用户名: 密码: 验证码:
燃煤发输电侧节能减排优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国以燃煤发电为主,燃煤发电目前约占80%的发电份额。电力工业不仅是经济发展的支撑,也是能源消耗与环境污染的大户,因此,发展资源节约型社会经济必须要提高电力生产效率,减少电力生产环节的污染排放。随着国家节能减排的力度不断加大,电力企业尤其是燃煤发电企业作为我国一次能源的消耗大户,节能减排任务艰巨、迫在眉睫。目前我国一些地区试行的节能调度,基本只以供电煤耗来评价燃煤发电的节能效果,但供电煤耗并不能全面反映燃煤电厂的节能减排效果。
     论文结合燃煤发电与输电侧各自的特点,研究于构建节能减排的评价体系。燃煤发电节能减排所包含的影响因素众多,只有选择合理的指标,建立合理的模型,选择合适的优化方法才能确保节能减排评价体系的合理性。本文根据理论分析与燃煤发电与输电的工程实践,从用电煤耗、污染排放、耗水量这些指标着手,综合进行评价,建立了燃煤电厂发输电侧节能减排综合评价指标体系。
     由于涉及的评价指标众多且相互关联,难以直接表现出燃煤机组的节能减排效果,需要采用数学方法进行优化,本文分别对用电煤耗、SO2、NOX、耗水量等4个节能减排评价指标进行分析,定义了节能减排综合评价指数,按照其大小,就可方便地对燃煤发电的节能减排进行综合评价。本文采用了因子分析法、基于熵权的粒子群算法、能值分析方法进行优化,以5台600MW机组为例,计算了节能减排指数,按照节能减排指数排序,可以实现燃煤电厂的节能减排调度。三种方法的计算结果比较表明,虽然都能得到较合理的评价结果,但是能值分析方法更加合理,所以应采用能值分析方法进行燃煤电厂发输电侧的节能减排优化。
     在不同负荷下,提出两级计算方法,在调度中心设置计算主站,计算每个电厂的能耗及节能减排指数等相关数据;基于仿真系统的一体化开发平台,建立了节能减排负荷优化调度系统,便于实现节能减排调度。
     提出了用电煤耗的概念,包含了输电线损。以用电煤耗作为电厂的主要能耗评价指标,可以合理地反映燃煤电厂节能减排的真实情况。
     进行了国内外输电线损的对比研究,提出了一种发电权交易线损分摊与补偿方法,有利于发电权交易的实行。
Coal combustion is the primary approach to generate electricity in China, where roughly80%of electric power is generated using coal. On the one hand electric power industry is the pillar of economy development;on the other hand coal combustion consumes a huge amount of primary energy and causes environmental pollution. Therefore, it is necessary to increase power generation efficiency and reduce related pollution in order to conserve energy and resources. Since the Chinese government is imposing more stringent regulations on energy saving and emission reduction, coal combustion power plants, which are the major consumers of primary energy, have to improve energy efficiency and further reduce emission. In certain regions of China, energy saving oriented dispatch is under test, which only uses coal consumption rate as the indicator of energy saving. But coal consumption rate itself doesn't show the whole picture of energy saving and emission reduction of coal combustion power plants.
     This paper studies on evaluation system of energy-saving and emission reduction of generation and transmission of coal-fired power plant combined the characteristics of coal-fired generation and transmission. There are many factors which have impact to energy saving and emission reduction in coal combustion power generation. How to choose reasonable indicators, establish an appropriate model and select a proper optimization method determines the effectiveness of any evaluation of energy saving and emission reduction. This paper will do a comprehensive evaluation according to coal consumption for using power, pollution emission and water resource consumption based on theory analysis and enineering practice of coal-fired power generation and transmission. This paper will establish a integrated evaluation system of energy-saving and emission reduction of coal combustion power generation and transmission.
     The four indicators mentioned above are too many and ralated to easily show the overall performance of energy saving and emission reduction, therefore a mathematical method will be used to evaluate these indicators and obtain one index according to coal consumption for using power, pollution emission and water resource consumption, which is called comprehensive evaluation index of energy saving and emission reduction. The index directly shows the overall performance of energy saving and emission reduction of coal combustion power plants. The mathematical methods used in this paper are called factor analysis, particle swarm optimization and emergy analysis. The object is5units of600MW. The energy-saving and emission reduction index is calculated and ordered. The energy-saving and emission reduction dispatching will be achieved. The calculated results of three methods show that three method are reasonable. But the emergy analysis is better, it is the recommended method to optimize the energy saving and emission reduction of coal combustion power plant.
     In different load of grid, this paper provides two-stage calculation method for energy saving and emission reduction dispatching. The primary calculation station is seted in diapatching center, it will calculate the energy consumption and energy saving and emission reduction index of every power plant. This paper also provides a energy saving and emission reduction load optimization dispatching system based on Integrated Modular Modeling Software of the simulation system. It provides theoretical basis for energy saving and emission reduction oriented dispatch in power generation.
     This paper puts forward the concept of electricity coal consumption, it includes the line loss. It is a primary index of power plant. This concept is more reasonable to evaluate the energy saving and emission reduction of power plant.
     This paper studies the comparison of the transmission line loss of home and abroad. It puts forward a line loss share and compensation method of generation right trades.It is in favour of putting into practice of generation right trades.
引文
[1]李永华,刘长良,陶哲.火电厂锅炉系统及优化运行[M].北京:中国电力出版社.2011:1-3
    [2]阎维平.洁净煤发电技术[M].北京:中国电力出版社.2008:1-5
    [3]翟青,康艳兵,牛波.美国节能管理工业特点及对我国的启示[J].中国能源.2003,(7):67-7
    [4]郝海,顾培亮,卢奇.中国和世界能源消费因素对比分析[J].中国能源.2005,(5):55~57
    [5]朱治中.节能调度与经济调度[J].中国电力企业管理.2008,(1):24-26
    [6]曾鸣,史连军,董军等.与市场机制相协调的节能发电调度相关问题研究[J].电力技术经济.2007,19(5):1-5
    [7]Liu Tianqi, Yang Yulin, Li Xingyuan, et al. Energy Saving Generation Dispatch for Sustainable Development of Energy Utilizing in China[J]. Power and Energy Engineering Conference (APPEEC),2010:1-4.
    [8]严宇,马珂,于钊等.改进发电调度方式实施节能、环保、经济调度的探讨[J].中国电力.2007,40(6):6-9
    [9]钟海旺,康重庆,陈慧坤等.广东电网节能发电调度潜力分析[J].电网技术.2008,32(23):7-12
    [10]吴茵,李林峰.广西电网节能发电调度措施[J].广西电力.2008,(2):45-47
    [11]张森林.南方电力市场建设和模拟运行[J].电网技术.2008,32(10):28-32
    [12]中国低碳网.南方电网低碳发电调度工作成效显著[EB/OL]. [2008-09-29]. http://www.cndtw.org/html/15/dl/200809/29-2862.html
    [13]胡燕妮.贵州电网系统全力推进节能减排[N].经济信息时报.2008-10-8(2)
    [14]刘瑞礼.节能环境下云南发电厂辅助服务补偿方法研究[D].华北电力大学硕士学位论文.2011:1-2
    [15]王超,张晓明,唐茂林等.四川电网节能减排发电实时调度优化模型[J].电力系统自动化.2008,32(4):89-92
    [16]廖萍,李兴源.实施节能发电调度的研究[J].四川电力技术.2008,31(1):8-9
    [17]李晓春.江苏前4月“替代发电”超过去年全年[N].国家电网报.2007-05-30(1)
    [18]国际能源网.河南:节能发电调度打出“组合拳”[EB/OL]. [2007-04-17]. http://www.dcement.com/henan/Show Article.asp?ArticleID=43645
    [19]中国电力网.国家电监会高度评价甘肃省电力公司节能减排工作[EB/OL]. [2011-03-21]. http://www.chinapower.com.cn/newsarticle/1134/new1134126.asp
    [20]Gent M R, Lamont J W. Minimum emission dispatch[J]. IEEE Trans on PAS. 1971. PAS-90:2650-2660
    [21]Lamont J W, Obessis E V. Emission dispatch models and algorithms for the 1990s[J]. IEEE Trans on Power Systems.1995,10(2):941-947
    [22]Talaq J H, EI-Hawary F, EI-Hawary M E. A summary of environmental/ economic dispatch algorithms [J]. IEEE Trans on Power Systems.1994, 9(3):1508-1516
    [23]Gjengedal T. Emission constrained unit commitment J]. IEEE Trans on Energy Conversion.1996,11(1):132-138
    [24]Lu Bo, Shahidehpour M. Unit commitment with flexible generating units[J]. IEEE Trans on Power Systems.2005,20(2):1022-1034
    [25]Talaq J H, EI-Hawary F, EI-Hawary M E. A sensitivity analysis approach to minimum emission power flow[J]. IEEE Trans on Power Systems.1994,9(1): 436-442
    [26]Farag A, Al-Baiyat S, Cheng T C. Economic load dispatch and multi-objective optimization procedures using linear programming techniques [J]. IEEE Trans on Power Systems.1995,10(2):731-738
    [27]Ramanathan R. Emission controlled economic dispatch[J]. IEEE Trans on Power Systems.1994,9(4):1994-2000
    [28]Fan Jiyuan, Zhang Lan. Real-time economic dispatch with line flow and emission constraints using quadratic programming[J]. IEEE Trans on Power Systems.1998,13(2):320-325
    [29]韩彬,周京阳,崔晖等.引入SO2排放惩罚价格因子的节能减排发电调度模型及实用算法[J].电网技术.2009,33(19):50-54
    [30]朱法华,杜维鲁.燃煤电厂SO2排放量确定方法研究[J].电力环境保护.2009,25(2):1-4
    [31]王傜.节能发电调度模型的研究[D].华北电力大学硕士学位论文.2008:8-47
    [32]邹颖.河北南网发电节能调度优化研究[D].华北电力大学硕士学位论文.2007:7-42
    [33]武寒.关于节能发电调度的思考与实践[J].华东电力.2008,36(3):10-12
    [34]朱维新.考虑节能因素的机组排序方法研究[D].华北电力大学硕士学位论文.2008:8-38
    [35]李金超.基于节能调度与需求侧管理的电力优化运营研究[D].华北电力大学博士学位论文.2009:1-15
    [36]叶廷路,刘菲,肖利民等.节能调度下的广义能耗[J].电网技术.2011,35(6):77-81
    [37]申晓宁.基于进化算法的多目标优化方法研究[D].南京理工大学博士学位论文.2008:1-2
    [38]肖晓伟,肖迪,林锦国等.多目标优化问题的研究概述[J].计算机应用研究.2011,28(3):805-809
    [39]lshibuchi H, Murata T. A multi-objective genetic local search algorithm and its application to flowshop scheduling[J]. IEEE Trans Syst Man Cybernet C Appl Rev 1998,28(3):656-668
    [40]Jakob W D, Gorges-Schleuter M, Blume C.Application of genetic algorithms to task planning and learning[C]. In:Manderick B editors. Parallel problem solving from nature,2. Amsterdam, The Netherlands:North-Holland; 1992. p.291-300
    [41]Todd D S, Sen P. Directed multiple objective search of design spaces using genetic algorithms and neural networks[C]. In:Banzhaf W, editor. Genetic and evolutionary computation conference proceedings. San Francisco:Morgan Kauffmann;1999. p.1738-1743
    [42]Van Velduhuizen D A, Lamont G B. Multi-objective evolutionary algorithms: analyzing the state of the art[J]. Evol Comput 2000,8(2):125-148.
    [43]Coello C A C. A comprehensive survey of evolutionary based multi-objective optimization techniques[M]. Unpublished document,1998:31-55
    [44]Deb K. Evolutionary algorithms for multi-criterion optimization in engineering design[C]. In:Miettinen K, Periaux J, editors. Proceedings of evolutionary algorithms in engineering and computer science,1999. p.135-161
    [45]Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi-objective optimization[J]. Evol Comput 1995,3(1):1-16
    [46]Horn J. Multicriterion decision making[M]. In:Back T, et al., editors. Handbook of evolutionary computation,1997:18-35.
    [47]Deb K. Solving goal programming problems using multi-objective genetic algorithms[C]. Congress Evolut Comput IEEE 1999;1:77-84
    [48]Cvetkovic D, Parmee I C. Use of preferences for GA-based multi-objective optimization[C]. In:Banzhaf W, Daida J, editors. GECCO-99:proceedings of the genetic and evolutionary computation conference. San Mateo, CA:Morgan Kauffmann;1999.p.255-257
    [49]Parmee I C, Cvetkovic D, Watson A H, Bonham C R. Multi-objective satisfaction within an interactive evolutionary design environment[J]. Evol Comput 2000,8(2):197-222
    [50]Branke J, Kaubler T, Schmeck H. Guidance in evolutionary multi-objective optimization[J]. Adv Eng Software 2001;32:499-507
    [51]Branke J, Kaubler T, Schmeck H. Guiding multi-objective evolutionary algorithms towards interesting regions[R]. Technical report TRno.399. Institute AIFB, University of Karlsruhe, Germany,2000:3-15
    [52]Zio E, Baraldi P, Pedroni N. Optimal power system generation scheduling by multi-objective genetic algorithms with preferences [J]. Reliability Engineering and System Safety.2009,94:432-444
    [53]Chambers L. Practical handbook of genetic algorithms:applications[M]. new frontiers, vol.Ⅱ. Boca Raton, F L:CRC Press.1995:38-45
    [54]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading[M]. MA:Addison-Wesley Publ. Co.;1989:56-69
    [55]Holland J H. Adaptation in natural and artificial systems:an introductory analysis with application to biology[M]. Control and artificial intelligence.4th. Cambridge, MA:MIT Press; 1975:35-47
    [56]Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design[C]. In:Proceedings of the 1999 congress on evolutionary computation, CEC99. Piscataway, NJ:IEEE Press; 1999.p.29-36
    [57]Coello C A C. Handling preferences in evolutionary multi-objective optimization:a survey[C]. In:Congress on evolutionary computation, vol.1. New York:IEEE; 2000. p.30-37
    [58]Fonseca C M, Fleming P J. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization[C]. In:Proceedings of the fifth international conference on genetic algorithms.1993, p.416-423
    [59]Jabr R A. Exploiting special structure in interior-point algorithms for power generation dispatching[J]. Electrical Power and Energy Systems.2004, (26):65-71
    [59]Bostan V, Ling L. A decision model for reducing active power losses during electric power dispatching[J]. Computers & Operations Research.2003, (30):833-849
    [60]Bettle R, Pout C H, Hitchin E R. Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales[J]. Energy Policy,2006,34(6):3434-3446
    [61]Wenhwa L, Wenming Y. Power-saving scheduling with a QoS guarantee in a mobile WiMAX system[J]. Journal of Network and Computer Applications, 2009,32:1144-1152
    [62]Daniel M, Carlos H, Mauricio A. Distributed approach to group control of elevator systems using fuzzy logic and FPGA implementation of dispatching algorithms[J]. Engineering Applications of Artificial Intelligence,2008, 21(8):1309-1320
    [63]Garzillo A, Innorta M, Ricci M. The problem of the active and reactive optimum power dispatching solved by utilizing a primal-dual interior point method[J]. Electrical Power & Energy Systems,1998,20(6):427-434
    [64]Marseguerra M, Zio E, Martorell S. Basics of genetic algorithms optimization for RAMS applications[J]. Reliab Eng Syst Saf 2006;91(9):977-991
    [65]Zio E, Baraldi P, Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms[J]. IEEE Trans Nucl Sci 2006; 53(3):1479-1493
    [66]Belegundu AD, Chandrupatla TR. Optimization concepts and applications in engineering[C]. Englewood Cliffs, NJ:Prentice-Hall Editions;1999. p.373-381
    [67]Bhattacharya A, Chattopadhyay P K. Solving economic emission load dispatch problems using hybrid differential evolution[J]. Applied Soft Computing,2011, 11:2526-2537
    [68]Abido M A. A novel multiobjective evolutionary algorithm for environmental/ economic power dispatch[J]. Electric Power Systems Research,2003,65:71-81
    [69]Abido M A. A niched Pareto genetic algorithm for multi-objective environmental/economic dispatch[J]. Electrical Power and Energy Systems, 2003,25:97-105
    [70]Wu L H, Wang Y N, Yuan X F. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm[J]. Electric Power Systems Research,2010,80:1171-1181
    [71]Gong D W, Zhang Y, Chen L Q. Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm[J]. Electrical Power and Energy Systems,2010,32:607-614
    [72]Lu Y L, Zhou J H, Qin H, et al. Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm[J]. Energy Conversion and Management,2011,52:1175-1183
    [73]赵维兴,林成,孙斌等.安全约束条件下综合煤耗最优的节能调度算法研究[J].电力系统保护与控制.2010,38(9):18-22
    [74]陈玉宝.先进能源利用系统多目标优化方法研究及应用[D].重庆大学硕士学位论文.2010:1-6
    [75]孙静.电力负荷多目标期望值优化分配问题研究[D].哈尔滨工业大学硕士学位论文.2010:2-3
    [76]苏鹏,刘天琪,赵国波,张炯.基于改进粒子群算法的节能调度下多目标负荷最优分配[J].电网技术.2009,33(5):48-53
    [77]范玉宏,张维,叶永松,唐学军.基于机组煤耗高低匹配替换的区域电网节能调度模型[J].电网技术.2009,33(6):78-81
    [78]李清清,周建中,莫莉.基于节能调度的竞价市场厂网合作策略[J].电力系统自动化.2008,32(14):40-44
    [79]高洵,曹阳,付强.嵌入式系统节能调度的空闲时间利用策略[J].武汉大学学报(理学版).2005,51(5):633-637
    [80]雷霆,胡潇,周学海.一种新的静态优先级在线节能调度算法[J].中国科学技术大学学报.2006,36(2):219-224
    [81]刘起方,马光文,王和康,唐明.基于分形与混沌理论的嵌套搜索算法在梯级水电厂节能调度运行中的应用[J].四川大学学报(工程科学版).2008,40(3):27-32
    [82]于志坚,于尔铿,白晓民.网络规划算法的约束经济调度[J].中国电机工程学报.1989,9(3):9-15
    [83]袁鹏,常江,朱兵,等.粒子群算法的惯性权重模型在水库防洪调度中的应用[J].四川大学学报:工程科学版.2006,38(5):54-57
    [84]朱文东,郝玉国.应用线性规划方法的安全约束调度[J].中国电机工程学报.1994,14(4):57-64
    [85]陶春华,马光文,涂扬举等.实码退火遗传算法在厂内经济运行中的应用[J].四川大学学报:工程科学版.2005,37(6):38-41
    [86]刘自发,张建华.一种求解电力经济负荷分配问题的改进微分进化算法[J].中国电机工程学报.2008,28(10):100-105
    [87]王治国,刘吉臻,谭文等.基于快速性与经济性多目标优化的火电厂厂级负荷分配研究[J].中国电机工程学报.2006,26(19):86-92
    [88]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展.2005,16(3):397-400
    [89]张雪雯,李艳君.基于自调节粒子群算法的电力系统经济负荷分配[J].电网技术.2006,30(18):8-13
    [90]毛亚林,张国忠,朱斌,等.基于混沌模拟退火神经网络模型的电力系统经济负荷分配[J].中国电机工程学报.2005,25(3):65-70
    [91]覃一宁.大型火力发电厂运行优化控制系统的研究与实现[D].大连理工大学硕士学位论文.2001:2-6
    [92]牛成林.增量数据挖掘及其在电站运行优化中的理论研究及应用[D].华北电力大学博士学位论文.2009:9-10
    [93]白尊亮.基于循环函数法的火电机组耗差分析模型及软件的研究[D].上海交通大学硕士学位论文.2010:2-4
    [94]王宁玲,杨志平,武宇.大型燃煤火电机组节能评价与系统优化[J].华北电 力大学学报.2010,37(3):55-58
    [95]孙自栋,盛德仁,陈坚红.基于C/S模式供热机组在线耗差分析系统研究[J].电站系统工程.2010,26(1):59-61
    [96]郭江龙,张树芳.火电机组热经济性通用计算平台设计与实现[J].计算机工程与应用.2007,(32):95-97
    [97]李晓金.500MW机组耗差分析及在运行经济指标管理中的应用[D].华北电力大学硕士学位论文.2003:2-6
    [98]徐广震.基于耗差分析理论的火电机组运行优化指导系统研究[D].华北电力大学硕士学位论文.2008:2-10
    [99]崔映红,张春发,周兰欣.在线监测中机组运行基准工况的确定[J].动力工程.2004,(4):298-302
    [100]李蔚,任浩仁.300MW火电机组在线能耗分析系统的研制[J].中国电机工程学报.2002,(11):153-155
    [101]冯林桥,许文玉,刘飞.实时线损电量的计算及分摊[J].中国电机工程学报.2004,24(2):66-70
    [102]黎灿兵,康重庆,夏清等.发电权交易及其机理分析[J].电力系统自动化.2003,27(6):13-18
    [103]莫莉,周建中,李清清等.基于委托代理模型的发电权交易模式[J].电力系统自动化.2008,32(2):30-34
    [104]李江,彭文兵.基于期权的发电权交易分析与应用[J].华东电力.2007,35(1):37-40
    [105]姚建刚,周启亮,张佳启等.基于期权理论的发电权交易模型[J].中国电机工程学报.2005,25(21):76-81
    [106]肖健,文福拴.发电权交易的阻塞调度[J].电力系统自动化.2008,32(18):24-29
    [107]杨爱民,肖健,文福拴.计及非发电权容量出力调整的发电权阻塞调度[J].电力系统自动化.2009,33(20):27-31
    [108]周兴华,杜松怀.双边交易电力市场下基于核仁理论的线损分摊方法[J].中国电机工程学报.2005,25(1):60-65
    [109]刁强,鲍海,王俊梅等.大用户直购电中的线损分摊问题[J].电网技术.2007,31(增刊2):236-237
    [110]GALIANA F D, PHELAN M. Allocation of transmission losses to bilateral contracts in a competitive environment.IEEE Trans on Power Systems,2000, 15(1):143-150
    [111]朱刚刚,王海超.电网穿越线损补偿理论探讨及应用[J].华东电力.2008,36(4):16-19
    [112]郑欣,蒋传文,许荣等.线损系数法在发电权交易成本计算中的运用[J].华东电力.2009,37(1):150-153
    [113]周明,赵颖,李庚银.发电权交易对电网输电服务成本的影响[J].电网技术.2010,34(1):134-138
    [114]杨兵.电站锅炉预测控制与燃烧优化研究[D].中国科学技术大学博士学位论文.2006:3-10
    [115]孙巧玲,沈炯,李益国.基于遗传算法的燃煤电站锅炉整体燃烧优化方法 研究[J].热能动力工程.2004,19(1):55-55
    [116]周昊,钱欣平,郑立刚等.神经网络与模拟退火算法结合的锅炉低NOx燃烧优化[J].环境科学.2003,24(6):63-67
    [117]周昊,朱洪波,岑可法.基于人工神经网络和遗传算法的火电厂锅炉实时燃烧优化系统[J].动力工程.2003,23(5):2665-2669
    [118]阎维平,李钧,李春.基于因子分析法的煤粉锅炉燃烧工况综合优化[J].华北电力大学学报.2010,37(2):54-58
    [119]李钧.基于预数值计算的煤粉锅炉燃烧监测与优化[D].华北电力大学博士学位论文.2009:78-82
    [120]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proceeding of the 6th International Symposium on Micro Machine and Human Science, NJ:IEEE CS,1995:39-43
    [121]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of the IEEE International conference on Neural Networks.1995.1942-1948
    [122]宋胜利.混合粒子群协同优化算法及其应用研究[D].华中科技大学博士学位论文.2009:2-30
    [123]刘建华.粒子群算法的基本原理及其改进研究[D].中南大学学位论文.2009
    [124]Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]. IEEE World Congress on Computational Intelligence, Anchorage, AK,USA,1998:69-73
    [125]Odum.H T. Environmental Aeeounting:Emergy and Environmental Decision Making[M]. NewYork:JohnWiley.1996:28-76
    [126]Odum.H T., Brown.M. Environment and Society in Florida[M]. Boca Racon: Levis Publisher.1998:56-98
    [127]张攀,耿勇,陈超.基于能值分析的产业集聚区生态经济绩效评价研究[J].管理学报.2008,5(2):243-249
    [128]周洪华.塔里木河下游铁干里克绿洲水土生态安全及可持续性研究[D].中国科学院新疆生态与地理研究所硕士学位论文.2009:2-25
    [129]王灵梅,张金屯,倪维斗.火电厂清洁生产的可持续性分析与评估[J].环境科学与技术.2005,28(2):64-67
    [130]隋春花,蓝盛芳.城市生态系统能值分析(EMA)的原理与步骤[J].重庆环境科学.1999,21(2):13-15
    [131]郭民臣,魏楠,杨勇平.热耗变换系数、抽汽效率与主循环效率[J].中国电机工程学报.2001,21(10):83-87
    [132]任浩仁,李蔚,盛德仁等.火电机组变工况下运行指标应达值的分析[J].中国电机工程学报.1999,19(9):50-52
    [133]周卫庆,乔宗良,司风琪,徐治皋.电站多目标负荷优化分配与决策指导[J].中国电机工程学报.2010,30(2):29-34
    [134]王春林,周昊,周樟华等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报.2005,25(20):72-76
    [135]寇怀成,赵立军,吴云杰.基于统一模型及计算原则的汽轮机耗差分析[J].动力工程学报.2010,30(12):914-918
    [136]周新利.基于SIS平台的火电厂厂级在线负荷优化分配系统[D].华北电力大学硕士学位论文.2008:10-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700