用户名: 密码: 验证码:
天然及合成多孔性粘土材料对地下水中氟化物的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地下水氟污染已经逐渐成为世界性问题而引起关注。世界上多个国家和地区饮用水中氟化物的含量都超过世界卫生组织规定的标准,严重威胁到动植物以及人类的健康。对于国内外来说,吸附法由于其操作简便性和环境友好性已经成为应用最广泛的去除地下水及饮用水中氟化物的方法。
     目前,常用的除氟吸附剂主要有天然、合成和生物类材料,这些材料虽然具有一定的吸附除氟能力但是也存在一定的缺陷。其中,一些材料对环境pH值的适应性较差,一些材料成本高昂,且大多为粉末状,容易堵塞水道,因此在实际的水处理除氟工艺中受到了限制。本文主要以氟污染地下水为主要研究对象,探讨天然粘土材料和人工合成多孔性矿物材料对地下水氟化物的吸附特性,着力于为吸附除氟材料的开发及地下水氟化物去除提供理论依据和技术支持,为实现地下水中氟污染物的去除提供理论依据。论文工作从整体上分为三大部分:
     第一部分采用静态和动态试验方法,研究了天然鹿沼土对水溶液中氟离子的吸附性能,获得了吸附热力学和动力学曲线;建立了吸附平衡热力学、动力学模型;求取了模型参数,计算了天然鹿沼土吸附氟化物的有关热力学状态函数;探讨了鹿沼土的吸附除氟机理,并采用实际地下水样配制含氟废水对鹿沼土吸附除氟能力进行了研究。结果发现,鹿沼土对氟化物的吸附反应初始速率很快且在2h左右达到吸附平衡;溶液初始pH值介于4.0-10.0之间时除氟效率达到最大;吸附等温线可以用Dubnine-Radushkevich(D-R)方程和Freundlich方程描述,吸附过程符合二级动力学方程;吸附过程为吸热反应,根据其焓变H = 11.782 kJ/mol可以推断鹿沼土与氟离子的吸附作用力主要为氢键力和偶极间作用力;氯离子和硝酸根离子对天然鹿沼土的吸附除氟过程基本没有影响,硫酸根离子和碳酸氢根离子对吸附过程略有消极影响,碳酸根和磷酸根对吸附过程有明显抑制作用;在动态柱吸附试验中,随着进水流速的增大,柱子高度的降低以及入水氟离子浓度的增大,鹿沼土柱的穿透时间逐渐缩短,从而使鹿沼土对氟离子的吸附达到饱和状态变快。动态土柱实验中鹿沼土对氟离子的吸附过程符合Thomas动力学公式和BDST模型。
     第二部分主要采用静态吸附试验方法,研究了分别以FeSO_4·7H_2O和Fe_2O_3为铁质的合成多孔性粘土材料对水溶液中氟化物的吸附性能,获得了吸附热力学和动力学曲线;建立了平衡吸附热力学、动力学模型;求取了模型参数,计算了两种铁质合成材料对吸附氟化物的有关热力学状态函数。探讨了合成材料对氟化物的吸附机理,并采用实际地下水样对以FeSO_4·7H_2O为铁质合成材料的吸附除氟能力进行了研究。结果发现,以FeSO_4·7H_2O和Fe_2O_3为铁质的合成多孔性粘土材料对氟化物的吸附过程都符合二级动力学和内扩散方程,氟离子在以FeSO_4·7H_2O和Fe_2O_3为铁质的两种合成多孔性粘土材料上的静态吸附平衡时间都为48 h左右;以FeSO_4·7H_2O和Fe_2O_3为铁质的合成多孔性粘土材料分别在溶液初始pH值为7.0和4.0左右时对氟化物的去除率达到最大值,氟化物去除率分别为94.23%和60.48%;以FeSO_4·7H_2O和Fe_2O_3为铁质的合成多孔性粘土材料对溶液中氟化物的吸附过程都符合Langmuir和Freundlich吸附等温方程,其Langmuir最大吸附容量分别为2.16和1.70 mg/g;以FeSO_4·7H_2O和Fe_2O_3为铁质的合成多孔性粘土材料对氟化物的吸附过程均为吸热反应;溶液中共存的氯离子和硝酸根离子基本不影响以FeSO_4·7H_2O为铁质的合成多孔性粘土材料对氟化物的去除效果,而硫酸根离子对除氟效果有一定的消极影响,碳酸根和磷酸根离子对以FeSO_4·7H_2O为铁质的合成多孔性粘土材料的除氟效率影响最大;以FeSO_4·7H_2O为铁质的合成多孔性粘土材料的吸附除氟过程主要以化学吸附作用为主。
     第三部分采用静态吸附试验方法,分别研究了以木节粘土和金刚土为骨架的Fe/Al改性多孔性粘土材料对水溶液中氟化物的吸附性能,获得了吸附热力学和动力学曲线;建立了平衡吸附动力学模型和等温模型;求取了模型参数,探讨了两种改性合成材料对氟化物的吸附机理,并采用实际地下水样对以两种材料的吸附除氟能力进行了研究。结果发现,以木节粘土和金刚土为基本骨架的改性多孔性粘土材料对溶液中的氟化物均具有较好的吸附能力;两种材料均在溶液初始pH = 6.0条件时达到最大吸附容量,溶液初始pH值低于4.0或高于10.0均不利于两种材料对氟化物的吸附;两种材料的吸附除氟过程均符合二级动力学方程;两种材料的Langmuir最大吸附容量分别为1.79 mg/g和3.38 mg/g;Freundlich吸附等温方程中的1/n值均小于1,表明两种改性材料的吸附除氟过程均为有利吸附;以金刚土为基本骨架的改性材料对氟离子的亲和能力要强于以木节粘土为基本骨架的吸附材料,前者的氟吸附容量约为后者的2倍;以金刚土为基本骨架的改性吸附材料在多种离子共存条件下仍能保持较好的吸附除氟性能。当初始氟浓度为10 mg/L,吸附剂量为20 g/L条件时,氟化物去除率保持在80%以上,而以木节粘土为基本骨架的吸附材料除氟效果则明显降低。
     总之,天然鹿沼土、含铁质多孔性合成材料及Fe/Al改性的粘土材料均对溶液中的氟化物具有良好的吸附性能,本论文的研究成果为地下水除氟技术的实际应用和优化运行提供了理论依据和技术指导。
Fluoride contamination in groundwater is a worldwide problem and manyregions have fluoride concentration higher than prescribed by WHO, which is aserious threat to flora and fauna including humans. Adsorption method is an attractivealternative to other treatment because of its environmental respectability and ease ofoperation.
     In recent years, considerable attention has been focused on the study of fluorideremoval using natural, synthetic and biomass materials. They have shown a certaindegree of fluoride adsorption capacities but some of them can only be used in anarrow pH range (5.0-6.0) and some of them are too expensive to be considered forfull-scale water treatment. Furthermore, most of them are fine particles or powderswhich would be suspended in water, making separation difficult and blocking flumes.Therefore, an effective and low-cost adsorbent with coarse particles is desired as anefficient treatment technology for fluoride in large-scale water samples. This researchfocused on the fluoride removal from contaminated groundwater and discussed thefluoride adsorption characteristics by using natural clay materials and artificialsynthesis porous mineral materials. This study focused on solving the key technicalproblems for the fluoride removal methods, which will provide the theory andscientific basis for fluoride removal from groundwater.
     The first section investigated the fluoride adsorption ability using one kind ofnatural mud in a batch and column study. The influences of contact time, solution pH,adsorbent dosage, initial fluoride concentration and co-existing ions were investigatedby batch equilibration studies. Batch experiments indicate that the time to attainequilibrium was 2 h and adsorption was followed the pseudo-second-order kineticmodel. Maximum adsorption for fluoride removal was achieved at pH range of5.0-7.0. The adsorption of fluoride on Kanuma mud in batch systems can be describedby the Dubnine-Radushkevich (D-R) and Freundlich isotherm models. The adsorptionprocess was an endothermic process. According to the enthalpy change of H = 11.782 kJ/mol, it can be inferred that the adsorption force was hydrogen bondingforce and the coupling reaction force. Chloride ion and nitrate ion had no effect onfluoride adsorption by natural Kanuma mud; sulfate ion and bicarbonate ion had aslightly negative influence on fluoride adsorption process; while carbonate ion andphosphate ion had a significant inhibitory effect on fluoride adsorption. The fixed-bedcolumn breakthrough curves were analyzed at different flow rates, bed depth andinitial fluoride concentration. Thomas and BDST model can be used for predicting ofbreakthrough curves for fluoride removal by a fixed bed of Kanuma mud for differentflow rates and bed depths.
     The second section has successfully combined Kanuma mud, with starch, zeoliteand FeSO4·7H2O salts to calcine clay materials (particle size: 3-5 mm) andinvestigated the fluoride adsorption capability of these adsorbents. Both GC(FeSO4 7H2O) and GC (Fe2O3) adsorbents can be used for fluoride removal fromaqueous solution, while GC (FeSO4 7H2O) is more effective for fluoride removal thanGC (Fe2O3). Maximum adsorption of fluoride on GC (FeSO4 7H2O) and GC (Fe2O3)at pH 7.0 and 4.0 were 94.23% and 60.48%, respectively. The equilibrium data ofsamples fitted well to both Langmuir and Freundlich isotherms. The adsorptioncapacity of GC (FeSO4 7H2O) and GC (Fe2O3) was 2.16 mg/g and 1.70 mg/g. Both ofthese two granular adsorbents followed second-order kinetics and were governed byintra-particle diffusion model. Chloride ion and nitrate ion had no effect on fluorideadsorption by GC (FeSO4 7H2O); sulfate ion had a slightly negative influence onfluoride adsorption process; while carbonate ion and phosphate ion had a significantinhibitory effect on fluoride adsorption by GC (FeSO4 7H2O). The calculatedthermodynamic parameters showed that both of the adsorption processes werethermodynamically favorable, spontaneous and endothermic in nature. For theadsorbent of GC (FeSO4 7H2O), the fluoride adsorption process was mainly chemicalreaction.
     The third section has developed another kind of adsorbent, which was preparedby mixing Knar clay/King Kong clay, zeolite and starch with mass ratio 1:1:1. Porousgranular clay adsorbents that contain dispersed aluminum and iron oxides have been synthesized by impregnating with salt solutions followed by precipitation at process.This adsorbent was sphere in shape, 2-3 mm in particle size, highly porous andshowed particularly high specific surface area. Both of the materials can achieve themaximum adsorption capacity when the initial pH was 6.0, and the fluoride removalefficiency will decrease when the initial pH less than 4.0 or higher than 10.0. Theexperimental data revealed that both the Langmuir and Freundlich isotherm modelsfitted well with the fluoride sorption process. The monolayer adsorption capacity was1.79 mg/g and 3.38 mg/g, respectively. The adsorption process was well explainedwith pseudo-second order kinetic model. The 1/n value of Freundlich isotherm wasless than 1, which showed that the adsorption process was favorable or preferential forboth kinds of materials. Besides, the fluoride adsorption capacity of King Kong claymaterial was two times than the Knar clay material. The King Kong clay material hadgood adsorpotion ability under various ions coexistence conditions. The adsorptionefficiency can achieve 80% under the initial fluoride concentration of 10 mg/L,adsorbent dosage of 20 g/L conditions by the King Kong clay material. Results fromthis study demonstrated potential utility of Fe/Al coated porous granular clay materialthat could be developed into a viable technology for fluoride removal from aqueoussolution and groundwater.
     In short, Kanuma mud, iron-impregnated porous synthstic materials and Fe/Almodified porous clay materials have good fluoride adsorption performance. Theseresults may provide the theory basis and the technical guidance for groundwaterfluoride removal in the practical application.
引文
Aharoni, C., Ungarish, M. Kinetics of activated chemisorptions, Part-2. Theoretical models. J.Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases. 1977, 73(3): 456~464
    Aksu, Z., Gonen, F. Biosorption of phenol by immobilized activated sludge in a continuouspacked bed: prediction of breakthrough curves. Pro. Biochem. 2004, 39: 599~613
    Apparao, B.V., Kartikeyan, G. Permissible limits of fluoride on in drinking water in India inruralenvironment. Int. J. Environ. Protec. 1986, 6(3): 172~175
    Arami, M., Limaee, N.Y., Mahmoodi, N.M., et al. Removal of dyes from colored textilewastewater by orange peel adsorbent: equilibrium and kinetic studies. J. Colloid and Interface.Sci. 2005, 288: 371~376
    Ayoob, S., Gupta, A.K., Bhakat, P.B., et al. Investigations on the kinetics and mechanisms ofsorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 2008,140: 6~14
    Bahena, J.L.R., Cabrera, A.R., Valdivieso, A.L., et al. Fluoride adsorption ontoα-Al2O3and itseffect on the zata potential at the alumina-aqueous electrolyte interface. Sep. Sci. Technol.2002, 37: 1973~1987
    Bail, A.L., Jacoboni, C., Lebalc, M., et al. Crystal structure of the metastable form of aluminumtrifluorideβ-AlF3and the gallium and indium homologs. J. Solid. State. Chem. 1988, 77:96~101
    Bansiwal, A., Thakre, D., Labhshetwar, N., et al. Fluoride removal using lanthanum incorporatedchitosan beads. Colloid Surf. B: Biointerfaces. 2009, 74: 216~224
    Bhaumik, M., Leswifi, T.Y., Maity, A., Srinivasu, V.V., et al. Removal of fluoride from aqueoussolution by polypyrrole/Fe3O4magnetic nanocomposite. J. Hazard. Mater. 2011, 186:150~159
    Biswas, K., Debnath, S., Ghosh, U.C. Adsorption of fluoride by hydrous iron(III)-tin(IV) bimetalmixed oxide from the aqueous solutions. Chem. Eng. J. 2009, 149: 196~206
    Biswas, K., Debnath, S., Ghosh, U.C. Physicochemical aspects on fluoride adsorption for removalfrom water by synthetic hydrous iron(III)-chromium(III) mixed oxide. Sep. Sci. Technol.2010, 45: 472~485
    Biswas, K., Gupta, K., Goswami, A., et al. Fluoride removal efficiency from aqueous solution bysynthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide. Desalination. 2010,255: 44~51
    Culp, R., Stolenberg, H. Fluoride reduction at La Cross. Kan. J. AWWA. 1958, 50(3): 423~431
    Daifullah, A.A.M., Yakout, S.M., Elreefy, S.A. Adsorption of fluoride in aqueous solutions usingKMnO4-modified activated carbon derived from stem pyrolysis of rich straw. J. Hazard.Mater. 2007, 147: 633~643
    Das, N., Pattanaik, P. Defluoridation of drinking water using activated titanium rich bauxite. J.Colloid and Interface Sci. 2005, 292: 1~10
    Davranche, M., Lacour, S., Bordas, F., et al. An easy determination of the surface chemicalproperties of simple and natural solids. J. Chem. Educ. 2003, 80: 76~78
    Deng, S., Liu, H., Zhou, W., et al. Mn-Ce oxide as a high-capacity adsorbent for fluoride removalfrom water. J. Hazard. Mater. 2011, 186: 1360~1366
    Do gan, M., Alkan, M., Türkyilmaz, A., et al. Kinetics and mechanism of removal of methyleneblue by adsorption onto perlite. J. Hazard. Mater. 2004, 109: 141~148
    Eric, T.K., Véronique, A., Njiki, C.P.N., et al. Preparation and characterization of charcoals thatcontain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water.Carbon.2010, 48: 333~343
    Eskandarpour, A., Onyango, M.S., Ochieng, A. Removal of fluoride ions from aqueous solution atlow pH using schwertmannite. J. Hazard. Mater. 2008, 152: 571~579
    Fan, X., Parker, D.J., Smith, M.D. Adsorption kinetics of fluoride on low cost materials. WaterRes. 2003, 37: 4929~4937
    Farrah, H., Slavek, J., Pickering, W.F. Fluoride interactions with hydrous aluminum oxides andalumina. Aust. J. Soil Res. 1987, 25: 55~69
    Freundlich, H.M.F.über die adsorption in losungen. Z. Phys. Chem. 1906, 57A: 385~470
    Ghorai, S., Pant, K.K. Investigations on the column performance of fluoride adsorption byactivated alumina in a fixed-bed. Chem. Eng. J. 2004, 98: 165~173
    Ghorai, S., Pant, K.K. Equilibium, kinetics and breakthrough studies for adsorption of fluoride onactivated alumina. Sep. Purif. Technol. 2005: 42: 265~271
    Gopal, V., Elango, K.P. Equilibrium, kinetics and thermodynamic studies of adsorption of fluorideonto plaster of paris. J. Hazard. Mater. 2006, 141: 98~105
    Gupta, V.K., Ali, I., Saini, V.K. Defluoridation of wastewaters using waste carbon slurry. WaterRes. 2007, 41: 3307~3316
    Harouiya, N., Oelkers, E.H. An experimental study of the effect of aqueous fluoride on quartz andalkali-feldspar sissolution rates. Water Res. 2004, 205: 155~167
    Hichour, M., Persin, F., Sandeaux, J., et al. Water defluoridation by donnan dialysis andelectrodialysis. Rev. Sci. Eau. 1999, 12: 671~686
    Hiemstra, T., Riemsdijk, W.H.V. Fluoride adsorption on goethite in relation to different types ofsurface sites. J. Colloid and Interface. Sci. 2000, 225: 94~104
    Ho, Y.S., Mckay, G. Pseudo-second order model for sorption process. Process. Biochem. 1999, 34:451~456
    Hosseini, M., Mertens, S.F.L., Ghorbani, M., et al. Asymmetrical Schiff bases as inhibitors of mildsteel corrosion in sulphuric acid media. Mater. Chem. Phys. 2003, 78: 800~808
    Hu, C.Y., Lo, S.L., Kuan, W.H., et al. Removal of fluoride from semiconductor wastewater byelectrocoagulation-flotation. Water Res. 2005, 39: 895~901
    Hutchins, R.A. New method simplifies design of activated carbon system. Chem. Eng. 1973, 80:133~138
    Islam, M., Patel, R.K. Evaluation of removal efficiency of fluoride from aqueous solution usingquick lime. J. Hazard. Mater. 2007, 143: 303~310
    Janardhana, C., Nageswara Rao, G., Sai Sathish, R., et al. Study on defluoridation of drinkingwater using zirconium ion impregnated activated charcoals. Indian J. Chem. Technol. 2007,14: 350~354
    Kagne, S., Jagtap, S., Dhawade, P., et al. Hydrated cement: A promising adsorbent for the removalof fluoride from aqueous solution. J. Hazard. Mater. 2008, 154: 88~95
    Kamble, S.P., Deshpande, G., Barve, P.P., et al. Adsorption of fluoride from aqueous solution byalumina of alkoxide nature: Batch and continuous operation. Desalination. 2010, 264: 15~23
    Karthikeyan, M., Elango, K.P. Removal of fluoride from water using aluminium containingcompounds. J. Environ. Sci. (China) 2009, 21: 1513~1518
    Karthikeyan, M., Elango, K.P. Removal of fluoride from water using aluminium containingcompounds. J. Environ. Sci. (China) 2009, 21: 1513~1518
    Kemer, B., Ozdes, D., Gundogdu, A., et al. Removal of fluoride ions from aqueous solution bywaste mud. J. Hazard. Mater. 2009, 168: 888~894
    Ku, Y., Chiou, H.M. The adsorption of fluoride ion from aqueous solution by activated alumina.Water Air & Soil Pollut. 2002, 133: 349~361
    Kumar, E., Bhatnagar, A., Ji, M., et al. Defluoridation from aqueous solutions by granular ferrichydroxide (GFH). Water Res. 2009, 43: 490~498
    Lagergren, S., Svenska, K. About the theory of so called adsorption of soluble substances. K. Sven.Vetenskapsad. Handl. 1898, 24(4): 1~39
    Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc.1916, 38: 2221~2295
    Li, Y.H., Wang, S., Zhang, X., et al. Removal of fluoride from water by carbon nanotubesupported alumina. Environ. Technol. 2003, 24: 391~398
    Liu, H., Deng, S., Li, Z., et al. Preparation of Al-Ce hybrid adsorbent and its application fordefluoridation of drinking water. J. Hazard. Mater. 2010, 179: 424~430
    Liu, Q., Guo, H., Shan, Y. Adsorption of fluoride on synthetic siderite from aqueous solution. J.Fluorine Chem. 2010, 131: 635~641
    Mahramanlioglu, M., Kizilcikli, I., Bicer, I.O. Adsorption of fluoride from aqueous solution byacid treated spent bleaching earth. J. Fluorine. Chem. 2002, 115: 41~47
    Maliyekkal, S.M., Anshup, K.R., Antony, T., et al. High yield combustion synthesis ofnanomagnesia and its application for fluoride removal. Sci. Total Environ. 2010, 408:2273~2282
    Mellah, A., Chegrouche, S. The removal of zinc from aqueous solutions by natural bentonite.Water Res. 1997, 31: 621~629
    Mira, A.K., Mishra, A. Study of quaternary aquifers in Ganga Plain, India: focus on groundwatersalinity, Fluoride and fluorosis. J. Hazard. Mater. 2007, 144: 438~448
    Mitali, S., Aparna, B., Partha, P.P., et al. Use of laterite for the removal of fluoride fromcontaminated drinking water. J. Colloid and Interface. Sci. 2006, 302: 432~441
    Mohan, S.V., Ramanaiah, S.V., Rajkumar, B., et al. Removal of fluoride from aqueous phase bybiosorption on to algal biosorbent spirogyra sp.-102: sorption mechanism elucidation. J.Hazard. Mater. 2007, 141: 465~474
    Mohapatra, M., Rout, K., Gupta, S., et al. Facile synthesis of additive-assisted nano goethitepowder and its application for fluoride remediation. J. Nanopart. Res. 2010, 12: 681~686
    Nawalakhe, W.G., Kulkarni, D.N., Pathak, B.N., et al. Defluoridation of water with alum. Ind. J.Environ. Health. 1974, 16(1)
    Ndiaye, P.I., Moulin, P., Dominguez, L., et al. Removal of fluoride from electronic industrialeffluent by RO membrane separation. Desalination. 2005, 173: 25~32
    Nowack, K.O., Cannon, F.S., Mazyck, D.W. Enhancing activated carbon adsorption of2-methylisoborneol: methane and steam treatments. Environ. Sci. Technol. 2004, 38:276~284
    Oguz, E. Adsorption of fluoride on gas concrete materials. J. Hazard. Mater. 2005, 117(B):227~233
    Onyango, M.S., Kojima, Y., Aoyi, O., et al. Adsorption equilibrium modeling and solutionchemistry dependence of fluoride removal from water by trivalent-cation exchange zeolite. J.Colloid and Interface. Sci. 2004, 279: 341~350
    Onyango, M.S., Kojima, Y., Kumar, A., et al. Uptake of fluoride by Al3+pretreated low-silicasynthetic zeolites: Adsorption equilibrium and rate studies. Sep. Sci. Technol. 2006, 41:683~704
    Parker, C.L., Fong, C. Fluoride removal technology and cost estimates. Ind. Wastes. 1975, 23~25
    Pietrelli, L. Fluoride wastewater treatment by adsorption onto metallurgical grade alumina. Anal.Chim. 2005, 95: 303~312
    Qaiser, S., Saleemi, A.R., Umar, M. Biosorption of lead from aqueous solution by ficus religiosaleaves: Batch and column study. J. Hazard. Mater. 2009, 166: 998~1005
    Raichur, A.M., Basu, M.J. Adsorption of fluoride onto mixed rare earth oxides. Sep. Purif. Technol.2001, 24: 121~127
    Ralph, N. Powders. Handling dispersion of powder in liquids. Kirt-Othmer Encyclopedia ofChemical, 4thed. 1997, 19: 1093~1113
    Ramos, R.L., Turrubiartes, J.O., Castillo, M.A.S. Adsorption of fluoride from aqueous solution onaluminum-impregnated carbon. Carbon. 1999, 37 (4): 609~617
    Ramos, R.L., Mendez, J.R.R., Jacome, L.A.B., et al. Intraparticle diffusion od cadmium and zincions during sorption from aqueous solution on activated carbon. J. Chem. Technol.Biotechnol. 2005, 580: 924~933
    Reardon, J. Limestone reactor for fluoride from the wastewaters. Environ Sci & Tech. 2000,34(15): 3247~3253
    Ruixia, L., Jinlong, G., Hongxiao, T. Adsorption of fluoride, phosphate, and arsenate ions on a newtype of ion exchange fiber. J. Colloid and Interface. Sci. 2002, 248: 268~274
    Samatya, S., Yüksel,ü., Yüksel, M., et al. Removal of fluoride from water by metal ions (Al3+,La3+, and ZrO2+) loaded natural zaolite. Sep. Sci. Technol. 2007, 42: 2033~2047
    Sekar, M., Sakthi, V., Rengaraj, S. Kinetics and equilibrium adsorption study of lead(II) ontoactivated carbon prepared from coconut shell. J. Colloid and Interface. Sci. 2004, 279:307~313
    Shimelis, B., Zewge, F., Chandravanshi, B.S. Removal of excess fluoride from water by aluminumhydroxide. Bull. Chem. Soc. Ethiopia. 2006, 20: 17~34
    Simons, R. Trace element removal from ash dam waters by nanofiltration and diffusion dialysis.Desalination. 1993, 89: 325~341
    Singh, G., Kumar, B., Sen, P.K., et al. Removal of fluoride from spent pot liner leachate using ionexchange. Water Environ. Res. 1999, 71: 36~42
    Solangi, I.B., Memon, S., Bhanger, M.I. An excellent fluoride sorption behavior of modifiedamberlite resin. J. Hazard. Mater. 2010, 176: 186~192
    Srimurali, M.A. A study on removal of fluorides from drinking water by adsorption onto low-costmaterials. Environ Pollut. 1999, 99: 285~289
    Streat, M., Hellgardt, K., Newton, N.L.R. Hydrous ferric oxide as an adsorbent in water treatment:Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions.Process Safety Environ. Protect. 2008, 86: 21~30
    Stumm, W. Chemistry of the solid-water interface. John Wiley&Sons. Inc. New York. 1992
    Sujana, M.G., Thakur, R.S., Rao, S.B. Removal of fluoride from aqueous solution by using alumsludge. J. Colloid and Interface. Sci. 1998, 206: 94~101
    Sujana, M.G., Soma, G., Vasumathi, N., et al. Studies on fluoride adsorption capacities ofamorphous Fe/Al mixed hydroxides from aqueous solutions. J. Fluorine Chem. 2009, 130:749~754
    Sujana, M.G., Anand, S. Iron and aluminium based mixed hydroxides: A novel sorbent forfluoride removal from aqueous solutions. Appl. Surf. Sci. 2010, 256: 6956~6962
    Sundaram, C.S., Viswanathan, N., Meenakshi, S. Uptake of fluoride by nano-hydroxyapatite/ehitosan, a bioinorganic composite. Bioresour Technol. 2008, 99(17): 8226~8230
    Sundaram, C.S., Viswanathan, N., Meenakshi, S. Defluoridation chemistry of synthetichydroxyapatite at nano scale: Equilibrium and kinetic studies. J. Hazard. Mater. 2008, 155:206~215
    Sundaram, C.S., Viswanathna, N., Meenakshi. S. Defluoridation of water using magmesia/ehitosan composite. J. Hazard. Mater. 2009, 163: 618~624
    Swain, S.K., Dey, R.K., Islam, M., et al. Removal of fluoride from aqueous solution usingaluminum-impregnated chitosan biopolymer. Sep. Sci. Technol. 2009, 44: 2096~2116
    Thakre, D., Jagtap, S., Bansiwal, A., et al. Synthesis of La-incorporated chitosan beads for fluorideremoval from water. J. Fluorine Chem. 2010, 131: 373~377
    Thakre, D., Jagtap, S., Sakhare, N., et al. Chitosan based mesoporous Ti-Al binary metal oxidesupported beads for defluoridation of water. Chem. Eng. J. 2010, 158: 315~324
    Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944, 66:1664~1666
    Tor, A., Danaoglu, N., Arslan, G., et al. Removal of fluoride from water by using granular red mud:batch and column studies. J. Hazard. Mater. 2009, 164: 271~278
    Uddin, M.T., Rukanuzzaman, M., Khan, M.M.R., et al. Adsorption of methylene blue fromaqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fix-bed column study.J. Environ. Manage. 2009, 90: 3443~3450
    Viswanathan, N., Meenakshi, S. Selective sorption of fluoride using Fe(III) loaded carboxylatedchitosan beads. J. Fluorine Chem. 2008, 129: 503~509
    Viswanathan, N., Meenakshi, S. Role of metal ion incorporation in ion exchange resin on theselectivity of fluoride. J. Hazard. Mater. 2009, 162: 920~930
    Viswanathan, N., Meenakshi, S. Synthesis of Zr(IV) entrapped chitosan polymeric matrix forselective fluoride sorption. Colloid Surf. B: Biointerfaces. 2009, 72: 88~93
    Wajima, T., Umeta, Y., Narita, S., et al. Adsorption behavior of fluoride ions using a titaniumhydroxide-derived adsorbent. Desalination. 2009, 249: 323~330
    Weber, W.J., Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div.ASCE. 1963, 89: 31~59
    Worku, N., Feleke, Z., Chandravanshi, B.S. Removal of excess fluoride from water using wasteresidue from alum manufacturing process. J. Hazard. Mater. 2007, 147: 954~963
    Wu, X., Zhang, Y., Dou, X., et al. Fluoride removal performance of a novel Fe-Al-Ce trimetaloxide adsorbent. Chemosphere. 2007, 69: 1758~1764
    Xu, Y.M., Ning, A.R., Zhao, J. Preparation and defluorination performance of activated cerium(IV)oxide/SiMCM-41 adsorbent in water. J. Colloid and Interface. Sci. 2001, 235: 66~69
    Yang, M., Hashimoto, T., Hoshi, N., et al. Fluoride removal in a fixed bed packed with granularcalcite. Water Res. 1999, 33: 3395~3402
    Yao, R., Meng, F., Zhang, L., Ma, D., et al. Defluoridation of water using neodymium modifiedchitosan. J. Hazard. Mater. 2009, 165: 454~460
    Zhu, P., Wang, H., Sun, B., et al. Adsorption of fluoride from aqueous solution bymagnesia-amended silicon dioxide granules. J. Chem. Technol. Biotechnol. 2009, 84:1449~1455
    毕华银,熊咏民,奕唯真,等.磷酸钙降氟改水的实验研究.氟研究通讯, 1992, 7(1): 6~8
    白卯娟,娄性义,王珂.含氟水治理方法的分析.青岛建筑工程学院学报, 2002, 23(1): 83~86
    陈扬.壳聚糖的制备工艺及作为吸附剂在水处理中的应用.西北纺织工学院学报, 1999,13(3): 294
    程高城,吴国权,楚小平.大庆地区地下水中氟的迁移转化机理研究.黑龙井水利科技, 1999,2: 17~19
    陈礼宽,胡建平.快速高效去除淮北农村地下水中高氟研究.江苏地质, 2005, 29(3): 152~156
    陈红红,黄丽玫,毋福海,等.氧化镧改性沸石对水中氟的静态吸附性能评价.现代预防医学, 2011, 14: 2805~2807
    陈红红,黄丽玫,毋福海,等.载铝改性人造沸石对含氟水除氟效果的研究.环境科学与技术, 2011, 7: 42~45
    陈丽慧,熊治廷.水体氟污染的植物修复与毒性.环境科学与技术, 2011, 34(4): 60~63
    陈涛,杨晓瑛,朱宝余.利用自制骨炭除氟剂处理农村高氟地下水研究.中国农村水利水电,2011, 8: 100~103
    戴向前,刘昌明,李丽娟.中国农村饮用水安全问题探讨及对策.地理学报, 2007, 62(9):907~916
    董铁,刘建民,李志祥.高浓度含氟废水的处理.天津化工, 2004, 18(5): 58~60
    郭光耀.石灰-聚合硫酸铁法处理高浓度含氟废水及其费用最小化.哈尔滨工业大学, 2010,1~55
    韩建勋,贺爱国.含氟废水处理方法.有机氟工业, 2004, 3: 27~36
    浑志强,邹斌,潘敏而.含氟废水处理工艺改革与扩容.工厂动力, 2004, 4: 21~24
    韩丽莉,武海霞,边德军,等.农村含氟地下饮用水处理.民营科技, 2009, 3: 95
    何锦,张福存.中国北方高氟地下水分布特征和成因分析, 2010, 37(3): 621~623
    黄丽玫,陈红红,毋福海,等.沸石的载锆改性及对含氟水的除氟效果研究.环境与健康杂志, 2011, 5: 429~432
    黄丽玫,陈红红,毋福海,等.载锆改性沸石对水中氟的吸附性能及动态除氟效果.现代预防医学, 2011, 18: 3733~3735
    金德江,傅黄浦.氢氧化铝脱水制备氟离子吸附剂的研究.武汉工业大学学报, 1995, 17(1):34
    刘斐文,肖举强,等.含氟水处理过程的“吸附交换”机理. 1991, 7(5): 378~382
    李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用.水处理技术, 2000, 26(6): 359~361
    刘瑞霞,汤鸿霄.负载镧吸附剂对氟离子的吸附性能.环境科学, 2000, 7(4): 34~37
    鲁孟胜,吴恩江.巨野煤田浅层高氟地下水成因分析.勘察科学技术, 2001, 4: 14~19
    李晓云,王建萍.负载铈(IV)的D412螯合树脂除氟性能的研究.离子交换与吸附, 2001,17(2): 131~137
    刘仁龙,杨鑫波,刘作华,等.含氟废水处理的研究进展.功能材料, 2007, 38: 3320~3322
    罗兰.我国地下水污染现状与防治对策研究,中国地质大学学报(社会科学版), 2008, 8(2): 72
    李凯崇,邓述波,徐东耀.地下水除氟技术的研究进展.资源环境与发展, 2010, 1: 35~38
    刘晶.新型深度除氟改性树脂的制备、表征及特性研究.南京大学学报, 2011, 5: 1~70
    马伟芳,刘文君.共存氯离子对饮用水纳滤除氟的影响研究.环境科学, 2009, 3: 787~791
    钱美荣.利用镁盐絮凝剂处理含氟地下水的研究.十堰职业技术学院学报, 2010, 6: 91~93
    任福弘,曾溅辉,等.高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系-以华北平原为例.地球学报, 1996, 2: 85~97
    孙立成.电凝聚法对饮用水除氟的研究.水处理技术, 1984, 2: 13~18
    石荣,刘梅英.含高氟废水处理方法的研究.环境保护科学, 2002, 28(109): 18~20
    水和废水监测分析方法/国家环保总局《水和废水监测分析方法》编委会编, (第四版).北京:中国环境科学出版社. 2002, 11: 193~195
    苏英,刘俊峰.咸阳地区高氟地下水的分布及成因研究.工程勘察, 2004, 4: 31~34
    唐文浩,饶义平,刘强.稀土工业酸性含氟废水处理研究.中国环境科学, 1996, 16(8):267~269
    陶庭先.茶叶质铁对氟化物的吸附性能研究.安徽机电学院学报, 1998, 13(2): 31
    佟元清,李金英.地下水降氟方法对比研究.中国水利, 2007, 10: 116~118
    王桂燕,张昱,杨敏,等.氧化锆负载树脂处理含氟废水的研究.环境科学学报, 2001, 6:21~24
    王鲁敏,殷军港,邓昌亮,等.褐煤型吸附剂对氟离子的吸附.烟台大学学报, 2002, 16(4):293~297
    王力平,魏国.含氟废水深度处理的研究.北京林业大学学报, 2003, 25(1): 82~85
    王晓伟,刘文君,李德生.纳滤膜在地下水除氟中对Cl-/F-的选择性分离.环境科学与管理,2010, 9: 51~54
    徐应明,金家志,戴晓华,等.用于水体中氟净化的活性氧化铈/介孔分子筛除氟剂的制备.农业环境保护, 2000, 19(5): 293~295
    徐应明,戴晓华,金家志.活性氧化铈/介孔分子筛除氟剂对环境水体的脱氟行为研究.农业环境保护, 2001, 20(1): 48~50
    谢祖芳,陈孟林,何星存.氟化铝生产废水处理工艺研究.工业水处理, 2002, 22(2): 25~27
    徐静,刘国华,郦逸根,等.氟的生物环境地球化学与含氟水处理技术.西部探矿工程, 2004,10: 209~211
    肖洁,朱伟明,付婉霞.首钢低浓度含氟水处理工艺改进及除氟机理探讨.给水排水, 2005,31(10): 66~67
    徐传海.含氟废水治理技术研究进展.石化技术, 2009, 16(2): 57~60
    薛力.高氟水化学沉淀-混凝净化工艺研究.西北农林科技大学, 2011, 5: 1~31
    闫秀芝. CaCl2磷酸盐法处理含氟废水的探讨.环境保护科学, 1998, 24(2): 12~14
    尹国勋,毕大园.控制永城矿区高氟地下水的地球化学因素.焦作工学院学报(自然科学版),2002, 5: 179~182
    于桂生.氟离子吸附剂活性氧化锆的除氟研究.天津化工, 2003, 17(4): 7~9
    雅非群,马伟,王刃,等.天然材料改性吸附剂的制备和除氟研究.给水排水, 2003, 29(12):72~75
    张希祥,王煤,段德智.氧化钙粉末处理高浓度含氟废水的实验研究.四川大学学报(工程科学版), 2001, 3(36): 111~113
    周钰明,余春香.吸附法处理含氟废水的研究进展.离子交换与吸附, 2001, 17(5): 369~376
    张威,杨胜科,费晓华.反渗透技术去除地下水中氟的方法.长安大学学报, 2002, 6: 116~118
    张超杰,周琪.含氟水治理研究进展.给水排水, 2002, 28(12): 26~29
    张超杰,周琪.含氟水治理研究进展.给排水, 2002, 28(12): 15~16
    赵雅萍,王军锋,陈甫华.载Fe(III)配位体交换棉纤维吸附剂在去除饮用水中氟离子的应用.环境化学, 2003, 22(1): 64~68
    周珊,揭武,杜冬云.粉煤灰-铝盐发处理含氟废水.粉煤灰综合利用, 2004, 1: 29~30
    郑红,王扬,连玉,等.氢氧化铝包覆膨润土除氟效果的研究.有色矿冶, 2005, 21(4): 40~43
    周春琼,邓先和,刘海敏,等.吸附法处理含氟水溶液的研究与应用.水处理技术, 2006,32(1): 1~5
    詹予忠,李玲玲.硅胶负载氧化锆除氟吸附剂的制备.化工时刊, 2006, 20(10): 12~14
    赵艳.我国饮水型氟中毒预防措施效果评价.中国地方病学杂志, 2006, 25(2): 222~224
    郑明凯,杨国洲.焦作市地下水高氟区的成因探讨.环境科学与管理, 2007, 32: 138~141, 153
    朱其顺,许光泉.中国地下水氟污染的现状及研究进展.环境科学与管理, 2009, 34(1):42~44
    朱利霞,杨林,行春丽.河南省温县高氟地下水的成因及治理方案设计.地下水, 2009, 2: 27,110
    中华人民共和国卫生部.《全国城市饮用水卫生安全保障规划(2011-2020年)》.北京, 2011,1~53
    中华人民共和国环保部.《全国地下水污染防治规划(2011-2020)》.北京, 2011, 10~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700