用户名: 密码: 验证码:
山区铁路沿线泥石流监测与预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流灾害严重威胁着山区铁路的运营安全,给铁路造成巨大的经济损失。山区铁路一般穿行于偏僻、环境恶劣的山区,其泥石流灾害前兆信息获取困难,当前预警报模型主要建立在统计模型的基础上,缺乏物理模型的支撑,且预警模型与实时成灾信息检测脱节,这些均使的泥石流灾害预警报困难、准确率较低。本研究在认真总结最新泥石流研究成果的基础上,突破以降雨信息为主的单因素预警模型,增加泥石流发生的源地土体降雨入渗深度信息、沟道泥位信息、次声信息等信息,研究相关要素的灾害信息监测与传输技术,针对性地开发相关监测仪器,研制在恶劣环境下,能稳定可靠地对泥石流灾害先兆及临灾信息进行实时监测、传输、汇集的数据网络监测系统,然后利用系统工程方法,开发实时灾害信息监测数据网络与泥石流预警模型等硬软件资源最佳整合的泥石流预警报系统,将泥石流灾害预警建立在稳定信息源的基础上。山区铁路沿线泥石流监测预警系统研究在下列几个方面为泥石流灾害预警做出了以下成果:
     (1)分析了泥石流形成机理及运动过程特征,根据山区铁路沿线泥石流灾害特征,提出流域降雨、源地土体降雨入渗深度、泥石流次声、沟道运动泥位是山区铁路泥石流灾害预警的关键监测参数。
     (2)建立基于泥石流源地土体降雨入渗临界深度的泥石流灾害预警机制,论述了山区铁路沿线暴雨型泥石流源地土体起动的降雨入渗临界深度的确定方法及适用条件,在此基础上研制的土体降雨入渗深度监测仪,该仪器可定性、半定量地实时监测泥石流源地土体的含水量及其随深度的分布状态,从而获得泥石流源地土体降雨入渗的过程及土体水分分布状态,进而预测可能起动物源规模、形成泥石流的可能性。
     (3)建立通过泥石流次声信息进行泥石流灾害预警的预警机制及其泥石流次声信号监测技术,在此基础上研制了一种可同时具有报警和记录信号过程的泥石流次声监测仪,该仪器可放置在远离泥石流沟的各工区站房、值守点等地方,可适应恶劣山区自然条件下的泥石流次声信号监测,中心计算机根据接收的各监测点的次声信号判别泥石流发生与否、发生位置、规模等,并根据预设程序发出不同类比的警报。
     (4)建立了基于铁路桥涵过流能力、泥石流沟道内滑坡及堵塞体堵溃决因素为基础的泥石流沟道泥位灾害预警模型,在此基础上探讨了适合山区铁路沿线泥石流沟谷恶劣自然条件下的泥石流沟道泥位监测技术、泥位监测预警网络系统的构建方法,以及系统预警机制。
     (5)建立基于泥石流流域降雨、源地土体降雨入渗深度、泥石流次声、沟道泥位等关键参数的山区铁路沿线泥石流预警机制,根据泥石流灾害自身的规模、泥石流过程特征,结合铁路自身的抗灾能力,从铁路安全行车要求出发,将山区铁路沿线泥石流灾害预警划分为提示性预警、形成性预警、非常成灾性预警、成灾性预警四种类型,建立不同预警类型的泥石流灾害预警指标临界值、预警流程及其信息发布方式。利用系统工程学,整合泥石流的降雨信息监测、泥位信息监测、源地土体降雨入渗深度信息监测、泥石流次声监测等灾害信息监测技术,建立了适应山区恶劣自然环境的自备电源无线多因素、多通道的泥石流监测预警网络系统,该系统可实时采、汇集泥石流流域的泥石流形成先兆信息和成灾信息,并根据系统采集的监测信息按预定方式进行泥石流灾害预警和灾害信息发布。
     (6)通过采用研制的仪器,山区铁路沿线泥石流灾害监测预警系统在成昆铁路成昆线桐子林工区碴石场弃土场船房沟进行现场观测试验,试验监测结果良好,试验观测期间成功地预警了两次小规模泥石流,观测结果验证了利用降雨信息、源地土体降雨入渗深度信息、沟道泥位信息来预警泥石流灾害方法的可行性和可靠性,该监测预警系统在泥石流灾害预警研究方面有广阔的发展和应用前景。
Debris flow disaster threatened mountain railway line's operation safety, cause huge economic loss to the railway. Mountain railway line is generally pass through remote, harsh environment of the mountain area. It is difficult to get the precursory information about the debris flow disaster. It is also lack of physical model to support. And, the early warning model is disjointed with the real time information of disaster. It makes difficult to early warn the debris flow disaster, also the accuracy is low. The study is on the basis of concluding the latest research results about the debris flow, it breaks through the single factor prediction model which mainly depends on the rainfall information, it increases the information about the depth of the rainfall infiltration in the place where the debris flow occurs, the channel mud information, the secondary information and so on, it studies the disaster information monitoring and transmission technology of related factors, aims at developing the related monitoring instrument, and develops the data network monitoring system which can monitor, transport, converge the warning and disaster information on debris flow disaster stably and reliably in the harsh environment, then use the system engineering method to develop the debris flow early warning system which is best combined by hardware and software resource. The warning system is based on the data network about the real-time disaster information monitoring and the debris flow early warning model. It makes the debris flow disaster early-warning system base on the stable sources of information. The research of the debris flow monitoring and warning system along the mountain railway line made the following results for the debris flow warning in the several aspects:
     (1)It analyzes the formation mechanism and motion process characteristics of the storm debris flow along the mountain railway line and how to determine the methods of mud-position, and it builds the early warning method of mud-position which based on the railway bridge flow capacity, the landslide in debris flow channel and the blocking outburst factors of the blocking part, on the basis it develops the pole mud-bit count of the mudslides and its early warning mechanism that can fit debris flow valleys along the mountain railway with harsh natural conditions.
     (2) It discusses during the rainfall course the starting conditions on the source land of the storm debris flow along the mountain railway, determine the proper method to measure critical depth of rainfall infiltration from the unstable soil and its applicable conditions, the creation is on the basis of the early warning mechanism of the debris flow disaster which is about the critical depth of rainfall infiltration on the soil of the debris flow source, bases on above aspects, we develop a gauge about soil rainfall infiltration depth, it can be qualitatively and semi-quantitative to monitor the water content of the debris flow source of land and its distribution with depth, then, we can get the information about the process about rainwater penetrate the soil and the water distribution on the soil in the debris flow area.
     (3)It discusses the acoustic characteristics of debris flow in detail, it developed the Infrasound monitoring instrument which can alarm and simultaneously record signal process of infrasound monitoring for along mountainous railway line debris flow.
     (4)It builds the early warning method of mud-position which based on the railway bridge flow capacity, the landslide in debris flow channel and the blocking outburst factors of the blocking part, on the basis it develops the pole mud-bit count of the mudslides and its early warning mechanism that can fit debris flow valleys along the mountain railway with harsh natural conditions.
     (5)Based on the key parameters of debris flow rainfall, ground soil depth of rainfall infiltration, infrasound, debris flow gully mud-position, It establishes the disaster early warning index critical value, disaster early warning process and information issuance mode of the debris flow disaster in along railway line in mountainous areas. The paper apply for system engineering and Integration of debris flow rainfall information monitoring, Mud-position Monitoring, soil monitoring the information of source depth of rainfall infiltration of debris flow information monitoring, infrasound monitoring etc. information monitoring technology, The study designs and development to adapt to the harsh environment of a mountainous area wireless debris flow monitoring and early warning network system, this system can real-time collect and bringing together of debris flow Valley debris flow of information and the disaster information, and base on the monitoring information data acquisition of system, the debris flow disaster early warning system of mountainous railway line can alarm the Nearby past train and people of the debris flow disaster.
     (6) The research result has applied for field testing at CHUANFANFGOU of CHENGKUN Railway line TONGZILING quarry spoil ground, The testing result on-site proved the debris flow disaster early warning system is feasible and reliable and the accuracy of debris flow forecasting can be improved by monitoring rainfall information, the rainfall penetration depth of soil in debris flow source, mud-position, infrasound monitor. Monitoring and warning system in debris flow disaster early warning research has broad development prospect.
引文
[1]谭炳炎,走进泥石流,西南交通大学出版社,2011:48-66.
    [2]K.Smith, Environment Hazards(Assessing risk and reducing disaster), New York Routledge,1992:24-29.
    [3]Cities at Risk, A stop Disasters Publication for the International Decade for Natural Disasters Reduction,1996:14-15.
    [4]腾井义雄,南美哥伦比亚国,1985年火山喷发及相关灾害调查,文部省科学研究项目No.6002050报告(日文),1986.
    [5]Voight B., the 1985 Nevado del Ruiz volcano catastrophe:anatomy and restrospection[J]. J of Volcanology and Geothemal Reseath,1990,44(30):349-386.
    [6]S. Zhang, J. Lopez, R. Garcia, etc., The Characteristies haracteristics of Debris flow of Cerro Grand and Uria Ravines in Vargas Region, Veneznela, Dec.16th,1999,Proc.of International Meeting of Hazards of Debris Flow, Venezuela,2000.12,619-629.
    [7]韦方强、谢洪,委内瑞拉1999年特大泥石流灾害[J],山地学报,2000,18(6):580-582.
    [8]谢洪、韦方强、李泳等,1999年委内瑞拉阿维拉山北坡入海型泥石流[J],自然灾害学报,2002,11(1):117-122.
    [9]费祥俊、舒安平,泥石流运动机理与灾害防治,清华大学出版社,2004,序2.
    [10]相群、王力健,印度尼西亚应用缝隙坝研究泥石流泥沙淤积[J],水上保持科技情报,2002(4):46-49.
    [11]戈素芬、柳金库、郑娟,南苏拉威西岛泥沙灾害预警[J],水土保持应用技术,2011(06):8-10.
    [12]陈洪凯、唐红梅、舒小红等,从菲律宾2.17泥石流灾难探讨三峡库区的泥石流问题[J],重庆交通学院学报,2007,26(1):112-115.
    [13]吴树仁,突发地质灾害研究某些新进展[J],地质力学学报,2006,12(2):266-273.
    [14]黎志恒、曾克峰,甘肃省文县关家沟泥石流综合治理及效益分析[J],地质科技情报,2000,19(4):75-78.
    [15]黎志恒、董抗甲,甘肃文县关家沟流域泥石流灾害与地质环境影响因素分析[J],中国地质灾害与防治学报,2000,11(2):63-66.
    [16]谢洪、韦方强,从舟曲泥石流灾害看我国城镇泥石流防治[J],科学(上海),2011,63(1):17-20.
    [17]胡凯衡、葛永刚、崔鹏等,对甘肃舟曲特大泥石流灾害的初步认识[J],山地学报,2010,28(5):628-634.
    [18]刘传正、苗天宝、陈红旗等,甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因[J],地质通报,2011,30(1):141-150.
    [19]李雪铭,辽东山区泥石流初步研究[J],水土保持通报,1991,11(5):32-38.
    [20]李雪铭,辽宁南部沿海山区暴雨型泥石流沉积物粒度分布模式研究[J],水土保持通报,2000,20(3):20-22.
    [21]何红,老帽山滑坡和泥石流特点[J],大连教育学院学报,2000,16(3):68-71.
    [22]刘剑刚,层次分析法在辽南泥石流危险度评价中的应用[J],长春师范学院学报(自然科学版),2012,31(6):63-66.
    [23]冯玉刚,华莹市溪口镇山岩高速滑坡与泥石流的形成[J],西南石油学院学报(自然科学版),1992,14(1):77-81.
    [24]欧正东、魏伦武,溪口镇马鞍坪滑坡—泥石流成因[J],地质灾害与防治,1990,1(4):90-93.
    [25]张国见、刘成渝、黄润秋,华莹山溪口滑坡的形成机制及其旁侧变形体的整治方案[J],地质灾害与防治,1990,1(4):384-392.
    [26]刘希林、苏鹏程、吕学军,四川丹巴(県系)灾难性泥石流特征及其危险度评价,第四届海峡两岸山地灾害与环境保育学术研讨会会议论文集,台北,2004:199-206.
    [27]陈宁生、高延超、李东风等,丹巴县邛山沟特大灾害性泥石流汇流过程分析[J],自然灾害学报,2004,13(2):104-108.
    [28]邓国仕、郑万模、杨桂花等,四川省丹巴县地质灾害及其防治对策[J],沉积与特提斯地质,2006,27(4):101-104.
    [29]苏鹏程、刘希林、王全才等,四川丹巴县邛山沟泥石流灾害特征及危险度评价[J],地质灾害与环境保护,2004,15(1):9-12.
    [30]赵源,风险评价技术在2003年“7.11”泥石流灾害评价中的应用[J],灾害学,2004,19(01):37-41.
    [31]张丽萍、唐克丽,矿山泥石流[M].北京:地质出版社,2001.
    [32]刘翠娜、李晓玮、郑秀华,金矿区泥石流治理对策[J],中国水土保持,2012,24(02):29-31.
    [33]戴荣尧、刘桃芬、谭炳炎等,中国铁路自然灾害及其防治[M].北京:中国铁道出版社,2000.
    [34]刘丽、陈洪凯,矿山泥石流灾害成因与防治对策[J],重庆交通大学学报(自然科学版),2009,28(05):915-920.
    [35]邢永强、郑钊、赵鸿燕等,小秦岭金矿区泥石流成因、危险性评价及其防治[J],中国水土保持,2008,20(07):43-45.
    [36]倪化勇、郑万模、巴仁基,基于水动力条件的矿山泥石流成因与特征-以石棉 县后沟为例[J],山地学报,2010,28(04):470-477.
    [37]沈远,大渡河长河坝水电站泥石流特征及危险性评价[D],成都:西南交通大学,2011.
    [38]庄建琦、葛永刚、陈兴长,震后都汶公路沿线泥石流沟堵江危险性评估[J],工程地质学报,2012,20(2):195-203.
    [39]陈洪凯、唐红梅、马永泰等,公路泥石流研究及治理,人民交通出版社,2004,1-6.
    [40]李朝安、胡卸文、李冠奇等,四川省“8·13”特大泥石流灾害成生机理与防治原则[J].水土保持研究,2012,19(2):257-263.
    [41]唐川、李为乐、丁军等, 汶川震区映秀镇“8.14”特大泥石流灾害调查[J],地球科学-中国地质大学学报,2011,36(1):172-180.
    [42]许强,四川省8.13特大泥石流灾害特点、成因与启示[J],工程地质学报,2010,18(5):610-621.
    [43]马煜、余斌、吴雨夫等,四川都江堰龙池“8·13”八一沟大型泥石流灾害研究[J],四川大学学报,2011,43(z1):92-98.
    [44]苏鹏程、韦方强、冯汉中等,“8.13”四川清平群发性泥石流灾害成因及其影响[J],山地学报,2011,29(3):337-347.
    [45]Wei Hong,李朝安, Tan Bingyan etc. the Research and Prevention of Debris Flow disaster along Chinese railways, Shanghai, Dec.11th, Proceedings of the world engineers' Convention 2004 Environment Protection and Disaster Mitigation,2004, Vol.D:485-492.
    [46]李朝安、黄晓光,长线状构建物地质灾害调查与危险性评估方法探讨-以天然气输气管道泸威线为例[C],第三届全国岩土与工程学术大会论文集,2009.6.成都,四川省科学出版社,2009,227-230.
    [47]沈寿长、谭炳炎,中国铁路沿线泥石流[C],泥石流及洪水灾害防御国际学术讨论会论文集,1991.成都峨眉,地震出版社,1991,1-11.
    [48]谭炳炎,二十世纪中国铁路沿线泥石流防治理论与实践[J],铁道工程学报,2005,22(S 1):369-372.
    [49]罗德富,成昆铁路盐井沟泥石流特征及治理意见[J],铁道工程学报,铁道工程学报,1986,3(4):172-175.
    [50]李德基、鲁小兵,四川冕宁盐井沟矿山泥石流及其治理[C],第四届全国泥石流学术讨论会论文集,兰州,甘肃文化出版社,1994,562-567.
    [51]刘希林、何思明、乔建平,四川泸沽铁矿大顶山矿区泥石流及其防治[J],中国地质灾害与防治学报,2004,15(3):64-68.
    [52]李朝安、魏鸿,西南地区泥石流灾害及防灾预警[J],中国地质灾害与防治学报, 2004,15(3):52-54.
    [53]蔡佳君、沈军辉、唐垒庆,利子依达沟泥石流演化历史及发展趋势预测[J],水土保持通报,2012,32(3):217-221.
    [54]孟河清,宝成铁路泥石流[J],铁道工程学报,1986,3(4):136-138.
    [55]陈德明,泥石流与主河水流交汇机理及其河床响应特征[D],北京:中国水利水电科学研究院,2000:5-13.
    [56]吴积善、康志成、田连权等,云南蒋家沟泥石流观测研究[M],科学出版社,1990,16-52.
    [57]吴积善、田连权、康志成等,泥石流及其综合治理[M],科学出版社,1993,56-81.
    [58]康志成、李焯芬等,中国泥石流研究[M],科学出版社,2004,38-62.
    [59]Morawetz S., Junge Erosion und Akkumulation in den Ostalpen, Abh., Geogr. IustderFU Berlin 5,1957,20-26.
    [60]Anselmc V., Three studies of storm and debris flows in North-western Italy[C], INTERPRAEVENT. Band I,1980,102-112.
    [61]Sassa K. The mechanism starting liquefied landslides and debris flows[C]. Proc. 4th Int. Sypm Landslide,1984,349-354.
    [62]Fleming R.W., Johnson A. M., Landslide in Colluvium[J]. U.S. Gcolngical Survey Bulletin.1994,2059-B.24.
    [63]Vanghan P.V., Oral contribution and discussion [A]. Tropical'85,1985.3:370-374.
    [64]Mslumn N.S., Suzuki A., Kitazono Y., Effects of weathering on stability of natural slopes in northcentral Kumamoto[J]. Soils and Foundations,1993,33(4):74-87.
    [65]Ching R.K.H., Sweeney D. G., Increase in factor of safety dueto soil suction for two Hong Kong slopes [J]. Proc. Int. Syrup. Landslides,1998:617-623.
    [66]Krahn J., Fredlund D.G., Klassen M.J., Effects of soil suction on slope stability at North Hill Can [J]. Geotech.J.,1989,26:269-278.
    [67]Nieto A.S., Brarany I., Catastrophic rain-induced landslides in Rio de Janier. Brazil: Mechanisms and contributing factors [J]. Geo. Soc. Am. Abstracts with Programs,1988, 20(7):144.
    [68]Sitar N., Anderson S.A., Johnson K.A., Conditions for initiation of rainfall induced debris flows [A]. Stability and Performance of Slopes and Embankments 11[C], Geotechnical Special Publication No.31 - 1992,1:834-849.
    [69]Richard M. Iversion, Mark E. Reid, Richard G. LaHusen, Debris-flow Mobilization from landslides [J]. Annu. Rev. Earth Planet. Sci.1997,25:85-38.
    [70]李朝安,土力类泥石流源地土体起动预报模型初步研究[D],北京:铁道部科学研究院,2004,47-66.
    [71]崔鹏,坡面泥石流形成条件分析,第一届海峡两岸山地灾害与环境保育研究研讨会论文集,成都,1998,四川科学技术出版社,1998,180-184.
    [72]Sassa K. the Ontake debris avalanche and its interpretation. Landslide news,1987, 1(1):6-8.
    [73]戚国庆、黄润秋,泥石流成因机理的非饱和土力学理论研究[J],中国地质灾害与防治学报,2003,14(3):12-15.
    [74]沈寿长、李良勋、魏鸿,稀性泥石流龙头形成机制的试验研究[J],中国铁道科学,1996,27(3):42-49.
    [75]魏鸿,泥石流龙头对坝体冲击力的试验研究[J],中国铁道科学,1996,27(3):50-62.
    [76]钱宁,高含沙水流运动(M),北京,清华大学出版社,1989,155-160.
    [77]钱宁、万兆惠,泥沙运动力学(M),北京,科学出版社,1983,184-187.
    [78]Takahashi T. Debris Flow. International Association Hydraulic Research [M]. Balkema, Rotterdam,1991.
    [79]崔鹏,泥石流起动机制的研究[D],北京:北京林业大学,1990.
    [80]Sassa K. the mechanics Of debris flow[C]. Proceeding of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco,1985, 3:1173-1176.
    [81]Takahashi T. Mechanical characteristics of debris flow[J]. Journal of the Hydraulic Division(Proceeding ASCE 104 HY8),1978,13:1153-1169.
    [82]T Takahashi T. Estimation of potential debris flows and their hazardous zones; soft countermeasures for a disaster [J]. Journal of the Natural disaster Science,1981,3:57-89.
    [83]Span JF E C.,泥石流与泥石流体的基本特征及其量测方法[M],盂河清译,重庆:科学技术文献出版社重庆分社,1986,66-75.
    [84]钱宁、王兆印,泥石流运动机理的初步探讨[J],地理学报,1984,39(1):33-42.
    [85]Wan Z H, Wang Z Y. Hyper-concentrated Flow. Monograph Series of IAHR[M]. Netherlands:A.A. Balkema Publishers,1994.
    [86]Johnson R.M. Physical process in Geology[M], Freeman, Cooper & company, 1970.
    [87]弗莱斯曼[苏],泥石流,姚德基译,科学出版社,1986,69-91,164-241.
    [88]Bagnold R.A. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear, Proc. R. Soc. Lond, A,1954,225,49-63.
    [89]Takahashi T. Debris flow on prismatic open channel[J]. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineer,1980,106(HY3):381-396.
    [90]王光谦、倪晋仁,颗粒流研究述评[J],力学与实践,1992,14(1):7-18.
    [91]王光谦、倪晋仁、张军等,泥石流的颗粒流模型[J],山地研究,1992,10(1):1-10.
    [92]Chen C.L., Generalized viscoplastic modeling ofdebris flow[J]. Journal of Hydraul. Eng.,1988,114(3):237-258.
    [93]Chen C.L., General solutions for viscoplastic debris flow[J]. Journal of Hydraul. Eng.,1988,114(3):259-282.
    [94]O'Brien J.S., Julien P.Y. Physical properties and mechanics of hyper-concentrated sediment flows[C], Proc. Specialty Conference on Delineation of Landslides, Flash Flood & Debris flow Hazards in Utah,1985.260-279.
    [95]沈寿长、谢该良,泥石流的结构模式和粗顺粒对浆体流变特性的影响[J],泥沙研究,1983,No.3,12-19.
    [96]Chen C.L., Bingham plastic or Bagnold's dilatant fluid as a rheological model of debris flow, Proceedings Third International Symposium on River Sedimentation, the University of Mississippi,1986,1624-1636.
    [97]Chen C.L., Chinese concepts of modeling hyper-concentrated stream flow and debris flow, Proceedings Third International Symposium on River Sedimentation, the University of Mississippi,1986,1647-1657.
    [98]邵颂东,流团模型在洪水与泥石流大尺度流动计算中的应用[D],北京:清华大学,1997.
    [99]王光谦、倪晋仁,泥石流动力学基本方程[J],科学通报,1994,39(18):1700-1704.
    [100]杨美卿、王立新,泥石流层移质运动模型的试验研究[C],泥石流及洪水灾害防御国际研讨会论文集,A卷,北京:地震出版社,1997,37-41.
    [101]孙其诚、王光谦,颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87-100.
    [102]Atin R.J., Craine R.E., Continuum theories of mixtures:basie theory and historical development, Q.J. Mech. Appl. Math., Part 2,29,1976,209-244.
    [103]沈寿长、卢昌棋、谢慎良,泥石流运动的阻力与流速[J],铁道工程学报,1986,3(04):5-12.
    [104]Iverson R.M., The Physics of debris flow [J], Review of Geophysics,1997,35(3): 245-296.
    [105]魏鸿、沈寿长,运用颗粒流理论建立的水石流数学模型及其数值模拟,第四届全国泥石流研讨会论文集,甘肃文化出版社,1994,311-318.
    [106]沈寿长,泥石流应力本构关系[J],水利学报,1998,28(12):17-23.
    [107]韦方强、崔鹏、钟敦伦,泥石流预报分类及其研究现状和发展方向[J],自然灾害学报,2004,13(5):10-15.
    [108]韦方强、汤家法、钟敦伦等,区域和沟谷相结合的泥石流预报及其应用[J],山地学报,2004,22(3):321-325.
    [109]韦方强、徐晶、江玉红,不同时空尺度的泥石流预报技术体系[J],山地学报,2007,25(5):616-621.
    [110]唐川、朱大奎,基于GIS技术的泥石流危险性评价研究[J],地理科学,2002,22(3):300-304.
    [111]Hofmeister R.J., Miller D.J., GIS-based modeling of debris flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA[A]. Rickenmann, Chen. Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment[M]. Rotterdam:Millpress,2003,1:1141-1149.
    [112]谭炳炎,泥石流沟严重程度的数量化综合评判[J].铁道学报,1986,8(2):74-82.
    [113]韦方强、谢洪、钟教伦,四川省泥石流危险度区划[J],水土保持学报,2000,14(1):59-63.
    [114]汪明武,基于神经网络的泥石流危险度区划[J],水文地质工程地质,2000,27(2):18-19.
    [115]谭炳炎,三峡库区泥石流活动及发展趋势的分析[J],中国铁道科学,2003,25(5):10-15.
    [116]刘希林、唐川,泥石流危险性评价[M],科学出版社,1995,62-78
    [117]刘希林,莫多闻,泥石流风险评价[M],四川科学技术出版社,2003,51-82
    [118]唐川,朱静,云南滑坡泥石流研究[M],商务出版社,2003,90-100
    [119]刘光旭、戴尔阜、吴绍洪等,泥石流灾害风险评估理论与方法研究[J],地理科学进展,2012,31(3):383-391.
    [120]A. Petrascheck, H.Kienbolz, Hazard assessment and mapping of mountain risks in Switzerland, USA[A]. Rickenmann, Chen. Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment[M]. Rotterdam:Millpress,2003,1:25-38.
    [121]谭万沛,暴雨泥石流预报程式[J],自然灾害学报,2000,9(3):106-111.
    [122]文科军、王礼先、谢宝元,暴雨泥石流实时顶报的研究[J],北京林业大学学报,1998,20(6):59-64.
    [123]晋玉田,攀西地区泥石流滑坡灾害与降水关系的分析和预报[J],四川气象, 1999,19(3):34-38.
    [124]Crosta G., Regionalization of rainfall thresholds:an aid to landslide hazard evaluation[J], Environmental Geology,1998,35(2-3):131-145.
    [125]Fulton R.A., Sensitivity Of WSR-88D rainfall estimates to the rain-rate threshold and rain gauge adjustment:A flash flood case study[J], Weather and Forecast,1999, 14:604-624.
    [126]Wieczork G.F.,Coe J.A., Godt J.W., Remote sensing of rainfall for debris flow hazard assessment[A]. Rickenmann, Chen. Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment[C]. Proc.3rd International DFHW Conference, Davos, Switzerland,2003,1257-1268.
    [127]足立胜治、德山九仁夫、中筋章人等,土石流发生危险度の判定にμやて([J],新砂防,1977,30(3):7-16.
    [128]Fiebiger G., Le zonage des risques naturels en Autriche[J], Torrent Avalanche Landslide Rockfall Eng,1997,61(134):155-163.
    [129]刘希林、唐川、朱静,泥石流危险范围的流域背景预测法[J],自然灾害学报,1992,1(3):56-67.
    [130]谭炳炎,山区铁路沿线暴雨泥石流预报的研究[J],中国铁道科学,1994,15(4):67-78.
    [131]王韦、许唯临、谭炳炎,铁路泥石流预报警报体系[J],山地学报,1999,17(2):183-187.
    [132]Fan J.C., Liu C.H., Wu MF etc., Determination of critical rainfall thresholds for debris-flow occurrence in central Taiwan and their revision after the 1999 Chi-Chi great earthquake [A], In Rickenmann, Chen. Debris-Flow Hazards Mitigation:Mechanics, Prediction, and Assessment. Proc.3rd International DFHW Conference[C], Davos, Switzerland,2003,103-114.
    [133]Wilson R.C., Wieczorek G.F., Rainfall thresholds for the initiation of debris flow at La Honda, California. Environ Eng Geoscience,1995,1(1):11-27.
    [134]Caine N. The rainfall intensity-duration control of shallow landslides and debris flow[J], Geogr Ann,1980,62A:23-27.
    [135]Joode A., Steijn H., PROMOTOR-df:a GIS-based simulation model for debris-flow hazard prediction [A], Rickenmann, Chen. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Proc.3rd International DFHW Conference[C], Davos, Switzerland,2003,1173-1184.
    [136]崔鹏,泥石流启动条件和启动机理的实验研究[J],科学通报,1991,36(21): 1650-1652.
    [137]Iverson R.M., Reid M.E., LaHusen R.G., Debris-flow mobilization from landslides[J], Annual Review of Earth and Planetary Sciences,1997,25:85-138.
    [138]陈景武,降雨预报泥石流的原理和方法,第二届全国泥石流学术会议论文集,科学出版社,1991,84-90.
    [139]谭炳炎、段爱英,山区铁路沿线暴雨泥石流预报的研究[J],自然灾害学报,1995,4(2):43-52.
    [140]Wilson R.C., Estimating rainfall required to initiate debris flows[C], Association of Engineering Geologists,29th Annual Meeting, San Francisco, Abstracts and Programs, 1986,69-70.
    [141]Wilson R.C., Mark R.K., Barbato G.E., Operation of a real-time warning system for debris flows in the San Francisco Bay area, California[C], Hydraulic Engineering'93, Proceedings of the 1993 Conference, eds. Shen H.W., Su S.T., and Wen F., Hydraulics Division, American Society of Civil Engineers, San Francisco,1993,2:1908-1913.
    [142]Wilson R.C., Normalizing rainfall/debris flow thresholds along the U.S.paeific coast for long-term variations in precipitation climate[C], Proc. of 1st international conference on debris flow Hazards mitigation:mechanics, prediction, and Assessment, San Francisco, Chen C.L., Hydraulics Division, American Society of Civil Engineers,1997, 32-43.
    [143]Fausto Guzzetti, Silvia Peruccacci, Mauro Rossi and Colin P. Stark, The rainfall intensity-duration control of shallow landslides and debris flows:an update[J], Landslides, 2008,5(1):3-17.
    [144]叶华祥,接触型泥石流警报传感器的试验研究,泥石流理论与实践.铁道部科学研究院西南研究所论文集(第2集),沈寿长、谭炳炎主编,西南交通大学出版社,1991,95-105.
    [145]刘传正,台湾省山地灾害防治与环境保育概览[J],水文地质工程地质,2004,31(6):113-115.
    [146]王礼先、王志民,山洪及泥石流灾害预报[M],北京,中国林业出版社,2001.
    [147]E.C.斯捷潘诺夫著[苏],泥石流与泥石流体的基本特性和量测方法,孟河请译,科学技术文献出版社重庆分社,1982,60-75.
    [148]章书成、陈精日、叶明富,蒋家沟泥石流物理参数的测试与研究,“云南蒋家沟泥石流观测研究”,吴积善,康志成,田连权,章书成主编,科学出版社,1990,156-164.
    [149]陈精日、刘立秋、叶明富,泥石流地声参数传播特征值的测试与分析[J], 山地学报,1999,17(4):349-352.
    [150]R.K.Cook, Strang sounds in the atmosphere, physical acoustics (edited by R.B.Lindsay)[M], Dowden, Hutchinson, Ross, Inc.1974,67-71.
    [151]周宪德、章书成、张友龙,坡地灾害次声特性及监测系统的研究[C],海峡两岸山地灾害与环境保育研究讨论会论文集,台北市,2004,291-296.
    [152]董娜,次声特点及其应用[J],声学技术,2003,22(3):199-202.
    [153]谢金来、谢照华,大气核爆炸次声监测系统[J],核电子学与探测技术,1997,17(6):408-411.
    [154]章书成、余南阳,泥石流早期警报系统[J],山地学报,2010,28(3):379-384.
    [155]Liu K.F., Chen S.C., Integrated debris flow monitoring system and virtual center, Proc. of 3rd International conference on debris flow Hazards mitigation:mechanics, predietion, an assesement, Daws, Switzerland,2003,767-774.
    [156]王良玮等,山区铁路沿线降雨实时监测网络系统[J],中国铁路,2004(4):65-67.
    [157]吴奇锡,水力类泥石流形成模式之研究[D],台湾:逢甲大学,2003,13-23。
    [158]Sidorchuk A., Dynamic and static models of gully erosion[J],1999, Vol.37:401-414.
    [159]李朝安、胡卸文、王良玮,山区铁路沿线泥石流次声监测预警研究[J],声学技术,2012,VO1.31(4):420-426.
    [160]中华人民共和国国土资源部.DZ/T 0220—2006泥石流灾害防治工程勘查规范[S],北京,中国标准出版社,2006.
    [161]李朝安、谭炳炎、胡卸文,汶川5.12地震公路灾害分析和防治对策[J],自然灾害学报,2009,18(6):97-104.
    [162]黄晓光、唐利平、李朝安,地震次生地质灾害对山区公路的危害和防灾研究,地质灾害与环境保护,2010,21(3):74-81;
    [163]李朝安、胡卸文、王良玮,山区铁路沿线泥石流泥位自动监测预警系统[J],自然灾害学报,2011,20(5):74-81.
    [164]谭炳炎,二十世纪中国铁路沿线泥石流防治理论与实践[J],铁道工程学报,2005,s(1):369-372.
    [165]Parsons J.D., Whipple K.X. and Simoni A. Experimental study of the grain-flow, fluid-mud transition in debris flows [J]. Journal of Geology,2001,109:427-447.
    [166]Im ran J., Parker G., Locat J. and Lee H. ID numerical model of muddy subaqueous and subaerial debris flows [J].Journal of Hydraulic Engineering,2001,127 (11): 959-968.
    [167]Chen H. and Lee C.F. Numerical simulation of debris flows [J]. Canadian Geo technical Journal,2000,37:146-160
    [168]Blijenberg H.M., De Graaf P.J., Hendriks M.R., De Ruiter J.F. and Van Tetering A.A.A. Investigation of infiltration characteristics and debris flow initiation conditions in debris flow source areas using a rainfall simulator[J].Hydrological Processes,1996,10: 1527-1543.
    [169]刘雷激、朱平一、张军,泥石流源地土抗剪强度指标φ、C值同含水量Q的关系[J],山地学报,1998,16(2):99-102.
    [170]汪益敏、苏卫国,土的抗剪强度指标对边坡稳定分析的影响[J],华南理工大学学报(自然科学版),2001,29(1):22-25.
    [171]白志勇,泥石流松散物质起动条件的分析与计算[J],西南交通大学学报,2001,29(3):318-321.
    [172]陈宁生、韩文喜、何杰等,试析小流域土力类粘性泥石流的汇流过程[J],山地学报,2001,19(5):418-424.
    [173]陈宁生、张军,泥石流源区弱固结砾石土的渗透规律[J],山地学报,2001,19(1):169-171.
    [174]汪裕宜、邹仁元、刘岫峰,泥石流起动与渗流系数的相关研究[J],土壤侵蚀与水土保持学报,1997,3(4):76-86.
    [175]鲁晓兵、崔鹏,泥石流的启动分析[J],力学与实践,2001,23(6):21-23.
    [176]赵慧丽、张弥、李兆平,含水量对北京地区非饱和土抗剪强度影响的试验研究[J],石家庄铁道学院学报,2001,14(4):30-33.
    [177]龚壁卫、詹良通、刘艳华等,非饱和膨胀土的抗剪强度特性研究[J],长江科学研究院院报,2000,17(4):19-22.
    [178]谭新、陈善雄、杨明,降雨条件下土坡饱和—非饱和渗流分析[J],岩土力学,2002,24(3):381-384.
    [179]郭志学、方铎、王协康等,泥石流入汇对主河演变的影响[J],泥沙研究,2000,(4):22-25.
    [180]乔建平、黄栋、杨宗佶等,汶川地震极震区泥石流物源动储量统计方法讨论[J],中国地质灾害与防治学报,2012,23(2):1-6.
    [181]李朝安、胡卸文、王良玮,泥石流源地降雨渗透深度检测仪的研制及应用[J],水土保持通报,2011,32(2):168-171;
    [182]Kogelnig A., Hubl J., Surinach E., etc., A study of infrasonic signals of debris flow[C]. In Proceedings of 5th International Conference on Debris-Flow Hazards:Mitigation, Mechanics, Prediction and Assessment, Padua, Italy,2011,563-572.
    [183]Kogelnig A., Surinach E., Vilajosana I., etc., On the complementariness of infrasound and seismic sensors for monitoring snow avalanches[J]. J. of Natural Hazards Earth Syst. Sci.2011,11,2355-2370.
    [184]J.B. Johnson, Generation and propagation of infrasonic airwaves from volcanic explosions[J], J. of Volcanology and Geothermal Research 121(2003),2003,1-14.
    [185]M.J. Evars, Physiological and psychological effects of Infrasound at moderate intensities[M], Infrasound and low frequency vibration (edited by W.Tempest), Academic Press,1976,97-113.
    [186]S. Zhang, Y. Hong, B. Yu, Detecting infrasound emission of debris flow for warning propose[C], Proc. of International Symposion on interpraevent 2004-Riva/Trivent, 2004,11:359-364.
    [187]郭发滨、董立峰,次声波在海啸灾害预警中的应用探讨[J].海洋工程,2007.26(1):30-32.
    [188]中国科学院成都山地灾害与环境研究所编著,泥石流研究与防治[M],成都,四川科学出版社,1989.7-15.
    [189]叶华祥,接触型铁路泥石流警报传感器及其监测断面位置的研究[J],铁道学报,1988,10(4):86-95.
    [190]叶华祥,用泥石流灾害信息网络减轻泥石流对列车的威胁[J],灾害学,1996,11(2):32-36.
    [191]康志成、胡平华,泥石流泥位报警原理及仪器[C],第二届全国泥石流学术会议论文集.北京:科学出版社,1991:42-46.
    [192]舒安平、杨凯、师哲等,非均质泥石流泥位特征值计算方法[J],水力学报,2012,43(2):153-159.
    [193]胡凯衡、康志成、李泳,阵性泥石流泥位过程线的Euler-Lagrange分析[J],泥沙研究,2010(4):6-10.
    [194]杨仁文,超声波泥位计的研制和应用效果[J],山地研究,1998(1):77-79
    [195]中华人民共和国国土资源部,DZ/T 0220—2006泥石流灾害防治工程勘查规范[S],北京,中国标准出版社,2006,25-31.
    [196]沈寿长、谢修齐,暴雨泥石流流量计算方法研究[J],中国铁道科学,1993,15(20):80-89.
    [197]胡凯衡、崔鹏、游勇等,汶川灾区泥石流峰值流量的非线性雨洪修正法[J],四川大学学报.工程科学版,2010,42(5):52-57.
    [198]李焯芬、陈虹,香港滑坡泥石流成因及治理,地理学报,1997,52(s):114-123.
    [199]]王发读,浅层堆积物滑坡特征及其与降雨的关系初探,水文地质工程地质,1995,22(1):20-23.
    [200]李树德,滑坡型泥石流形成机理[J],北京大学学报(自然科学版),1998,34(4):519-522.
    [201]胡明鉴、汪稔,蒋家沟流域暴雨滑坡泥石流共生关系的试验研究,岩石力学与工程学报,2003,22 (5):824-828.
    [202]M. Arattano and L. Marchi, Systems and Sensors for Debris- flow Monitoring and Warning[J], Sensors,2008,8:2436-2452.
    [203]A. Badoux, C. Graf, J. Rhyner, etc., A debris-flow alarm system for the Alpine Illgraben catchment:design and performance[J], Natural Hazards,2009,49(3):517-539.
    [204]Surinach E., Vilajosana I., Khazaradze G., etc., Seismic detection and characterization of landslides and other mass movements [J], Natural Hazards and Earth System Science,2005,5,791-798.
    [205]Hurlimann M., Rickenmann D., and Graf D., Field and monitoring data of debris-flow events in the Swiss Alps[J], Canadian Geotechnical Journal,2003,40(1): 161-175.
    [206]Hsu-Yang Kunga, Chi-Hua Chenb, Hao-Hsiang Ku, Designing intelligent disaster prediction models and systems for debris-flow disasters in Taiwan[J], Expert Systems with Applications,2012,39(5):5838-5856.
    [207]Matthias Jakob, T. Owen, T. Simpson, A regional real-time debris-flow warning system for the District of North Vancouver, Canada[J], Landslides,2012,9(2):165-178.
    [208]王良伟,铁路降雨监测网络系统及泥石流预警,两岸土石流与洪水灾害防治研讨会论文集,台湾,2001,87-91.
    [209]师哲、张平仓、舒安平,泥石流监测预报预警系统研究[J].长江科学院院报,2010.27(1):115-118.
    [210]NOAA-USGS Debris-Flow Task Force, NOAA-USGS Debris-Flow Warning System-final report, U.S. Geological Survey Circular 1283,2005.
    [211]Raymond C. Wilson, The Rise and Fall of a Debris-Flow Warning System for the San Francisco Bay Region, California[M], Landslide Hazard and Risk, Glade T., Anderson M. and Crozie M. J., John Wiley & Sons, Ltd, Chichester, West Sussex, England,2005, 493-518.
    [212]Itakura Y., Inaba H., Sawada T., A debris-flow monitoring devices and methods bibliography[J], Natural Hazards and Earth Systems Sciences,2005,5:971-977.
    [213]钟敦伦、张金山、谢洪等,泥石流警报技术探索[J].山地学报,2011,9(2):234-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700