用户名: 密码: 验证码:
超大构件分区自适应定位加工及其可移动机床的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大科技装备中,高品质超大构件的应用越来越多,对质量和性能的要求也越来越高,但通常这类装备中的超大构件尺寸大、重量大、生产批量小、更新快、难以移动,其加工制造是很大的难题。目前,针对超大构件加工的研究开展的较少,缺少对加工方法及加工误差理论方面的系统分析。因此,开展超大构件加工方法、加工误差等关键技术的研究,对于提高超大构件加工精度、加工效率、降低制造成本具有很重要的现实意义。
     本文根据重大科技工程中超大构件的特点,提出了可移动小机床分区自适应加工超大构件的方法,给出了该方法的方案原理、系统结构,并根据该方法给出了可移动机床的可重构设计方案,机床采用轮式移动结构,可以沿工件加工面移动,将超大构件分为若干个小区域进行加工时,利用大空间测量技术实现机床精确定位,采用并联加工头实现自适应加工。该机床具有可移动性、可重构性与加工灵活性,可以提高超大构件加工柔性和加工效率,同时也能降低加工成本。
     要实现超大构件的精确加工,首先要解决的问题是工件和机床间相对位置的精确定位。文中结合刚体运动矩阵及李代数等原理方法,系统地研究了超大构件自适应定位的相关理论。通过对超大构件加工过程中涉及的多坐标系间关系的分析,建立了超大构件自适应定位一般模型。为了保证自适应定位矩阵的唯一性,提出了基于工件完全约束的测量定位方法,建立了求解自适应定位矩阵的非线性优化目标函数,给出了基于欧氏群切向量法的超大构件自适应定位优化模型的求解方法,仿真分析了算法的精度、收敛速度与收敛条件,并通过仿真实例验证了自适应定位方法的正确性与可靠性。
     文中根据超大构件分区自适应加工原理,给出了超大构件加工区域分割方法与分割规则,根据被加工几何特征的分类,提出了加工特征分割原则,建立了分割树状模型;并给出了超大构件规则几何特征的区域分割方法与基于机床工作空间的区域分割优化法。阐述了面向区域分割加工的刀具路径规划方法,并以最短加工路径为优化目标提出了基于遗传算法的刀具路径加工次序的优化方法,并仿真验证了其正确性,最后根据分割后的理论刀具路径及自适应定位模型,阐述了实际加工路径及数控程序的生成方法。
     为了保证超大构件加工的可靠性,文中给出分区自适应定位加工的精度评价与控制方法,从理论上分析了超大构件加工误差因素的影响,并结合螺旋理论建立了超大构件自适应定位加工中总体位姿误差模型、平面度误差预测模型、空间直线度误差预测模型和平面内圆度误差预测模型,分别从自适应定位误差、机床几何误差、机床刚度三个角度详细分析了误差的影响。给出了基于统计分析的工件定位误差预测方法,并仿真验证了工件定位误差预测模型的正确性;分析了可移动小机床几何误差的影响,建立了机床误差模型,并结合多元线性插值与卡尔曼滤波离线标定法,预测不可校准误差,并给出补偿方法。最后结合蒙特卡罗法将上述几种误差整合,给出超大构件加工误差的预测方法,并完成了其仿真验证。
     在以上理论分析的基础上,研制出一种加工超大法兰的可移动小机床,并进行了超大构件的加工实验。实验结果表明采用可移动小机床实现分区自适应定位加工超大构件的方法是可行的,同时也验证了超大构件分区自适应定位加工误差预测方法的正确性。
Super-large components are required increasingly in major science and technology projects for better performance and higher quality. However, it is difficult to machine super-large components because of their huge volume, large weight, poor mobility and small-batch production. Currently, super-large components machining method and machining error theory are lacked. Therefore, the research in machining super-large components and analyzing machining errors has practical significance for improving machining accuracy, efficiency and cost-effectiveness.
     According to the characteristics of large components, a method using small movable machine tool to machine super-large components by adaptive subdivision was proposed in this thesis. The principle of the method, system architecture and reconfigurable scheme were provided. Wheeled movable structure was designed for roughly localization in large space, and large-space measuring technology was utilized for precisely localization. Parallel machining head implemented adaptive machining. The machine tool enhanced the machining flexibility and efficiency as well as reduced production costs because of its mobility, flexibility, reconfigurability.
     To achieve accurate machining of super-large components, the precise location of the workpiece should be obtained firstly. Studying adaptive localization theories of super-large component combined with rigid body motion Matrix and Lie algebra theory, a self-adaptive localization model was established by analyzing the relationship among multi-coordinate systems during super-large components machining. In this thesis, a complete localization method based on workpiece machining features was proposed. The objective function solving adaptive positioning model was derived, and a general solution method, tangent plane algorithm based on Euler angle methods was applied to solve the super-large components adaptive localization. The accuracy, convergence rate and convergence condition of the method were evaluated by simulation for verifying the correctness and reliability of adaptive localization method.
     In this thesis, machining area subdivision rules for were introduced referring adaptive machining principle of super-large component. According to geometrical features, machining features subdivision rules were introduced and the tree model of subdivision was constructed. Simultaneously, regular geometrical features subdivision method for super-large component and machining area subdivision method based on machine tool workspace were proposed. Theoretical tool path generation method based on subdivision region was presented. Aiming at to obtain the shortest machining path, a tool path optimization method based on genetic algorithms was also discussed and validated by simulation. Finally, actual tool path and NC program were generated on the basis of theoretical tool path and adaptive localization model.
     To ensure the reliability of super-large component machining, the influence of error factors to super-large component machining was theoretically analyzed in the thesis. Combined with spiral theory, a series of error models in super-large component adaptive localization were established, including global position and orientation error model, flatness error prediction model, spatial straightness error prediction model and roundness error prediction model in machining plane. The influence of errors were further analyzed from the aspects of adaptive localization error, machine tool geometric error and machine stiffness error. A workpiece automatic positioning error prediction method based on statistical analysis was presented, and the prediction model of the workpiece automatic orientation errors was validated by simulation. Analyzed the influences of geometric errors in the movable small machine tools, the error model of parallel mechanism was described. Referring multi-linear interpolation and Kalman filter off-line calibration theory, un-calibrated errors were predicted and a compensation method was provided. Finally, an integrated error prediction based on Monte Carlo method for super-large component machining was presented and it was verified by simulation.
     A movable machine tool for machining super-large flange was developed on the basis of theoretical analysis, and machining experiment was conducted. The experiment results demonstrate that the method of subdivision by adaptive localization for machining super-large component using movable machine tool is feasible, and its error predication methods are correct.
引文
1赖喜德,王贞凯,贺元.三峡水轮机转轮叶片五坐标联动数控加工工艺分析.东方电机. 1996, 2: 36~45
    2 S.J. Yuan, B.G. Teng, Z.R. Wang, Precision forming of flange for a large special vessel. Journal of Materials Processing Technology. 2005, 167: 224~229
    3周振宝.加工大型零件的“蚂蚁机床”的设计.机床与液压. 2003, 2: 108
    4 H.M.Martin, J.H.Burge, etc..Progress in manufacturing the first 8.4m off-axis segment for the Giant Magellan Telescope, Proceedings of SPIE, 2008, vol7018
    5邹冀华,刘志存,范玉青.大型飞行器舱段数字化装配方法.制造业自动化, 2007,29(1): 1~4
    6韩立岩.国际先进航空企业数控发展现状及趋势.机电新产品导报, 2004(10): 24~27
    7王俊斌.数控加工技术在大飞机研制生产中的应用.航空制造技术, 2008(5): 44~46
    8刘士玉,徐树洛.五轴联动加工中心现状与发展探讨.世界制造技术与装备市场, 2008(6): 84~87
    9陈长年.平板式五轴高速铣床(板式高速铣).制造技术与机床, 2008(10): 45~47
    10刘强.大型飞机制造中的关键数控技术及装备.航空制造技术, 2008 ,5: 40~43
    11 Tangelder J W H, Vergeest J S M. Robust NC Path Generation for Rapid Shape Prototyping. Journal of Design and Manufacturing, 1994(4): 281~292
    12 OscarAltuzarra, YonSanMartin etc.. Motion pattern analysis of parallel kinematic machines: A case study. Robotics and Computer-Integrated Manufacturing. 2009, 25(2): 432~440
    13 M. Weck, D. Staimer, Parallel Kinematic Machine Tools– Current State and Future Potentials. CIRP Annals-Manufacturing Technology, 2002, 51(2): 671~683
    14苑世剑,滕步刚.特大环形件成形与制造技术. 2008年中国机械工程学会年会暨甘肃省学术年会文集:340~343
    15高延峰,薛江,王孙安.加工大型工件时精确定位方法的研究.组合机床与自动化加工技术. 2003, 2: 26~28
    16 Y.Q.Zheng, B.S.Chen, W.M.Zhang, L.Q.Fan.. The CAD/CAM solution andrealization for machining of the rai girders in Maglev Transrapid project. Journal of Materials Processing Technology. 2002, 129: 607~611
    17李四春,蔡启光.经纬仪在超大构件加工中的运用.建设机械技术与管理,2006(11): 84~85
    18 Tangelder J W H, Vergeest J S M. Robust NC Path Generation for Rapid Shape Prototyping. Journal of Design and Manufacturing, 1994(4): 281~292
    19陈永华,谢万章,胡亦农.面向大型制件的机器人快速原型系统.中国机械工程,1997(5):42~44
    20 Landers, R.G., Min, B.K., and Koren, Y.. Reconfigurable machine tools. CIRP Annals-Manufacturing Technology, 2001, 50(1), 269~274
    21 R. Katz, Y.-M. Moon. Virtual arch type reconfigurable machine tool design: principles and methodology. ERC RMS, The University of Michigan, Ann Arbor, 2000: 34
    22 Katz, R.. Design principles of reconfigurable machines. International Journal of Advanced Manufacturing Technology, 2007, 34: 430~439
    23 Y Koren, U Heisel, etc.. Reconfigurable manufacturing systems. 1999 Annals of the CIRP, Vol.48(2): 527~540
    24 R.G. Landers, B.-K. Mid, and Y. Koren. Reconfigurable Machine Tools. CIRP Annals-Manufacturing Technology, 2001(50): 269–274.
    25 Dhupia, J., Powalka, B., Katz, R., et al. Dynamics of the arch type reconfigurable machine tool. International Journal of Machine Tools & Manufacture, 2007, 47: 326~334
    26 Spicer P, Yip-Hoi D, Koren Y. Scalable reconfigurable equipment design principles. Int. J. Prod. Res.. 2005,43(22):4839~4852
    27 Z. M. Bi, Sherman Y. T. Lang, M. Verner, P. Orban. Development of reconfigurable machines. Int J Adv Manuf Technol. 2008,39: 1227~1251
    28 T. Huang, M. Li, X. M. Zhao, J. P. Mei, D. G. Chetwynd, and S. J. Hu. Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the TriVariant—A Novel 5-DOF Reconfigurable Hybrid Robot. IEEE TRANSACTIONS ON ROBOTICS, 2005, 21(3): 449~456
    29丁汉,朱利民,熊振华.复杂曲面快速测量、建模及基于测量点云的RP和NC加工.机械工程学报,2003,39(11): 28~37
    30严庆光.面向多点成形的逆向工程关键技术及应用研究.吉林大学博士学位论文,2006
    31曾艳.大型螺旋桨数控加工的在线测量与余量计算研究.华中科技大学硕士论文. 2005
    32 Lee K.H., Park H., Son S. A framework for laser scan planning of freeform surfaces, International Journal of Advance Manufacturing Technology, 2001, 17: 171~180
    33 Son S., Park H., Lee K.H. Automated laser scanning system for reverse engineering and inspection, International Journal of Machine Tools&Manufacture, 2002, 42: 889~897
    34 Shen T Z,Huang J B, Menq C H. Multiple-sensor integration for rapid and high-precision coordinate metrology. IEEE/ASME Trans. On Mechtronics, 2000, 5(2):110~121
    35 Francois Blais. A review of 20 years of range sensor development. Proc. SPIE, 2003, 5013: 62~76.
    36侯宏录,李宏.光电经纬仪测量飞行器三维坐标方法及误差分析.光电工程, 2002, 29(3): 4~8
    37周维虎.激光跟踪仪几何误差修正.仪器仪表学报,2002,23(1): 56~63
    38 M. Saadat. Dimensional variations during Airbus wing assembly. Assembly Automation, 2002, 22(3): 270~276
    39王喜成. API T3激光跟踪仪使用手册.美国自动精密工程公司,2008
    40 TL Zobrist, JH Burge, WB Davison, HM Martin. Measurements of large optical surfaces with a laser tracker .Proceedings of SPIE, 2008,vol7018
    41 J. H. Burge, W. Davison, H. M. Martin, C. Zhao. Development of surface metrology for the Giant Magellan Telescope primary mirror. Proceedings of SPIE, 2008,vol7018
    42张福民,曲兴华,叶声华.大尺寸测量中多传感器的融合.光学精密工程, 2008, 16(7): 1236~ 1240
    43张福民,曲兴华,戴建芳,叶声华.一种现场大尺寸测量精度的评价方法.光学学报, 2008, 28(11): 2159~2163
    44 JF Ouyang, WL Liu, YG Yan, DX Sun. Angular error calibration of laser tracker system. Proceedings of SPIE- The International Society for Optical Engineering, 2006: 6344~6348
    45邢忠文,张学仁.金属工艺学.哈尔滨工业大学出版社,2003: 143~144
    46周凯.一种新的制造技术——无夹具制造.机械工程学报. 1997, 33(1): 39~47
    47周凯,毛德柱,张伯鹏.自寻位数控机床的研究.机械工程学报,2001年,37(5):48~51
    48周凯,刘郁等.解析表面零件的寻位算法.现代制造工程. 2002, 4: 8~10
    49樊留群,张为民,朱志浩,陈炳森.大型工件的数控加工研究.同济大学学报(自然科学版), 2004, 32(11): 1526~1529
    50 J.S.M. Vergeest, Y. Song, D. Hartge. Freeform Object Positioning by 3D Shape Matching Without Artificial Feature Points. Journal of WSCG, 2004,12: 234~241
    51 Smith, S., Woody, B. A., and Miller, J. A.. Improving the Accuracy of Large Scale Monilithic Parts Using Fiducials. CIRP Ann., 2005, 56(1): 483~487
    52 Woody, B. A., Smith, S.. Fiducials Calibration System. Tans. NAMRI/SME, 2005,33: 129~136
    53 Besl PJ, Mckay N D. A Method for Registration of 3D Shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14(2):239~256.
    54 Zhenhua Xiong, Michacl Yu Wang. A Near-Optimal Probing Strategy for Workpiece Localization. IEEE TRANSACTIONS ON ROBOTICS, 2004, 20 (4): 668~676
    55 Zhenhua Xiong,Zexiang Li. Probe Radius Compensation of Workpiece Localization, Transactions of the ASME, 2003, 125: 100~104
    56 Forbes B. Least-squares best-fit geometric elements. Technical report, National Physical Laboratory, UK, 1989
    57 Murray, Li Z X, Sastry S. A mathematical introduction to robotic manipulation. CRC Press, 1994
    58 Yau, Menq C H. A unified least-squares approach to the evaluation of geometric errors using discrete measurement data. Intl. J. Mach. Tools Manufact., 1996, 36(11): 1269~1290
    59 K. Gunnarsson and F.Prinz.CAD model-based localization of parts in manufactur -ing.Computer, 1987,20(8): 66~74
    60 X.M.Li, M.Yeung, Z.X.Li. An algebraic algorithm for workpiece localization. IEEE Int. Conf. Robot. Automat,1996:152~158
    61 J.Hong and X.Tan. Method and apparatus for determining position and orientation of mechanical objects. U.S.Patent,1990
    62 Y.X. Chu, J.B. Gou and Z.X. Li. Performance analysis of localization algorithms In IEEE Id. conf. on Robotzcs and Automatzon, 1997: 1247~1252
    63 Y.X. Chu, J.B. Gou, H. Wu. Workpiece localization algorithms: Performance evaluation and reliability analysis. J. Manuf. Syst., vol. 18, no. 2, pp. 113–126, Feb.1999
    64 Chatelain J F, Fortin C. A balancing technique for optimal blank part machining. Precision engineering,2001, 25 (1): 13~23
    65 Chatelain J F. A level-based optimization algorithm for complex part localization,Precision engineering, 2005, 29 (2): I97~207
    66 Y. X. Chu, J. B. Gou, and Z. X. Li, On the hybrid workpiece localization/ envelopment problems, IEEE Int. Conf. Robot. Automat, 1998, 3665 ~ 3670
    67储云仙等.工件自动混合定位包容问题的研究.机械工程学报, 2000, 36(1):45~49
    68 J. B. Gou, Y. X. Chu, and Z. X. Li. On the symmetric localization problem. IEEE Trans. Robot. Automat., 1998, 14: 533~540
    69 Ko K H, Maekawa T, Patrikalakis N M et al. Shape intrinsic properties for free-form object matching. Journal of computing and information science in engineering, 2003, 3 (4):325~333
    70 Ko K H, Maekawa T, Patrikalakis N M. An algorithm for optimal free-form object matching. Computer-aided design, 2003, 35(10):913~923
    71 Ko K H, Maekawa T, Patrikalakis N M. Algorithms for optimal partial matching of free-form objects with scaling effects.Graphical models, 2005, 67(2):120~148
    72严思杰,周云飞,彭芳瑜等.大型复杂曲面加工工件定位问题研究.中国机械工程, 2003, 14 (9):152~158
    73严思杰,周云飞,彭芳瑜等.大型复杂曲面零件加工余量均布优化问题研究.华中科技大学学报, 2002, 30 (10),35~37
    74武殿梁,黄海量,丁玉成,赵万华.基于遗传算法和最小二乘法的曲面匹配.航空学报, 2002,23(3): 285~288
    75 Shen B, Huang G Q, Mak K L et al. A best-fitting algorithm for optical location of large-scale blanks with free-form surfaces. Journal of materials processing technology, 2003,139(2):210~314
    76 Dassanayake M, Tsutsumi. Saito A. A Strategy for Identifying Static Deviations in Universal Spindle Head Type Multi-Axis Machining Centers. International Journal of Machine Tools and Manufacture 2006, 46:1097~1106
    77 Bringmann B, Kung A, Knapp W. A Measuring Artifact for True 3D Machine Testing and Calibration. Annals of the CIRP. 2005, 54(1): 471~474
    78 Y.Y. Hsu etc.. A new compensation method for geometry errors of five-axis machine tools, International Journal of Machine Tools & Manufacture. 2007, 47: 352~360
    79 Soons JA. Error Analysis of a Hexapod Machine Tool. Proceedings of the 2nd Lamdamap Conference, 1997: 46~57
    80 J. Mou. A Method of Using Neural Networks and Inverse Kinematics for Machine Tools Error Estimation and Correction J. Manuf. Sci. Eng., 1997,119 (2): 247~254
    81 B.A.Woody, S.Smith, J.A..Miller. J. A Technique for Enhancing Machine Tool Accuracy by Transferring the Metrology Reference From the Machine Tool to the Workpiece. Manufuncture. Science and Engneering. 2007, 129: 636~643
    82 Schwenke, H; Knapp, W; Haitjema, H (Han), etc..Geometric error measurement and compensation of machines– An update. CIRP Annals, 2008, 57(2): 660~675
    83 Schellekens P, Rosielle N, Vermeulen H, Vermeulen M, Wetzels S, Pril W. Design for Precision, Current Status and Trends. Annals of the CIRP. 1993, 47(2): 557~586
    84 Spaan HAM. Software Error Compensation of Machine Tools, PhD Thesis, Eindhoven University of Technology, 1995: 11~18
    85 Kornel F. Ehmann, Shih-Ming Wang. Error Model and Accuracy Analysis of a Six-DOF Stewart Platform. J. Manuf. Sci. Eng., 2002, 124(2): 286~295
    86 J. Chen, and F. Lan. Instantaneous stiffness analysis and simulation for hexapod machines. Simulation Modelling Practice and Theory, 2008, 16(4): 419~428
    87 H. Chanal, E. Duc, and P. Ray. A study of the impact of machine tool structure on machining processes. International Journal of Machine Tools and Manufacture, 2006, 46(2): 98~106
    88 Perreira PH, Hocken RJ. Characterization and Compensation of Dynamic Errors of a Scanning Coordinate Measuring Machine. Precision Engineering 2007, 31(1): 22–32
    89 Chunhe Gong, Jingxia Yuan, and Jun Ni. Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 2000, 40(14): 2119~2137
    90 Vatchara Lertpiriyasuwat, Martin C. Berg. Adaptive Real-Time Estimation of End-Effector Position and Orientation Using Precise Measurements of End-Effector Position. IEEE / ASME Transactions on Mechatronics, 2006, 11(3): 304~319
    91 Shin,Y.C. and Wei,Y.. A Statistical Analysis of Positional Errors of a Multiaxis Machine Tool. Precision engineering. 1992 14(3):139~146
    92 Moon, Sang-Ku. Error prediction and compensation of reconfigurable machine tool using screw kinematics.pdf. The University of Michigan PhD Thesis, 2002: 26~27
    93朱立行,许王莉.非参数蒙特卡罗检验及其应用.科学出版社, 2008: 42~50
    94 Z.X. Li, J.B. Gou and Y.X. Chu, Geometrical Algorithms for Workpiece Localization. IEEE Trans. on Robotics and Automation 1998,14(6): 864~878
    95吴宝海,罗明,张莹,李山,张定华.自由曲面五轴加工刀具轨迹规划技术的研究进展.机械工程学报, 2008, 44(10): 9~18
    96 Sartori S, Zhang GX. Geometric error measurement and compensation of machines. Annals of the CIRP, Vol. 1995, 44(2), 599~609
    97 Portman, V. T.. Deterministic Metrology of Platform-Type Machine Tools. International Journal of Machine Tools and Manufacture, 2000, 40: 1423~1442
    98平面度误差检测(GBT 11337-2004),中华人民共和国国家标准, 2004.
    99产品几何量技术规范(GPS)圆度测量术语、定义及参数(GB/T7234—2004).中华人民共和国国家标准, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700