0.7V, and the electric potential scanning speed was10~100mV s-1.
     5. The sample solution's erythropoietin concentration is calculated according to thepeak current at the potential of0.14V~0.17V and the erythropoietin standard curve, and/or the sample solution's concentration of recombinant human erythropoietin is calculatedaccording to the peak current at the potential of0.06V~0.09V and the recombinant humanerythropoietin standard curve, and according to the correspondence between the current change and rhEPO/EPO to determine the detection sensitivity and detection range of theelectrochemical biosensor.
     6. To explore the sensitivity, specificity, reproducibility and stability of the the ZnO sol-gel electrochemical biosensor to detects rhEPO/EPO through a series of experiments.
     7. sandwich-type nano-Au/ZnO sol-gel/nano-Au signal amplification to improve thedetection sensitivity of the biosensor, optimize time optimization for nano-Auelectrodeposition and concentration.
     Results:
     1. Optimum the dilution ratio of ZnO sol gel and absolute alcohol is1:2, the dilutionratio of ZnO sol-gel and receptor is1:1, when ZnO sol-gel pH is9.0, there caused thechanges in the value of the maximum peak current response.
     2. The most preferred pH is7.4, incubation time is20minutes, scanning potentialwithin-0.3V~0.7V, EPOR concentration is1μg/L affects the sensor's current responsemarkedly.
     3. The sol-gel facilitates maintenance of protein bioactivity, and it is also highlyporous, thermally stable, chemically inert and biocompatible. Because rhEPO and EPOhave different isoelectric points, rhEPO-EPOR complexes and EPO-EPOR complexesexhibit different working potentials. So, EPO and rhEPO can be discriminated accurately.
     4. The current response firstly enhanced and then tended gently for hybridization withrhEPO/EPO, when concentration of rhEPO/EPO varied from5pg/L to5μg/L, and500n g/Lwas the saturation point. The rhEPO statistic linear regression equation wasy=1.5737x+14.765among the range of rhEPO concentration from5pg/L to500ng/L and thecorrelating coefficient was0.9935. The EPO statistic linear regression equation wasy=2.1674x+17.691among the range of target concentration from5pg/L to500ng/L and thecorrelating coefficient was0.9966.
     5. The intraassay and interassay CV for the ZnO sol-gel electrochemical biosensorwere3.99%and7.21%for0.10μg/L,3.29%and5.15%for1.00μg/L,6.76%and8.44%for10.00μg/L respectively. The intraassay mean CV was4.39%and the interassay mean CVwas6.13%. Both the CVs were lower than10%.
     6. The response current of the EPOR modified biosensor was95%,82%, and77%of its original value after20d,40d, and50d of storage in the dark at4°C. Meanwhile, theEPOR modified biosensor with a coefficient of variability of2.79%,7.59%, and10.50%.After60d of storage, the current response curve of the EPOR modified sensor was verysimilar to that of the unmodified electrode.
     7. Shows the results of biosensor detection of EPO, rhEPO, and interfering substances,respectively.The response currents of the electrode remained largely unchanged before andafter incubation in solution containing interfering substances only. In contrast, afterincubation in solution containing EPO/rhEPO, the electrode's response current changevalue (I) was8.2μA and9.7μA, respectively.
     8. The first round of nano-Au electrodeposition is60s, the second round of nano-Auelectrodeposition is30s, nano-Au concentration is10mmol/L, and the sensor's currentreached its maximum.
     9. Under the optimal experimental conditions, various concentrations of rhEPO/EPOwere detected. The rhEPO statistic linear regression equation was y=3.7068x+31.796among the range of rhEPO concentration from5pg/L to500ng/L and the correlatingcoefficient was0.9912. The EPO statistic linear regression equation was y=3.4389x+29.685among the range of target concentration from5pg/L to500ng/L and the correlatingcoefficient was0.9925.
     10. The response current of the nano-Au-modified biosensor was97.45%,94.33%,83.29%and75.07%of its original value after10d,30d,50d,70d of storage in the dark at4°C. Meanwhile, the EPOR modified biosensor with a coefficient of variability of1.83%,2.57%,6.38%and10.48%. After80d of storage, the current response curve of the EPORmodified sensor was very similar to that of the unmodified electrode.
     11. The intraassay and interassay CV for nano-Au ZnO sol-gel electrochemicalbiosensor were2.22%and4.32%for0.10μg/L,2.25%and4.17%for1.00μg/L,2.40%and3.68%for10.00μg/L respectively.
     12. Shows the results of nano-Au-modified biosensor detection of EPO, rhEPO, andinterfering substances, respectively.The response currents of the electrode remained largelyunchanged before and after incubation in solution containing interfering substances only. Incontrast, after incubation in solution containing EPO/rhEPO, the electrode's response current change value (I) was29.50μA and27.31μA, respectively. After incubation insolution containing rhEPO and interfering substances, the electrode's response currentchange value (I) was28.63μA. After incubation in solution containing EPO andinterfering substances, the electrode's response current change value (I) was26.42μA.
     13. According to the standard curves of biosensor determined serum rhEPO and EPOconcentrations in a patient treated with rhEPO and a healthy volunteer. Then, serumsamples were diluted, generating analyte solutions with various concentrations of rhEPOand EPO. The rhEPO statistic linear regression equation was y=3.647x+13.555amongthe range of rhEPO concentration from0.125ng/L to125ng/L and the correlatingcoefficient was0.9893. The EPO statistic linear regression equation was y=3.180x+12.380among the range of target concentration from0.073ng/L to73ng/L and thecorrelating coefficient was0.9925.
     Conclusions:
     1. We prepared an electrochemical biosensor which allows fast and accuratediscrimination of rhEPO/EPO by utilizing the minor difference in isoelectric point betweenrhEPO and EPO.
     2. The detectability of the electrochemical biosensor was5pg/L. It was greatly moresensitive than other detection. It could quickly accurate discrimination rhEPO/EPO.
     3. ZnO sol-gel is highly absorbable and persistently maintains biological activity ofEPOR on the electrode surface.
     4. The intraassay CV showed very low SD(mean CV=3.89%) and the interassay CVhad a slightly higher SD(mean CV=6.16%). However, they were both lower than10%.Therefore, our study indicated that the reproducibility of the ZnO sol-gel electrochemicalbiosensor system was satisfactory.
     5. The biosensor exhibited strong resistance to interference and was highly selectivefor rhEPO and EPO.
     6. rhEPO/EPO from clinical samples could be directly detected with ZnO sol-gelelectrochemical biosensor. Biosensor was highly selective for rhEPO and EPO, and lesstime was consumed.
     7. The sensitivity was effectively improved and the detection time was significantly shortened by applying nano-Au complex to the ZnO sol-gel. The electrochemical biosensorhas a wider linear range, and have good sensitive, stability, reproducibility and specificity.
引文
[1] Lundby C, Robach P, Saltin B. The evolving science of detection of 'blood doping'.Br J Pharmacol,2012,165(5):1306-15.
    [2] Enserink M. Science at the Olympics. Does doping work. Science (80-),2008,321(5889):627.
    [3] Catlin DH, Murray TH. Performance-enhancing drugs, fair competition, andOlympic sport. JAMA,1996,276(3):231-7.
    [4] Gore CJ, Parisotto R, Ashenden MJ, et al. Second-generation blood tests to detecterythropoietin abuse by athletes. Haematologica,2003,88(3):333-44.
    [5] Lippi G, Franchini M, Guidi G. Second generation blood tests to detecterythropoietin abuse by athletes: effective but not preventive. Haematologica,2004,89(4):ELT05.
    [6] Reichel C. Recent developments in doping testing for erythropoietin. Anal BioanalChem,2011,401(2):463-81.
    [7] Gimenez E, Ramos-Hernan R, Benavente F, et al. Analysis of recombinant humanerythropoietin glycopeptides by capillary electrophoresis electrospray-time offlight-mass spectrometry. Anal Chim Acta,2012,709:81-90.
    [8] Wang H, Dou P, Lu C, et al. Immuno-magnetic beads-based extraction-capillaryzone electrophoresis-deep UV laser-induced fluorescence analysis of erythropoietin.J Chromatogr A,2012,1246:48-54.
    [9] Shen R, Guo L, Zhang Z, et al. Highly sensitive determination of recombinanthuman erythropoietin-alpha in aptamer-based affinity probe capillaryelectrophoresis with laser-induced fluorescence detection. J Chromatogr A,2010,1217(35):5635-41.
    [10] Gimenez E, Benavente F, de Bolos C, et al. Analysis of recombinant humanerythropoietin and novel erythropoiesis stimulating protein digests byimmunoaffinity capillary electrophoresis-mass spectrometry. J Chromatogr A,2009,1216(12):2574-82.
    [11] Kay RG, Creaser CS. Application of mass spectrometry-based proteomicstechniques for the detection of protein doping in sports. Expert Rev Proteomics,2010,7(2):185-8.
    [12] Tsivou M, Georgakopoulos DG, Dimopoulou HA, et al. Stabilization of human urinedoping control samples: a current opinion. Anal Bioanal Chem,2011,401(2):553-61.
    [13] Yu NH, Ho EN, Wan TS, et al. Doping control analysis of recombinant humanerythropoietin, darbepoetin alfa and methoxy polyethylene glycol-epoetin beta inequine plasma by nano-liquid chromatography-tandem mass spectrometry. AnalBioanal Chem,2010,396(7):2513-21.
    [14] Healy DA, Hayes CJ, Leonard P, et al. Biosensor developments: application toprostate-specific antigen detection. Trends Biotechnol,2007,25(3):125-31.
    [15] Moschou EA, Sharma BV, Deo SK, et al. Fluorescence glucose detection: advancestoward the ideal in vivo biosensor. J Fluoresc,2004,14(5):535-47.
    [16] Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: applicationto pesticide detection. Methods Mol Biol,2009,504:115-26.
    [17] Du D, Chen S, Cai J, et al. Electrochemical pesticide sensitivity test usingacetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gelinterface. Talanta,2008,74(4):766-72.
    [18] Li F, Chen W, Zhang S. Development of DNA electrochemical biosensor based oncovalent immobilization of probe DNA by direct coupling of sol-gel andself-assembly technologies. Biosens Bioelectron,2008,24(4):787-92.
    [19] Gu B, Xu C, Yang C, et al. ZnO quantum dot labeled immunosensor forcarbohydrate antigen19-9. Biosens Bioelectron,2011,26(5):2720-3.
    [20] Yao C, Zhu T, Tang J, et al. Hybridization assay of hepatitis B virus by QCMpeptide nucleic acid biosensor. Biosens Bioelectron,2008,23(6):879-85.
    [21] Deng K, Xiang Y, Zhang L, et al. An aptamer-based biosensing platform for highlysensitive detection of platelet-derived growth factor via enzyme-mediated directelectrochemistry. Anal Chim Acta,2013,759:61-5.
    [22] Wang Y, Chen M, Zhang L, et al. Rapid detection of human papilloma virus using anovel leaky surface acoustic wave peptide nucleic acid biosensor. BiosensBioelectron,2009,24(12):3455-60.
    [23] Ansari AA, Singh R, Sumana G, et al. Sol-gel derived nano-structured zinc oxidefilm for sexually transmitted disease sensor. Analyst,2009,134(5):997-1002.
    [24] Whitaker KM, Raskin M, Kiliani G, et al. Spin-on spintronics: ultrafast electron spindynamics in ZnO and Zn(1)-xCoxO sol-gel films. Nano Lett,2011,11(8):3355-60.
    [25] Liu Y, Morishima T, Yatsui T, et al. Size control of sol-gel-synthesized ZnOquantum dots using photo-induced desorption. Nanotechnology,2011,22(21):215605.
    [26] Huang N, Sun C, Zhu M, et al. Microstructure evolution of zinc oxide films derivedfrom dip-coating sol-gel technique: formation of nanorods through orientationattachment. Nanotechnology,2011,22(26):265612.
    [27] Bowers LD. The analytical chemistry of drug monitoring in athletes. Annu Rev AnalChem (Palo Alto Calif),2009,2:485-507.
    [28] Jelkmann W, Lundby C. Blood doping and its detection. Blood,2011,118(9):2395-404.
    [29] Reichel C, Gmeiner G. Erythropoietin and analogs. Handb Exp Pharmacol,2010,(195):251-94.
    [30] Klein E, Georges A, Brossaud J, et al. Erythropoietin: indications and measurement.Ann Biol Clin (Paris),2009,67(5):505-15.
    [31] Bossi A, Piletsky SA, Righetti PG, et al. Capillary electrophoresis coupled tobiosensor detection. J Chromatogr A,2000,892(1-2):143-53.
    [32] Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: applicationto pesticide detection. Methods Mol Biol,2009,504:115-26.
    [33] Iost RM, da SWC, Madurro JM, et al. Recent advances in nano-basedelectrochemical biosensors: application in diagnosis and monitoring of diseases.Front Biosci (Elite Ed),2011,3:663-89.
    [34] Arya SK, Saha S, Ramirez-Vick JE, et al. Recent advances in ZnO nanostructuresand thin films for biosensor applications: review. Anal Chim Acta,2012,737:1-21.
    [35] Emeline AV, Kuznetsov VN, Ryabchuk VK, et al. On the way to the creation of nextgeneration photoactive materials. Environ Sci Pollut Res Int,2012,19(9):3666-75.
    [36] Lukovic GD, Brankovic G, Pocuca NM, et al. Structural characterization ofself-assembled ZnO nanoparticles obtained by the sol-gel method fromZn(CH3COO)2.2H2O. Nanotechnology,2011,22(39):395603.
    [37] Whitaker KM, Raskin M, Kiliani G, et al. Spin-on spintronics: ultrafast electronspin dynamics in ZnO and Zn(1)-xCoxO sol-gel films. Nano Lett,2011,11(8):3355-60.
    [38] Bilecka I, Elser P, Niederberger M. Kinetic and thermodynamic aspects in themicrowave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS NANO,2009,3(2):467-77.
    [39] Jang YH, Yang SY, Jang YJ, et al. Ultrahigh density arrays of toroidal ZnOnanostructures by one-step cooperative self-assembly processes: mechanism ofstructural evolution and hybridization with Au nanoparticles. Chemistry (Easton),2011,17(7):2068-76.
    [40] Zhou Q, Lau S, Wu D, et al. Piezoelectric films for high frequency ultrasonictransducers in biomedicalapplications. Prog Mater Sci,2011,56(2):139-174.
    [41] Ansari AA, Singh R, Sumana G, et al. Sol-gel derived nano-structured zinc oxidefilm for sexually transmitted disease sensor. Analyst,2009,134(5):997-1002.
    [42] Ansari AA, Singh R, Sumana G, et al. Sol-gel derived nano-structured zinc oxidefilm for sexually transmitted disease sensor. Analyst,2009,134(5):997-1002.
    [43] Wei F, Liao W, Xu Z, et al. Bio/abiotic interface constructed from nanoscale DNAdendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small,2009,5(15):1784-90.
    [44] He Y, Wu Y, Mishra A, et al. Biosensor technology in aging research andage-related diseases. Ageing Res Rev,2012,11(1):1-9.
    [45] Tang D, Niessner R, Knopp D. Flow-injection electrochemical immunosensor forthe detection of human IgG based on glucose oxidase-derivated biomimeticinterface. Biosens Bioelectron,2009,24(7):2125-30.
    [46] Baby TT, Ramaprabhu S. Non-enzymatic amperometric glucose biosensor fromzinc oxide nanoparticles decorated multi-walled carbon nanotubes. J NanosciNanotechnol,2011,11(6):4684-91.
    [47] Devi GS, Subrahmanyam VB, Gadkari SC, et al. NH3gas sensing properties ofnanocrystalline ZnO based thick films. Anal Chim Acta,2006,568(1-2):41-6.
    [48] Bai S, Hu J, Li D, et al. Synthesis of quantum-sized ZnO nanoparticles in differentmedium and their application to NO2sensors. J Nanosci Nanotechnol,2013,13(2):980-3.
    [49] Ansari AA, Singh R, Sumana G, et al. Sol-gel derived nano-structured zinc oxidefilm for sexually transmitted disease sensor. Analyst,2009,134(5):997-1002.
    [50] Pan M, Fang G, Duan Z, et al. Electrochemical sensor using methimazole imprintedpolymer sensitized with MWCNTs and Salen-Co(III) as recognition element.Biosens Bioelectron,2012,31(1):11-6.
    [51] Wu NY, Gao W, He XL, et al. Direct electrochemical sensor for label-free DNAdetection based on zero current potentiometry. Biosens Bioelectron,2013,39(1):210-4.
    [52] Xu F, Ru HY, Sun LX, et al. A novel sensor based on electrochemicalpolymerization of diglycolic acid for determination of acetaminophen. BiosensBioelectron,2012,38(1):27-30.
    [53] Hosseini H, Ahmar H, Dehghani A, et al. A novel electrochemical sensor based onmetal-organic framework for electro-catalytic oxidation of L-cysteine. BiosensBioelectron,2013,42:426-9.
    [54] Du D, Wang J, Wang L, et al. Integrated lateral flow test strip with electrochemicalsensor for quantification of phosphorylated cholinesterase: biomarker of exposure toorganophosphorus agents. Anal Chem,2012,84(3):1380-5.
    [55] Afkhami A, Soltani-Felehgari F, Madrakian T, et al. Fabrication and application of anew modified electrochemical sensor using nano-silica and a newly synthesizedSchiff base for simultaneous determination of Cd2+, Cu2+and Hg2+ions in waterand some foodstuff samples. Anal Chim Acta,2013,771:21-30.
    [56] Wu GH, Wu YF, Liu XW, et al. An electrochemical ascorbic acid sensor based onpalladium nanoparticles supported on graphene oxide. Anal Chim Acta,2012,745:33-7.
    [57] Wang N, Zhou T, Wang J, et al. Sulfide sensor based on the room-temperaturephosphorescence of ZnO/SiO2nanocomposite. Analyst,2010,135(9):2386-93.
    [58] Rivera-Reyna N, Hinojosa-Reyes L, Guzman-Mar JL, et al. Photocatalyticalremoval of inorganic and organic arsenic species from aqueous solution using zincoxide semiconductor. Photochem Photobiol Sci,2013,12(4):653-9.
    [59] Eagleton HJ, Littlewood TJ. Update on the clinical use and misuse of erythropoietin.Curr Hematol Rep,2003,2(2):109-15.
    [60] Enserink M. Science at the Olympics. Does doping work. Science (80-),2008,321(5889):627.
    [61] Georgakopoulos C, Saugy M, Giraud S, et al. Analytical progresses of theInternational Olympic Committee and World Anti-Doping Agency Olympiclaboratories. Bioanalysis,2012,4(13):1549-63.
    [62] Murua A, Orive G, Hernandez RM, et al. Emerging technologies in the delivery oferythropoietin for therapeutics. Med Res Rev,2011,31(2):284-309.
    [63] Breymann C. Erythropoietin test methods. Baillieres Best Pract Res Clin EndocrinolMetab,2000,14(1):135-45.
    [64] Tsitsimpikou C, Kouretas D, Tsarouhas K, et al. Applications and biomonitoringissues of recombinant erythropoietins for doping control. Ther Drug Monit,2011,33(1):3-13.
    [65] Reichel C. Recent developments in doping testing for erythropoietin. Anal BioanalChem,2011,401(2):463-81.
    [66] Gutierrez-Gallego R, Llop E, Bosch J, et al. Surface plasmon resonance in dopinganalysis. Anal Bioanal Chem,2011,401(2):389-403.
    [67] Kay RG, Creaser CS. Application of mass spectrometry-based proteomicstechniques for the detection of protein doping in sports. Expert Rev Proteomics,2010,7(2):185-8.
    [68] Anderson CL, Wang Y, Rustandi RR. Applications of imaged capillary isoelectricfocussing technique in development of biopharmaceutical glycoprotein-basedproducts. Electrophoresis,2012,33(11):1538-44.
    [69] Jelkmann W, Lundby C. Blood doping and its detection. Blood,2011,118(9):2395-404.
    [70] Shiddiky MJ, Shim YB. Trace analysis of DNA: preconcentration, separation, andelectrochemical detection in microchip electrophoresis using Au nanoparticles. AnalChem,2007,79(10):3724-33.
    [71] Zhang D, Huarng MC, Alocilja EC. A multiplex nanoparticle-based bio-barcodedDNA sensor for the simultaneous detection of multiple pathogens. BiosensBioelectron,2010,26(4):1736-42.
    [72] Jiang W, Yuan R, Chai Y, et al. A novel electrochemical immunoassay based ondiazotization-coupled functionalized bioconjugates as trace labels for ultrasensitivedetection of carcinoembryonic antigen. Biosens Bioelectron,2011,26(5):2786-90.
    [73] Jang YH, Yang SY, Jang YJ, et al. Ultrahigh density arrays of toroidal ZnOnanostructures by one-step cooperative self-assembly processes: mechanism ofstructural evolution and hybridization with Au nanoparticles. Chemistry (Easton),2011,17(7):2068-76.
    [74] Aykut Y, Parsons GN, Pourdeyhimi B, et al. Synthesis of mixed ceramicMg(x)Zn(1-x)O nanofibers via Mg2+doping using sol-gel electrospinning.Langmuir,2013,29(12):4159-66.
    [75] Gu B, Xu C, Yang C, et al. ZnO quantum dot labeled immunosensor forcarbohydrate antigen19-9. Biosens Bioelectron,2011,26(5):2720-3.
    [76] Arya SK, Saha S, Ramirez-Vick JE, et al. Recent advances in ZnO nanostructuresand thin films for biosensor applications: review. Anal Chim Acta,2012,737:1-21.
    [77] Jelkmann W. Erythropoietin. J Endocrinol Invest,2003,26(9):832-7.
    [78] Restelli V, Wang MD, Huzel N, et al. The effect of dissolved oxygen on theproduction and the glycosylation profile of recombinant human erythropoietinproduced from CHO cells. Biotechnol Bioeng,2006,94(3):481-94.
    [79] Breymann C. Erythropoietin test methods. Baillieres Best Pract Res Clin EndocrinolMetab,2000,14(1):135-45.
    [80] Guan F, Uboh CE, Soma LR, et al. Differentiation and identification of recombinanthuman erythropoietin and darbepoetin Alfa in equine plasma by LC-MS/MS fordoping control. Anal Chem,2008,80(10):3811-7.
    [81] Reichel C. Recent developments in doping testing for erythropoietin. Anal BioanalChem,2011,401(2):463-81.
    [82] Anderson CL, Wang Y, Rustandi RR. Applications of imaged capillary isoelectricfocussing technique in development of biopharmaceutical glycoprotein-basedproducts. Electrophoresis,2012,33(11):1538-44.
    [83] Caldini A, Moneti G, Fanelli A, et al. Epoetin alpha, epoetin beta and darbepoetinalfa: two-dimensional gel electrophoresis isoforms characterization and massspectrometry analysis. Proteomics,2003,3(6):937-41.
    [84] Gokana A, Winchenne JJ, Ben-Ghanem A, et al. Chromatographic separation ofrecombinant human erythropoietin isoforms. J Chromatogr A,1997,791(1-2):109-18.
    [85] Lasne F, Martin L, Martin JA, et al. Isoelectric profiles of human erythropoietin aredifferent in serum and urine. Int J Biol Macromol,2007,41(3):354-7.
    [86] Diamanti-Kandarakis E, Konstantinopoulos PA, Papailiou J, et al. Erythropoietinabuse and erythropoietin gene doping: detection strategies in the genomic era.Sports Med,2005,35(10):831-40.
    [87] Takulapalli BR. Molecular sensing using monolayer floating gate, fully depletedSOI MOSFET acting as an exponential transducer. ACS NANO,2010,4(2):999-1011.
    [88] Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol,2009,20(1):55-62.
    [89] Wei F, Liao W, Xu Z, et al. Bio/abiotic interface constructed from nanoscale DNAdendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small,2009,5(15):1784-90.
    [90] Cash KJ, Ricci F, Plaxco KW. An electrochemical sensor for the detection ofprotein-small molecule interactions directly in serum and other complex matrices. JAm Chem Soc,2009,131(20):6955-7.
    [91] Lubin AA, Plaxco KW. Folding-based electrochemical biosensors: the case forresponsive nucleic acid architectures. Acc Chem Res,2010,43(4):496-505.
    [92] Zhang S, Hu R, Hu P, et al. Blank peak current-suppressed electrochemicalaptameric sensing platform for highly sensitive signal-on detection of smallmolecule. Nucleic Acids Res,2010,38(20):e185.
    [93] Liu Z, Zhang W, Zhu S, et al. Ultrasensitive signal-on DNA biosensor based onnicking endonuclease assisted electrochemistry signal amplification. BiosensBioelectron,2011,29(1):215-8.
    [94] Jeong YC, Jung B, Park JH, et al. A Fresnel zone plate biosensor for signalamplification with enhanced signal-to-noise ratio. Chem Commun (Camb),2012.
    [95] Gu B, Xu C, Yang C, et al. ZnO quantum dot labeled immunosensor forcarbohydrate antigen19-9. Biosens Bioelectron,2011,26(5):2720-3.
    [96] Wei Y, Li Y, Liu X, et al. ZnO nanorods/Au hybrid nanocomposites for glucosebiosensor. Biosens Bioelectron,2010,26(1):275-8.
    [97] Lei Y, Yan X, Zhao J, et al. Improved glucose electrochemical biosensor byappropriate immobilization of nano-ZnO. Colloids Surf B Biointerfaces,2011,82(1):168-72.
    [98] Arya SK, Saha S, Ramirez-Vick JE, et al. Recent advances in ZnO nanostructuresand thin films for biosensor applications: review. Anal Chim Acta,2012,737:1-21.
    [99] Palanisamy S, Cheemalapati S, Chen SM. Highly sensitive and selective hydrogenperoxide biosensor based on hemoglobin immobilized at multiwalled carbonnanotubes-zinc oxide composite electrode. Anal Biochem,2012,429(2):108-15.
    [100] Zhao M, Huang J, Zhou Y, et al. A single mesoporous ZnO/Chitosan hybridnanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron,2013,43:226-30.
    [101] Lasne F, Martin L, Crepin N, et al. Detection of isoelectric profiles of erythropoietinin urine: differentiation of natural and administered recombinant hormones. AnalBiochem,2002,311(2):119-26.
    [102] Lasne F, Martin L, Martin JA, et al. Isoelectric profiles of human erythropoietin aredifferent in serum and urine. Int J Biol Macromol,2007,41(3):354-7.
    [103] Mallorqui J, Segura J, de Bolos C, et al. Recombinant erythropoietin found in seizedblood bags from sportsmen. Haematologica,2008,93(2):313-4.
    [104] Li XM, Fu PY, Liu JM, et al. Biosensor for multiplex detection of two DNA targetsequences using enzyme-functionalized Au nanoparticles as signal amplification.Anal Chim Acta,2010,673(2):133-8.
    [105] Tan Y, Deng W, Chen C, et al. Immobilization of enzymes at high load/activity byaqueous electrodeposition of enzyme-tethered chitosan for highly sensitiveamperometric biosensing. Biosens Bioelectron,2010,25(12):2644-50.
    [106] Liu AL, Zhong GX, Chen JY, et al. A sandwich-type DNA biosensor based onelectrochemical co-reduction synthesis of graphene-three dimensionalnanostructure gold nanocomposite films. Anal Chim Acta,2013,767:50-8.
    [107] Li F, Feng Y, Dong P, et al. Gold nanoparticles modified electrode via simpleelectrografting of in situ generated mercaptophenyl diazonium cations fordevelopment of DNA electrochemical biosensor. Biosens Bioelectron,2011,26(5):1947-52.
    [108] Yeom SH, Kang BH, Kim KJ, et al. Nanostructures in biosensor--a review. FrontBiosci,2011,16:997-1023.
    [109] Lee SH, Sung JH, Park TH. Nanomaterial-based biosensor as an emerging tool forbiomedical applications. Ann Biomed Eng,2012,40(6):1384-97.
    [110] Han J, Zhuo Y, Chai YQ, et al. Novel electrochemical catalysis as signal amplifiedstrategy for label-free detection of neuron-specific enolase. Biosens Bioelectron,2012,31(1):399-405.
    [111] Ahmed MU, Idegami K, Chikae M, et al. Electrochemical DNA biosensor using adisposable electrochemical printed (DEP) chip for the detection of SNPs fromunpurified PCR amplicons. Analyst,2007,132(5):431-8.
    [112] Xu W, Xue X, Li T, et al. Ultrasensitive and selective colorimetric DNA detectionby nicking endonuclease assisted nanoparticle amplification. Angew Chem Int EdEngl,2009,48(37):6849-52.
    [113] Xuan F, Luo X, Hsing IM. Sensitive immobilization-free electrochemical DNAsensor based on isothermal circular strand displacement polymerization reaction.Biosens Bioelectron,2012,35(1):230-4.
    [114] Ho JA, Lin YC, Wang LS, et al. Carbon nanoparticle-enhancedimmunoelectrochemical detection for protein tumor marker with cadmium sulfidebiotracers. Anal Chem,2009,81(4):1340-6.
    [115] Li H, Wei Q, He J, et al. Electrochemical immunosensors for cancer biomarker withsignal amplification based on ferrocene functionalized iron oxide nanoparticles.Biosens Bioelectron,2011,26(8):3590-5.
    [116] Tong P, Zhang L, Xu JJ, et al. Simply amplified electrochemical aptasensor ofochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron,2011,29(1):97-101.
    [117] Li YJ, Ma MJ, Zhu JJ. Dual-signal amplification strategy for ultrasensitivephotoelectrochemical immunosensing of alpha-fetoprotein. Anal Chem,2012,84(23):10492-9.
    [118] Cao X, Wang N, Jia S, et al. Bimetallic AuPt nanochains: Synthesis and theirapplication in electrochemical immunosensor for the detection of carcinoembryonicantigen. Biosens Bioelectron,2013,39(1):226-30.
    [119] Li J, Lin XQ. Electrodeposition of gold nanoclusters on overoxidized polypyrrolefilm modified glassy carbon electrode and its application for the simultaneousdetermination of epinephrine and uric acid under coexistence of ascorbic acid. AnalChim Acta,2007,596(2):222-30.
    [120] Han J, Zhuo Y, Chai YQ, et al. Highly conducting gold nanoparticles-graphenenanohybrid films for ultrasensitive detection of carcinoembryonic antigen. Talanta,2011,85(1):130-5.
    [121] Li L, Wang S, Yang T, et al. Electrochemical growth of gold nanoparticles onhorizontally aligned carbon nanotubes: a new platform for ultrasensitive DNAsensing. Biosens Bioelectron,2012,33(1):279-83.
    [122] Wang C, Tan X, Chen S, et al. Highly-sensitive cholesterol biosensor based onplatinum-gold hybrid functionalized ZnO nanorods. Talanta,2012,94:263-70.
    [1]王云霞,张立群,王珏,等.漏声表面波生物传感器直接快速检测病原体DNA的实验研究[J].中华医院感染学杂志,2010,(11):1516-1519.
    [2]夏涵,王丰,黄庆,等.纳米金型压电石英DNA传感器的电化学阻抗谱研究[J].中华医院感染学杂志,2010,(11):1520-1523.
    [3] Zhou F, Lu M, Wang W, et al. Electrochemical immunosensor for simultaneousdetection of dual cardiac markersbased on a poly(dimethylsiloxane)-gold nanoparticlescomposite microfluidic chip:a proof of principl[J]e. Clin Chem,2010,56(11):1701-7.
    [4]李博,郑磊,王前,等.电化学DNA生物传感器设计及在医学检验中的应用进展.分子诊断与治疗杂志,2011,3(1):46-50.
    [5]刘艳.我国电化学生物传感器的研究进展.重庆科技学院学报,2010,6(12):153-155.
    [6]程欲晓,金利通.电化学生物传感器快速检测大肠杆菌的研究进展[J].化学传感器,2009,29(1):3-8.
    [7]黄强,刘红英,方宾.电化学DNA生物传感器研究的应用进展. PROGRESS INCHEMISTRY2009,5(21):1052-1059.
    [8] Baeumner A J, Cohen R N, Miksic V, et al. RNA biosensor for the rapid detection ofviable Escherichia coli in drinking water [J]. Biosens. Bioelectron.,2003,18(4):405-413.
    [9] Arora K, Prabhakar N, Chand S, et al. Escherichia coligenonsensor based onpolyaniline [J]. Anal. Chem.,2007,79(16):6152-6158.
    [10]刘志敏,李哲建,康宁,等.基于纳米MnO2的免标记型DNA电化学.分析测试学报,2008,12(27):1269-1272.
    [11]蔡怡珊,刘海涛,刘爱林,等.基于电化学交流阻抗技术的DNA生物传感器对军团菌基因检测. PART B: CHEM. ANAL,2011,9(48):1090-1093.
    [12] Ansari A A, Singh R, Sumana G, et al. Sol-gel derived nanostructured zincoxide filmfor sexually transmitted diseasesensor[J]. Analyst,2009,134(5):997-1002.
    [13] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridiza2tion at disposablegraphite electrodes modified with carbon nanotubes [J]. Anal Chem,2006,78(18):6656-6659.
    [14] Wang J, Nielsen PE, Jiang M, et al. Mismatch sensitive hy2bridization detection bypeptide nucleic acids immobilized on a quartzcrystal microbalance [J]. Anal Chem,1997,69:5200-5204.
    [15]蔡军,艾仕云,殷焕顺,等.基于PAMAM/聚2,6-吡啶二甲酸膜DNA电化学生物传感器的制备及对禽流感的研究[J].化学学报,2009,67(19):2227-2232.
    [16]时伟杰,蔡军,艾仕云.基于树状高分子的DNA电化学传感器对禽流感病毒的检测[J].化学传感器,2009,29(2):56-61.
    [17]万红艳,陈圣根,祝凤梅.检测急性早幼粒细胞白血病PML-RARa融合基因的DNA传感器研制[J].分析科学学报,2009,25(1):71-74.
    [18] Ensafi A A, Taei M, Rahmani H R, et al. Sensitive DNA impedance biosensor fordetection of cancer, chroniclymphocytic leukemia, based on gold nanoparticales goldmodified electrode[J]. Electrochemica Acta,2011,56(24):8176-8183.
    [19]杨双,马军武*.细胞传感器检测技术研究进展. Journal of AnhuiAgri Sci2010,38(33):18673-18674,18677.
    [20] Rider T H, Petrovick M S, Nargi F E, et al. A B cell-based sensor for rapididentification of pathogens[J]. Science,2003,301:213-215.
    [21] Kintzios S E. Cell-based biosensors in proteomic analysis[J]. Front Drug Des Discov,2006,2:225-239.
    [22] Kintzios S, Pistola E, Panagiotopoulos P, et al. Bioelectric recognition assay(BERA)[J]. Biosens Bioelectron,2001,16:325-336.
    [23] Labbe K, Saleh M. Cell death in the host response to infection [J]. Cell Death Differ,2008,15:1339-1349.
    [24] Parvizm, Gross G W. Quantification of zinc toxicity using neuronal networks onmicroelectrode arrays [J]. Neurotoxicology,2007,28:520-531.
    [25] Slaughter G E, HOBSON R. An impedmietric biosensor based on PC12cells for themonitoring of exogenous agents[J]. Biosens Bioelectron,2009,24:1153-1158.
    [26] Tong C, Shi B, Xiao X, et al. An annex in V based biosensor for quantitativelydetecting early apoptotic cells[J]. Biosens Bioelectron,2008,24:1777-1782.
    [27] Fidel F G, Mascini M, Tothill I E, et al. Immunomagnetic separation with mediatedflow injection analysis amperometric detection of viable Escherichia coli O157[J].Anal. Chem.,1998,70(11):2380~2386.
    [28] Cowell D C, Dowman A A, Lewis R J, et al. The rapid potentiometric detection ofcatalase positive microorganisms[J]. Biosens. Bioelectron.,1994,9(2):131-138.
    [29] Sippy N, Luxton R, Lewis R J, et al. Rapid electrochemical detection andidentification of catalase positive microorganisms [J]. Biosens. Bioelectron.,2003,18(5-6):741-749.
    [30] Tang H, Zhang W, Geng P, et al. A new amperometric method for rapid detection ofEscherichia coli density using a self-assembled monolayer-based bienzymebiosensor[J]. Anal. Chim. Acta.,2006,562(2):190-196.
    [31]王云霞,张立群,张轩,等.电化学生物传感器在病原微生物快速检测中的研究进展. Chin J Nosocomiol,2012,16(22):3677-3678.
    [32]刘艳,傅英姿,牛卫芬,等.电化学免疫传感器中生物活性物质的固定方法研究进展.河南师范大学学报,2011,(39)4:91-94.
    [33] Fu Y, Yuan R, Xu L, et al. Electrochemical impedance behavior of DNA biosensorbased on colloidal Ag andbilayer two-dimensional sol-gel as matrices[J]. J BiochemBiophys Methods,2005,62(2):163-74.
    [34] C. Ruan, L. Yang, Y. Li. Immunobiosensor chips for detection of Escherichia coilO157:H7using electrochemical impedance spectroscopy. Anal Chem,2002,74(18):4814-4820.
    [35]张灯,陈松月,秦利锋.检测大肠杆菌O157:H7的电化学阻抗谱生物传感器的研究[J].传感技术学报,2005,18(1):5-9.
    [36] Yang L, Li Y, Erf G F. Interdigitated Array Microelectrode-Based ElectrochemicalImpedance Immuno-sensor for Detection of Escherichia coli O157:H7[J]. Anal.Chem.,2004,76:1107-1113.
    [37] Yumak T, Kuralay F, Muti M, et al. Preparation and characterization of zinc oxidenanoparticles and their sensorapplications for electrochemical monitoring of nucleicacid hybridization[J]. Colloids Surf B Biointerfaces,2011,86(2):397-403.
    [38]王一娴,叶尊忠,斯城燕,等.适配体生物传感器在病原微生物检测中的应用.Chinese Journal of Analytical Chemistry,2012,4(40):634-642.
    [39] Zelada-Guillen G A, Riu J, Duzgun A, et al. Angew. Chem. Int. Ed.,2009,48(40):7334-7337.
    [40] Zelada-Guillen G A, Bhosale S V, Riu J, et al. Anal. Chem,2010,82(22):9254-9260.
    [1]王杉,宓捷波,常文保. EPO检测技术的研究进展.化学进展,2003,2(15):117-122.
    [2]杨霞,庞楠楠,廖一平,等.兴奋剂重组人促红细胞生成素及其类似物检测方法的研究进展.色谱,2008,4(26):413-416.
    [3]于萍,赵先亮,张利宁.间接抗体夹心酶联免疫吸附法测定人红细胞生成素(EPO)体外活性.齐鲁药事,2005,3(24):150-151.
    [4] Saverio Giampaoli, Andrea Facciabene, Carmela Mennuni. A Protocol to GuideDevelopment of a Sensitive ELISA for Canine Erythropoietin. Veterinary ClinicalPathology,2003,4(32):199-201.
    [5] Rosario Abellan, Rosa Ventura, Simona Pichini, et al. Evaluation of immu-noassaysfor the measurement of erythropoietin (EPO) as an indirect biomarker of recombinanthuman EPO misuse in sport. Journal of Pharmaceutical and Biomedical Analysis,2004,35:1169–1177.
    [6]佟卫群,赵明华,刘晓琳.血检和促红细胞素.天津体育学报,2003,3(18):61-62.
    [7] Lasne F, de Ceaurriz J. Recombinant erythropoietin in urine. Nature,2000,405(6787):635.
    [8] Alamgir Khan, Jasmine Grinyer,Son T, et al. New urinary EPO drug testing methodusing two-dimensional gel electrophoresis. Clinica Chimica Acta,2005,358:119-130.
    [9] De Frutos M, Cifuentes A, Diez-Masa J C. Differences in capillary electrophoresisprofiles of urinary and recombinant erythropoietin. Electrophoresis,2003,24(4):678-680.
    [10] Sanz-Nebot V, Benavente F, Vallverdu A, et al. Separation of recombinant humanerythropoietin glycoforms by capillary electrophoresis using volatile electrolytes.Assessment of mass spectrometry for the characterization of erythropoietin glycoforms.Anal Chem,2003,75(19):5220-5229.
    [11] Yu B, Cong H, Liu H, et al. Ionene-dynamically coated capillary for analysis ofurinary and recombinant human erythropoietin by capillary electrophoresis and onlineelectrospray ionization mass spectrometry. J Sep Sci,2005,28(17):2390-2400.
    [12] Estela Giméneza, Fernando Benaventea, Carme de Bolósb, et al. Analysis ofrecombinant human erythropoietin and novel erythropoiesis stimulating protein digestsby immunoa-finity capillary electrophoresis-mass spectrometry. Journal ofChromatography A,2009,1216:2574-2582.
    [13]方怀防,曾昭睿.高效毛细管电泳在兴奋剂检测中的应用进展. Chinese Journal ofAna-lytical Chemistryl,2005,6(33):881-886.
    [14] Jiebo Mi, Shan Wang, Xiaojie Ding, et al. Efficient purification and preconcentrationof erythropoietinin human urine by reusable immunoaffinity column. Journal ofChromato-graphy B,2006,843:125–130.
    [15] Benavente F, He rnandez E, Guzman NA, et al. Determination of humanerythropoietin by on-line immunoaffinity capillary electrophoresis: a preliminaryreport. Anal BioanalChem,2007,387(8):2633-2639.
    [16] Nagano M, Stubiger G, Marchetti M, et al. Detection of isoforms of recombinanthuman erythropoietin by various plant lectins after isoelectric focusing.Electrophoresis,2005,26(9):1633-1645.
    [17] Estela Giménez, Raquel Ramos-Hernan, Fernando Benavente, et al. Analysis ofrecombinant human erythropoietin glycopeptides by capillary electrophoresiselectrospray-time of flight-mass spectrometry. Analytica Chimica Acta,2012,709:81-90.
    [18] Balaguer E, Deme bauer U, Pelzing M, et al. Glycoform characterization oferythropoietin combining glycan and intact protein analysis by capillaryelectrophoresis-electrospray-time-of-flight mass spectrometry. Electrophoresis,2006,27(13):2638-2650.
    [19]王文珺,张四纯,徐静娟,等.基因兴奋剂检测的现状与展望. Chinese Journal ofChrom-atography,2008,4(26):408-412.
    [20] Luykx D M A M, Dingemanse P J, Goerdayal S S, et al. High-performanceanion-exchange chromatography combined with intrinsic fluorescence detection todetermine erythropoietin in pharmaceutical products. J Chromatogr A,2005,1078(1):113-119.
    [21]何坚刚,刘震,刘晶,等.基因兴奋剂检测的现状与策略. Chinese Journal ofChromatog raphy,2008,4(26):402-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700