用户名: 密码: 验证码:
非接触式指向反射镜激光动态测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
指向反射镜作为超光谱成像仪的关键部件,主要用于光路转折以及对地物的运动补偿等。指向反射镜的位置误差和角速度误差直接影响超光谱成像仪的成像质量,因此指向反射镜的实时动态测试非常重要。目前用于检测指向反射镜角速度的方法为编码器直接联接测量法,该方法对指向反射镜本身的转动特性有耦合影响,所以需要采用非接触式的检测方法。指向反射镜运动特性的检测需要通过高精度的角度测量实现。非接触式角度测量方法主要为光学测角法,目前已有的光学测角法测角范围多数仅有几十秒~几分,无法同时满足指向反射镜测角范围和测角精度的要求,不能直接用于指向反射镜的实时动态检测。经纬仪是工程中广泛应用的角度测量设备,主要用于指向反射镜的静态角度测量,也无法实现大范围内的实时动态检测。
     根据工程项目对指向反射镜的检测系统提出的要求,研制了一套非接触式指向反射镜激光动态测试系统。检测系统将被检测指向反射镜的转动转化为激光光斑在线阵CCD上的移动,根据激光光斑的移动计算指向反射镜的角速度。系统主要由一字线激光器、滤光片、阵列平面反射镜、线阵CCD、图像采集子系统以及计算机等组成,特殊设计的阵列反射镜通过一片线阵CCD复用保证系统在增大测角范围的同时不降低测角精度。
     本文首先介绍系统的相关指标、基本工作原理及构成;而后利用齐次坐标变换法建立了系统的数学模型,数学模型中引入了检测系统中各元件的加工、装调误差量,通过蒙特卡罗法进行了系统的误差分析,结果表明,要实现检测系统要求的精度,各元件的加工、装调精度要求很高。为了降低对加工装调精度的要求,提出了利用经纬仪标定指向反射镜的角位置,利用三次多项式拟合计算被检测指向反射镜的角位置和CCD上激光光斑所在的位置关系曲线,计算指向反射镜转角范围内的任意角位置,根据CCD的帧频即可计算指向反射镜的角速度,误差分析结果表明此种方法适用于本检测系统。研制了系统的原理样机,搭建了指向反射镜激光动态测试系统的实验平台,完成了相关检测实验。对影响静、动态测量精度的因素进行了详细的分析,通过分析实验数据,给出了最终的检测结果:系统静态测角精度为3″,角速度检测精度优于±7%,满足预期指标要求。
     由于本文是针对实际工程应用的检测系统,在原理样机及实验结果基础之上进行了系统实用化设计,包括系统的光机设计、电子学设计及相关工装。对于检测系统的相关指标进行了详细的分析,提出了进一步进行指标优化的可能性。针对目前的大范围低转速检测在其他方面的需求,可将本检测系统应用于其他检测场合,本文最后给出了两种应用扩展的例子。
The scanning mirror is a key component on the hyperspectral imager, which ismainly used for optical transition and motion compensation. The angular errors andposition errors of the scanning mirror have an effect on the image quality of thehyperspectral imager, so the dynamic test of the scanning mirror is very important toimprove to the image quality of the hyperspectral imager. The encoder is often used tomeasure the angular velocity of the scanning mirror, and the contact measurementmethod would produce a certain angle measurement error, so it is important to raise anon-contact method for the scanning mirror measurement. In order to measure thedynamic movement of the scanning mirror in a quite large angular range, the dynamiccontinuous angular measurement with high accuracy must be realized firstly. And thenthe angular velocity of the scanning mirror can be analyzed according to the results ofthe angular measurements. Optical angular measurement methods are used widelyamong all the non-contact angular measurement methods. Most optical anglularmeasurement methods can not satisfy the requirements on the measurement range andaccuracy at the same time. The measurement ranges of most optical methods are onlya few seconds to several minutes, and they can not be applied to the dynamic anglemeasurement of the scanning mirror. The theodolite is widely used in angularmeasurement, but the theodolite can not realize real-time dynamic measurement.
     A non-contact laser dynamic measurement system for the scanning mirror isproposed in this dissertation according to the project requirements. The variationangle of the scanning mirror can be obtained according to the shifting of the laserfacular on the linear CCD, and then the angular velocity can be calculated. A linelaser, attenuator, array mirrors, linear CCD, image acquisition and computersubsystems are included in the system. A large angle measurement range is divided into five small angle ranges by the array mirrors, and the rotation angle can bemeasured by reusing a linear CCD to ensure the measurement accuracy.
     Firstly, the working principle and the basic structure are introduced in thedissertation.The mathematical model of the system is established with thehomogeneous coordinate transformation method, which contains the errors ofprocessing and alignment. According to the Monte Carlo method, the errordistribution schemes of the system are performed through the absolute position erroranalysis and relative position error analysis.The results show that the errordistribution schemes based on the relative position error analysis method can greatlyreduce the requirements of the processing and alignment. Finally, the cubicpolynomial fitting method is applied for the measurement. The function about theposition of laser facular and the angular displacement can be calculated based on thecubic polynomial fitting. The angular displacement can be measurement by thetheodolite and the position of laser facular is come from the computer. Compared totraditional angle measurement instruments, the system realizes non-contact dynamicangular measurement in wide measurement range.
     Each component in the measurement system is selected according to the relevantparameters, and the experimental platform is proposed.Before the experiments, thefactors which have an effect on the measurement accuracy are analyzed. The finalexperimental results show that the rotation angle could be measured within11°. Thesensitivity and accuracy of angle measurement was2.5″and3″. The accuracy ofvelocity measurement is better than±7%.
     The measurement system is applied in the practical project, and some practicaldesigns are gived based on the prototype and experimental results includingoptomechanical design, electronics design and related alignment design. Themeasurement system can be applied in other occasions, and two examples of theapplication are performed finally in the dissertation.
引文
[1] Robert Lucke, John Fisher.The Schmidt-Dyson: a fast space-borne wide-fieldhyperspectral imager[J]. SPIE,2010,7812:78120M-1-78120M-13
    [2] Donald E. Rockey. High Resolution imaging spectrometer (HIRIS)-a majoradvance in imaging spectrometry [J]. SPIE,1990,1298:93-104
    [3] Alexander F. H. Goetz. Imaging spectrometry for remote sensing: vision to realityin15years[J]. SPIE,1995,2480:2-13
    [4] John Fisher and John Antoniades. A hyperspectral imaging sensor for the coastalenvironment [J]. SPIE,1997,3115:179-185
    [5]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-79
    [6] AGOETZ AF H, SOLOMON GV J, ROCK BN.Imaging spectrometry forearthremote sensing [J].Science,1985,228:1147-1153
    [7]李幼平,禹秉熙,韩昌元等.成像光谱仪工程权衡优化设计的光学结构[J].光学精密工程,2006,14(6):974-979
    [8]沈中,葛之江,张连台.航天超光谱成像仪原理分析[J].航天返回与遥感,2002,23(2):28-34
    [9]李欢,向阳,冯玉涛.运动补偿成像光谱仪的地面分辨率[J].光学精密工程,2009,17(4):745-749
    [10] L Yuan, W J Gao, and S T Wang, Proc. Research on design and manufacture ofspace remote sensor's big lightened scan mirrorSPIE4231,442(2000)
    [11]汪逸群,颜昌翔,谢涛,刘长顺,何欣.高集成度新型摆镜驱动模块的研制[J].光学精密工程,2009,17(12):2997-2999
    [12]付芸,徐长吉,丁亚林.航空遥感相机扫描反射镜支撑技术[J].光学精密工程,2003,11(6):550-553
    [13]童子磊.摆镜扫描的重复控制系统[J].红外与毫米波学报,2006,25(3):229-230
    [14] Ma Jiaguang. The basic technologies of the acquisition, tracking and pointingsystems [J]. Optical Engineering,1989,(3):1-42
    [15] Miller D C. Aviris scan drive design and performance [J].SPIE,1988,834:55-62
    [16]汪逸群,刘伟,颜昌翔.成像光谱仪运动补偿扫描镜的研制[J].光学精密工程,2011,19(11):2703-2706
    [17]汪逸群,颜昌翔,贾平.非接触式扫描反射镜定位精度检测方法[J].红外与激光工程,2012,41(4):1057-1060
    [18] Ramuhalli Krishna. Improved pointing accuracy using high precision theodolitemeasurements[C]. SPIE,1996,2812:199-209
    [19]汪逸群,颜昌翔,贾平.成像光谱仪扫描镜运动准确度测量[J].光子学报.2012,41(2):185-188
    [20]指向反射镜组件运动特性检测设备(内部资料)
    [21]王永猛.指向反射镜组件运动精度分析与检测[D].中国科学院长春光学精密机械与物理研究所,2009
    [22]唐伟.基于FPGA的指向反射镜角速度波动检测系统设计[D].中国科学院长春光学精密机械与物理研究所,2009
    [23]陈秋霞,陈桂林.采用线阵CCD测量扫描镜步进角度的系统设计[J].红外技术,2006,28(3):150-153
    [24]李长贵,刘静海等.线阵CCD用于实时动态测量技术研究[J].光学技术,1999,3(2):5-8
    [25]魏新武,孟卫华,刘文武.高频摆镜摆角的高精度测量[J].红外与激光工程,2008,3增刊:35-38
    [26]张国玉,姜会林,徐熙平等.红外地球敏感器扫描镜摆角激光动态测试方法[J].光学学报,2007,27(5):875-880
    [27]程仕东,刘宏伟,裴云天等.风云四号辐射计的高精度动态测角系统[J].红外与激光工程,2007,36(1):89-91
    [28]张雷.红外地球敏感器扫描镜摆角光电检测技术研究[D]:[硕士学位论文]长春理工大学,2005
    [29]陆德基.中国角度测量50年的进展[J].计量与测试技术.1999(6):4-5
    [30]张彩妮,王向朝.微角度的光学测量[J].光电子.激光,2002,13(4):416-419
    [31]周红锋,宫爱玲.小角度测量的光学方法[J].计量技术,2006,7:17–19
    [32]浦昭邦,陶卫,张琢.角度测量的光学方法[J].光学技术,2002,28(2):168-171
    [33]李金阳,吴简彤.小角度测量的光学方法及应用[J].应用科技,2006,33(7):15-18
    [34]张琢,李鹏生.测角技术国内外发展概况[J].宇航计测技术1994,13(4):4-11
    [35]王启东,陈纯坤.激光动态角度测量系统研究[J].光子学报,1995,24(1):68-71
    [36]张琢.动态转角测量及其误差检测技术的研究[D]:[博士学位论文]哈尔滨工业大学博士学位论文,1996
    [37]李金阳,吴简彤等.小角度测量的光学方法及应用[J].应用科技,2006,33(7):15-18
    [38]蒋作民,武晋燮,庄志涛.角度测量[M].北京:机械工业出版社pp:174-185
    [39] Yinguo Huang. Study on Micro-angle Measuring Basic Technique of LaserAutocollimation[D],(Tianjin University)pp1-15(2009)
    [40] DMalacara,OHarris.Interferometric measurement of angles[J].Appl.Opt.9,1630-1633(1970)
    [41] Ikram, Masroor, Hussain, Ghazanfar.Michelson interferometer for precisionangle measurement [J]. Appl.Opt.1,113-120(1999)
    [42] PanShi, EStijins.Improving the linearity of the Michelson interferometricangular mearsurement by a parameter compensation method [J]. Appl.Opt.32,44—51(1993)
    [43] Ikram, Masroor, Hussain, Ghazanfar.Michelson interferometer for precisionangle measurement [J]. Appl.Opt.1.113-120(1999)
    [44] XDai, OSasaki, J EGreivenkamp, et al. High accuracy, wide range, rotationangle measurement by the use of two parallel interference patterns [J]. Appl.Opt.25.6190-6195(1997)
    [45] P. S. Huang, S. Kiyono, and O. Kamada, Angle measurement based on theinternal-reflection effect: a new method,Appl.Opt.31,6047–6055(1992)
    [46] P.S.Huang, J.Ni. Angle measurement based on the internal-reflection effectusing elongated critical-angle prisms [J]. Appl.Opt.35,2239–2241(1996)
    [47] P.S.Huang, J.Ni. Angle meaurement based on the internal-reflection effect andthe use of right-angle prisms [J]. Appl. Opt.34,4976-4981(1995)
    [48] Weidong Zhou, Lilong Cai. Improved angle interferometer based on totalinternal reflection [J]. Appl. Opt.38,1179-1185(1999)
    [49]毛英泰.误差理论与精度分析[M].北京:国防工业出版社
    [50]王家骐.光学仪器总体设计[M].长春:中国科学院长春光学精密机械与物理研究所研究生部教材,2003:57-58
    [51]王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116
    [52]明名,王建立等.大口径望远镜光学系统的误差分配与分析[J].光学精密工程,2009,17(1):104-108
    [53]赵金宇.光电望远镜误差分析及补偿技术[D]:[博士学位论文]中国科学院长春光学精密机械与物理研究所,2005
    [54]宋丹,刘金国,吴国栋.基于蒙特卡罗法的测绘相机标定误差分析[J].光电子技术,2008,28(3):177-179
    [55]王晶,高利民,姚俊峰.机载测量平台中的坐标转换误差分析[J].光学精密工程,2009,17(2):388-394
    [56]陈洪达,陈永和,史婷婷等.空间相机调焦机构误差分析[J].光学精密工程,2013,21(5):1350-1356
    [57]彭晨,陈钱,钱惟贤.利用光电经纬仪修正地基红外搜索跟踪系统静态误差的方法[J].红外与激光工程,2012,41(10):2791-2794.
    [58]颜昌翔,王家骐.航相机像移补偿计算的坐标变换方法[J].光学精密工程,2000,8(3):203-207
    [59]白素平,王春艳等.基于坐标变换的动态光学成像性质研究[J].光子学报,2001,30(7):846-850
    [60]陈青山,吕乃光,燕毕西,张志凤.激光准直高斯光斑中心位置计算方法分析[J].计算机测量与控制,2004,12(5):486-488
    [61]陈晓东,李为民,李静等.利用重心法求光斑信号位置的误差分析[J].光学技术,2000,26(1):5-8
    [62]金占雷,刘雪峰,王淳等.CCD目标灰度质心算法的动态误差分析[J].光电工程,2011,38(6):7-11
    [63]唐冠群.几种激光光斑中心定位算法的比较[J].北京机械工业学院学报,2009,24(1):61-64
    [64]王春阳,李金石.激光光斑漂移的检测[J].应用光学,2007,28(2):205-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700