用户名: 密码: 验证码:
18F-FDG PET/CT在非小细胞肺癌放射治疗中的应用及相关分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:淋巴结分期是非小细胞肺癌(non-small-cell lung cancer, NSCLC)的重要预后指标,也是最重要的治疗指导因素。本研究旨在评估PET联合CT(PET-CT)诊断的临床Ⅰ期(T1-2N0)NSCLC的淋巴结阴性预测值(negative predictive value, NPV)并探究与该期病变隐匿淋巴结转移相关的风险因素。
     方法:从MEDLINE数据库中收集有关Ⅰ期NSCLC采用PET-CT进行淋巴结分期的研究。根据STARD (The initiative of standards for reporting of diagnostic accuracy)标准来筛选高质量的研究进入荟萃分析。以纵隔镜或者开胸手术获得病理学证实作为淋巴结受累的金标准来评估PET-CT分期的准确性,采用Stata软件进行荟萃分析。
     结果:包含共1122名NSCLC病人的10项研究纳入了荟萃分析。T1和T2期NSCLC的纵隔淋巴结NPV分别为0.94和0.89。合并T1期和T2期NSCLC,纵隔淋巴结的NPV为0.93,总体淋巴结的NPV为0.87。病理类型为腺癌(风险比RR=2.72)以及原发灶具有18F-FDG高代谢的NSCLC具有更高的隐匿性淋巴结转移风险。
     结论:尽管PET-CT诊断的临床T1-2N0期NSCLC具有一定几率的隐匿淋巴结转移率,但T1NO患者的纵隔NPV相对较低,提示该亚群NSCLC患者也许不必要进行常规的有创纵隔分期检查。
     目的:本研究旨在评估未接受任何治疗的非小细胞肺癌(non-small cell lung cancer, NSCLC):1)体积和FDG摄取的自然倍增时间(doubling time, DT);2)治疗前疾病进展情况;3)自然病程及治疗等待时间(time to treatment, TTT)对预后的影响。
     方法:在治疗开始前具有至少2次PET/CT扫描的不可手术的Ⅰ-Ⅲ期NSCLC患者纳入本研究。基于PET/CT图像勾画代谢肿瘤体积(PET-MTV)和基于CT勾画的大体肿瘤体积(CT-GTV)。记录PET-MTV内经纵隔血池标化后的最大和平均代谢活性(NSUVmax及NSUVmean)。疗前肿瘤进展定义为PET/CT上发现的任何新发病灶或者基于AJCC第七版TNM分期的升高。采用生存分析方法探究治疗等待时间对总生存时间(OS)及无进展生存时间(PFS)的影响。
     结果:34例NSCLC纳入分析,两次疗前PET/CT的中位间隔时间(ISI)和TTT分别为43天和48天。在此间隔内,肿瘤体积显著增大但肿瘤的FDG摄取/代谢活性则相对稳定。基于指数模型,估算的PET-MTV、CT-GTV、NSUVmean及NSUVmax的倍增时间分别为124、139、597及333天。20.6%的病人在PET/CT诊断NSCLC至治疗开始前发生肿瘤进展,且进展风险随着等待时间的延长而增加(OR=1.027,P=0.02)。肿瘤的DT及TTT对OS及PFS无显著影响。
     结论:未治疗的NSCLC体积增长迅速,但代谢活性则相对稳定。基于PET的代谢体积和基于CT的大体肿瘤体积倍增时间无差别。治疗前疾病进展风险随治疗等待时间的延长而升高。肿瘤倍增时间和治疗等待时间可能不影响预后。
     目的:本研究基于18F FDG PET/CT,应用多种代谢反应评估系统对非小细胞肺癌(non-small cell lung cancer, NSCLC)治疗后的代谢反应进行分别评估,旨在分析:1)比较不同FDG摄取活性测量方法之间的一致性和差异性;2)各种评估系统对治疗后代谢反应评估的一致性和差异性;3)各系统评估的分类代谢反应对治疗后生存的预测价值;4)探索作为连续变量的FDG代谢下降百分比对预后的价值并提出能够区分不同预后人群的最佳界点。
     方法:本研究为一系列基于PET/CT的前瞻性研究的二次分析。入组的NSCLC病人在放射治疗开始前2周内、疗中(约40Gy)以及治疗后复查均进行18F FDG PET/CT检查,并通过与疗前基线代谢水平进行比较,应用如下方法进行疗中和疗末代谢反应的评价:1)视觉定性评估方法;2)基于肿瘤SUV变化百分比的半定量评估方法,包括基于肿瘤最大SUV绝对值(ASUV),经纵隔血池(MBP)标化的相对最大SUV (NSUV-A)以及经肝脏标化的相对最大SUV(NSUV-L)的三种计算方法。应用Kappa系数比较各分类评估系统之间的一致性;应用生存分析方法评价各系统对总生存时间(overall survival, OS)的影响。
     结果:44例病人纳入分析(36男性vs.8女性,年龄70±10岁)。疗后PET/CT扫描距离放疗结束的间隔为45-176天,中位93天。疗前、中、后进行的PET/CT扫描中,肝脏的平均SUV都显著高于MBP的平均SUV(P<0.001);但三次扫描中肝脏和MBP的SUV都没有发生显著动态变化。由ASUV、NSUV-A和NSUV-L衍生的疗中和疗后肿瘤代谢变化百分比高度相关,组内相关系数(ICC)分别为0.919和0.943;以相同界值点转化的三套治疗反应分类之间也具有较好一致性(Kappa系数0.535-1.000)。视觉评估分类与基于NSUV-A半定量标准评估的治疗分类之间具有较差的一致性(Kappa系数0.393)。不论采用何种评估标准,分类变量形式的疗后肿瘤代谢反应都与生存时间显著相关(P<0.001),其中两种标准都认可的CMR病人具有尤其明显的生存优势。作为连续变量,疗后肿瘤SUV下降百分比与预后显著相关(HR=0.213)。在现有半定量评估标准判断的PMR(SUV下降≥30%)人群中,肿瘤SUV下降≥70%亚组具有更优的预后(P<0.001)。
     结论:在接受根治性放化疗的NSCLC中,基于肿瘤绝对SUV或者经内参器官标化的相对SUV进行半定量评估的代谢反应结果具有较好的一致性,但与经视觉定性评估的代谢反应之间的一致性较差,主要分歧在于对CMR人群的判定。不论采用何种评估标准,分类变量形式的代谢反应都与生存时间显著相关,而联合定性和半定量方法进行的治疗反应分组能够更好地区分具有不同预后的人群。作为连续变量,SUV每下降1%都能够带来生存获益。在现有分类标准评定的PMR人群中,肿瘤SUV下降≥70%的亚组具有相对更佳的预后。
Purpose:Nodal staging of non-small-cell lung cancer (NSCLC) is crucial in evaluation of prognosis and determination of therapeutic strategy. This study aimed to determine the negative predictive value (NPV) of combined positron emission tomography and computed tomography (PET-CT) in patients with stage I (T1-2N0) NSCLC and to investigate the possible risk factors for occult nodal disease.
     Methods:Studies investigating the performance of PET in conjunction with CT in the nodal staging of stage I NSCLC were identified in the MEDLINE database. The initiative of standards for reporting of diagnostic accuracy (STARD) was used to ensure study quality. Pathologic assessments through mediastinoscopy or thoracotomy were required as the reference standard for evaluation of PET-CT accuracy. Stata-based meta-analysis was applied to calculate the individual and pooled NPVs.
     Results:Ten studies with a total of1122patients with stage Ⅰ(T1-2N0) NSCLC were eligible for analysis. The NPVs of combined PET and CT for mediastinal metastases were0.94in T1disease and0.89in T2disease. Including both T1disease and T2disease, the NPVs were0.93for mediastinal metastases and0.87for overall nodal metastases. Adenocarcinoma histology type (risk ratio [RR],2.72) and high fluorine-18(18F) fluorodeoxyglucose (FDG) uptake in the primary lesion were associated with greater risk of occult nodal metastases.
     Conclusions:Although overall occult nodal metastases in clinical stage T1-2N0NSCLC is not infrequent, combined PET and CT provide a favorable NPV for mediastinal metastases in T1N0NSCLC, suggesting a low yield from routine invasive staging procedures for this subgroup of patients.
     Purpose:The aims of this study were to:1) estimate the volumetric and metabolic growth rate of non-small cell lung cancer (NSCLC),2) evaluate disease progression prior to treatment, and3) explore the effects of tumor growth rate and time to treatment (TTT) on survival outcome.
     Methods:Patients with inoperable Stage Ⅰ-Ⅲ NSCLC with serial pre-treatment PET/CT scans were eligible for this study. PET-derived metabolic tumor volumes (PET-MTV) and CT-derived gross tumor volumes (CT-GTV) were contoured using PET/CT information. Normalized standardized uptake values (NSUV) in tumors including the NSUVmean and NSUVmax were measured. Tumor growth rates expressed as doubling time (DT) were estimated using an exponential model. Pre-treatment disease progression was defined as the development of any new site of disease on PET/CT and change in TNM Stage (AJCC7th Ed.) was recorded. Patient-outcome data was analyzed with respect to overall and progression free survival.
     Results:Thirty-four patients with a median inter-scan interval (ISI) of43days and TTT of48days were analyzed. Tumor volumes showed remarkable inter-scan growth while NSUV did not increase significantly. The DT for PET-MTV, CT-GTV, NSUVmean and NSUVmax were124,139,597, and333days, respectively. Pre-treatment disease progression occurred in20.6%patients with longer ISI being a significant risk factor (OR=1.027,p=0.02). The optimal threshold ISI to predict progression was58days (4.8%vs.46.2%, p=0.007). Neither tumor growth rates nor TTT were significantly correlated to overall survival or progression free survival.
     Conclusions:NSCLC displays rapid tumor volume growth whereas tumor metabolic activity is relatively stable over the same time period. Longer delays before initiation of treatment are associated with higher risk of pre-treatment disease progression.
     Purpose:Based on18F FDG PET-CT in patients with NSCLC, this study aimed to:1) compare multiple methods in quantifying post-treatment FDG uptake reduction in NSCLC;2) compare qualitative and semi-quantitative assessment of categorical metabolic response;3) evaluate the prognostic value of categorical metabolic response and4) investigate the relationship between numerical post-treatment change of metabolic activity and overall survival (OS) and explore an optimal cutoff to distinguish better responders.
     Methods:This is a secondary analysis of a series of prospective studies. Enrolled patients with NSCLC underwent18F-fluorodeoxyglucose PET/CT imaging within2weeks prior to, midway through, and following radiation treatment (RT). Metabolic therapeutic response was assessed using following methods;1) visual assessment,2) semi-quantitative assessment based on FDG uptake reduction using three types of calculation including absolute maximum SUV (ASUV), mediastinum blood pool (MBP) normalized maximum SUV (NSUV-A) and liver normalized maximum SUV (NSUV-L). Kappa coefficient was used to evaluate the agreement between various categorical variables and survival analyses were adopted to analyze the effect of multiple response criteria on overall survival (OS).
     Results:Forty-four patients (36M:8F, median age70±10) were eligible for present analysis. The interval between end of RT and post-RT PET/CT scan ranged from45to176days, with a median of93days. Mean SUV of liver was significantly higher than that of MBP at all time points of studies (P<0.001). Neither MBP nor liver had significant metabolic change over time. Reduction percentage of ASUV, NSUV-A and NSUV-L were highly correlated with each other, resulting in the during-and post-treatment intraclass coefficients of0.919and0.943, respectively. There was a moderate agreement between ASUV and NSUV derived response distribution (Kappa coefficient=0.535) and a dramatic concordance between categorical response determined by NSUV-A and NSUV-L (Kappa coefficient=1.0), whereas a poor agreement was observed between visual and semi-quantitative responses (Kappa coefficient=0.393). Categorical responses were significantly correlated with OS independent of employed response assessment criteria (P<0.001) and those with complete metabolic response (CMR) obtained the longest OS. As continuous variable, reduction percentage of NSUV-A showed pronounced association with OS (hazard ratio, HR=0.213). Seventy percent of NSUV-A reduction was identified as another optimal cutoff to distinguish patients with most significant difference in OS (P<0.001)
     Conclusions:For NSCLC patients acquiring radical chemoradiaotherapy, semi-quantitative metabolic therapeutic response distributions using different interpretation criteria show good correlation between each other, whereas have great discrepancy with that based on visual assessment, most often in the CMR identification. Current categorical responses demonstrate significant association with overall survival and the combination of visual and semi-quantitative assessment can further improve the predictability of long-term survival. As continuous variable, more numerical reduction percentage is correlated with prolonged overall survival. Seventy percent of metabolic reduction may be another optimal threshold to distinguish responders from non-responders.
引文
Alongi, F., P. Ragusa, et al. (2006). "Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non-small cell lung cancer." Tumori 92(4): 327-333.
    Annema, J. T., J. P. van Meerbeeck, et al. (2010). "Mediastinoscopy vs endosonography for mediastinal nodal staging of lung cancer:a randomized trial." JAMA 304(20): 2245-2252.
    Antoch, G, N. Saoudi, et al. (2004). "Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET." J Clin Oncol 22(21):4357-4368.
    Antoch, G., J. Stattaus, et al. (2003). "Non-small cell lung cancer:dual-modality PET/CT in preoperative staging." Radiology 229(2):526-533.
    Asamura, H., H. Nakayama, et al. (1996). "Lymph node involvement, recurrence, and prognosis in resected small, peripheral, non-small-cell lung carcinomas:are these carcinomas candidates for video-assisted lobectomy?" J Thorac Cardiovasc Surg 111(6):1125-1134.
    Birim, O., A. Kappetein, et al. (2005). "Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer." Ann Thorac Surg 79(1):375-382.
    Bossuyt, P. M, J. B. Reitsma, et al. (2004). "Towards complete and accurate reporting of studies of diagnostic accuracy:the STARD initiative." Fam Pract 21(1):4-10.
    Casiraghi, M., L. L. Travaini, et al. (2011)." Lymph node involvement in T1 non-small-cell lung cancer:could glucose uptake and maximal diameter be predictive criteria?" Eur J Cardiothorac Surg 39(4):e38-43.
    Cerfolio, R., B. Ojha, et al. (2004). "The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer." Ann Thorac Surg 78(3):1017-1023.
    Cerfolio, R. J., A. S. Bryant, et al. (2006). "Routine mediastinoscopy and esophageal ultrasound fine-needle aspiration in patients with non-small cell lung cancer who are clinically N2 negative:a prospective study." Chest 130(6):1791-1795.
    Cerfolio, R. J., A. S. Bryant, et al. (2010). "The true false negative rates of esophageal and endobronchial ultrasound in the staging of mediastinal lymph nodes in patients with non-small cell lung cancer." Ann Thorac Surg 90(2):427-434.
    Cerfolio, R. J., A. S. Bryant, et al. (2005). "Improving the inaccuracies of clinical staging of patients with NSCLC:a prospective trial." Ann Thorac Surg 80(4):1207-1213; discussion 1213-1204.
    Choi, Y. S., Y. M. Shim, et al. (2003). "Mediastinoscopy in patients with clinical stage Ⅰ non-small cell lung cancer." Ann Thorac Surg 75(2):364-366.
    Cochran, W. G. (1954). "The combination of estimates from different experiments." Biometrics 10:101-129.
    de Langen, A. J., P. Raijmakers, et al. (2006). "The size of mediastinal lymph nodes and its relation with metastatic involvement:a meta-analysis." Eur J Cardiothorac Surg 29(1):26-29.
    Defranchi, S. A., S. D. Cassivi, et al. (2009). "N2 disease in T1 non-small cell lung cancer." Ann Thorac Surg 88(3):924-928.
    Defranchi, S. A., E. S. Edell, et al. (2010). "Mediastinoscopy in patients with lung cancer and negative endobronchial ultrasound guided needle aspiration." Ann Thorac Surg 90(6):1753-1757.
    DerSimonian, R. and N. Laird (1986). "Meta-analysis in clinical trials." Control Clin Trials 7(3):177-188.
    Dwamena, B., S. Sonnad, et al. (1999). "Metastases from non-small cell lung cancer: mediastinal staging in the 1990s--meta-analytic comparison of PET and CT." Radiology 213(2):530-536.
    Farrell, M., H. McAdams, et al. (2000). "Non-small cell lung cancer:FDG PET for nodal staging in patients with stage I disease." Radiology 215(3):886-890.
    Ferlay J, H.R. Shin, et al. (2010) "GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide:IARC CancerBase No.10 [Internet]." Lyon, France:International Agency for Research on Cancer. Available from:http://globocan.iarc.fr.
    Gomez-Caro, A., S. Garcia, et al. (2010). "Incidence of occult mediastinal node involvement in cN0 non-small-cell lung cancer patients after negative uptake of positron emission tomography/computer tomography scan." Eur J Cardiothorac Surg 37(5):1168-1174.
    Gavaghan, D. J., R. A. Moore, et al. (2000). "An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data." Pain 85(3): 415-424.
    Gould, M., W. Kuschner, et al. (2003). "Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer:a meta-analysis." Ann Intern Med 139(11):879-892.
    Gupta, N. C., G. M. Graeber, et al. (2000). " Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions." Chest 117(3): 773-778.
    Halpern, B. S., C. Schiepers, et al. (2005). "Presurgical staging of non-small cell lung cancer:positron emission tomography, integrated positron emission tomography/CT, and software image fusion." Chest 128(4):2289-2297.
    Herth, F. J., R. Eberhardt, et al. (2008). "Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer." Chest 133(4): 887-891.
    Higgins, J. P. and S. G. Thompson (2002). "Quantifying heterogeneity in a meta-analysis." Stat Med 21(11):1539-1558.
    Higgins, J. P., S. G. Thompson, et al. (2003). "Measuring inconsistency in meta-analyses." BMJ 327(7414):557-560.
    Ishida, T., T. Yano, et al. (1990). "Strategy for lymphadenectomy in lung cancer three centimeters or less in diameter." Ann Thorac Surg 50(5):708-713.
    Jemal, A., F. Bray, et al. (2011). "Global cancer statistics." CA Cancer J Clin 61(2): 69-90.
    Kim, B., K. Lee, et al. (2006). "Stage T1 non-small cell lung cancer:preoperative mediastinal nodal staging with integrated FDG PET/CT--a prospective study." Radiology 241(2):501-509.
    Konishi, J., K. Yamazaki, et al. (2003). "Mediastinal lymph node staging by FDG-PET in patients with non-small cell lung cancer:analysis of false-positive FDG-PET findings." Respiration 70(5):500-506.
    Lardinois, D., W. Weder, et al. (2003). "Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography." N Engl J Med 348(25):2500-2507.
    Lee, P. C., J. L. Port, et al. (2007). "Risk factors for occult mediastinal metastases in clinical stage I non-small cell lung cancer." Ann Thorac Surg 84(1):177-181.
    Maeda, R., N. Isowa, et al. (2009). "The maximum standardized 18F-fluorodeoxyglucose uptake on positron emission tomography predicts lymph node metastasis and invasiveness in clinical stage IA non-small cell lung cancer." Interact Cardiovasc Thorac Sure 9(1):79-82.
    Mantel, N. and W. Haenszel (1959). "Statistical aspects of the analysis of data from retrospective studies of disease." J Natl Cancer Inst 22(4):719-748.
    Park, H. K., K. Jeon, et al. (2010). "Occult nodal metastasis in patients with non-small cell lung cancer at clinical stage IA by PET/CT." Respirology 15(8):1179-1184.
    Robins. J., N. Breslow, et al. (1986). "Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models." Biometrics 42(2): 311-323.
    Seely, J., J. Mayo, et al. (1993). "T1 lung cancer:prevalence of mediastinal nodal metastases and diagnostic accuracy of CT." Radiology 186(1):129-132.
    Shrager, J. B. (2010). "Mediastinoscopy:still the gold standard." Ann Thorac Surg 89(6): S2084-2089.
    Stiles, B. M., E. L. Servais, et al. (2009). "Point:Clinical stage IA non-small cell lung cancer determined by computed tomography and positron emission tomography is frequently not pathologic IA non-small cell lung cancer:the problem of understaging." J Thorac Cardiovasc Surg 137(1):13-19.
    Sutton, A., K. Abrams, et al. (2000). "Methods for meta-analysis in medical research." Chichester. UK:John Wiley & Sons Ltd.
    Toloza, E., L. Harpole, et al. (2003). "Noninvasive staging of non-small cell lung cancer: a review of the current evidence." Chest 123(1 Suppl):137S-146S.
    Veeramachaneni, N., R. Battafarano, et al. (2008). "Risk factors for occult nodal metastasis in clinical T1N0 lung cancer:a negative impact on survival." Eur J Cardiothorac Surg 33(3):466-469.
    Chen, Z., W. King, et al. (2008). "The relationship between waiting time for radiotherapy and clinical outcomes:a systematic review of the literature." Radiother Oncol 87(1):3-16.
    Detterbeck, F. C. and C. J. Gibson (2008). "Turning gray:the natural history of lung cancer over time." J Thorac Oncol 3(7):781-792.
    Eastham, D.V., D. Weerasuriya, et al (2007). "Quantification of progression of non-small cell lung cancer in the interval between diagnosis and radiotherapy treatment planning PET scans." Int J Radiat Oncol Biol Phys 69(3):S520-S521.
    Everitt, S., A. Herschtal, et al. (2010). "High rates of tumor growth and disease progression detected on serial pretreatment fluorodeoxyglucose-positron emission tomography/computed tomography scans in radical radiotherapy candidates with nonsmall cell lung cancer." Cancer 116(21):5030-5037.
    Feng, M., F.-M. Kong, et al. (2009). "Using Fluorodeoxyglucose Positron Emission Tomography to Assess Tumor Volume During Radiotherapy for Non-Small-Cell Lung Cancer and Its Potential Impact on Adaptive Dose Escalation and Normal Tissue Sparing." International Journal of Radiation Oncology*Biology*Physics 73(4):1228-1234.
    Friberg, S. and S. Mattson (1997). "On the growth rates of human malignant tumors: implications for medical decision making." J Surg Oncol 65(4):284-297.
    Frings, V., A. J. de Langen, et al. (2010). "Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer." J Nucl Med 51(12):1870-1877.
    Jennings, S. G, H. T. Winer-Muram, et al. (2006). "Distribution of stage Ⅰ lung cancer growth rates determined with serial volumetric CT measurements." Radiology 241(2):554-563.
    Kong, F. M., P. Mahasittiwat, et al (2010). "Define tumor volume during radiotherapy to individulize adaptive radiation dose escalation in non-small cell lung cancer. Presented at the ITART 2010 Imaging for Treatment Assessment in Radiation Therapy, National Harbor, Maryland, June 21-22,2010. (abstract)
    Lardinois, D., W. Weder, et al. (2003). "Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography." N Engl J Med 348(25):2500-2507.
    Lindell. R. M, T. E. Hartman, et al. (2009). "5-year lung cancer screening experience: growth curves of 18 lung cancers compared to histologic type, CT attenuation, stage, survival, and size." Chest 136(6):1586-1595.
    Lindell, R. M., T. E. Hartman, et al. (2007). "Five-year lung cancer screening experience: CT appearance, growth rate, location, and histologic features of 61 lung cancers.' Radiology 242(2):555-562.
    Mackillop, W. J., J. H. Bates, et al. (1996). "The effect of delay in treatment on local control by radiotherapy." Int J Radiat Oncol Biol Phys 34(1):243-250.
    Mohammed, N., L. L. Kestin, et al. (2011). "Rapid disease progression with delay in treatment of non-small-cell lung cancer." Int J Radiat Oncol Biol Phys 79(2): 466-472.
    Pieterman, R., J. van Putten, et al. (2000). "Preoperative staging of non-small-cell lung cancer with positron-emission tomography." N Engl J Med 343(4):254-261.
    Quint, L. E., J. Cheng, et al. (2008). "Lung lesion doubling times:values and variability based on method of volume determination." Clin Radiol 63(1):41-48.
    Robinson, E., J. Mohilever, et al. (1984). "Delay in diagnosis of cancer. Possible effects on the stage of disease and survival." Cancer 54(7):1454-1460.
    Schultz, E. M., G. A. Silvestri, et al. (2008). Variation in experts' beliefs about lung cancer growth, progression, and prognosis. J Thorac Oncol. United States.3: 422-426.
    Usuda, K., Y. Saito, et al. (1994). "Tumor doubling time and prognostic assessment of patients with primary lung cancer." Cancer 74(8):2239-2244.
    van Loon, J., J. P. Grutters, et al. (2010). "18FDG-PET-CT in the follow-up of non-small cell lung cancer patients after radical radiotherapy with or without chemotherapy: an economic evaluation." Eur J Cancer 46(1):110-119.
    Vriens, D., L. F. de Geus-Oei, et al. (2009). "Evaluation of different normalization procedures for the calculation of the standardized uptake value in therapy response monitoring studies." Nucl Med Commun 30(7):550-557.
    Wang, L., C. R. Correa, et al. (2009). "Time to treatment in patients with stage Ⅲ non-small cell lung cancer." Int J Radiat Oncol Biol Phys 74(3):790-795.
    Williams, M. V., K. J. Drinkwater, et al. (2008). "Waiting times for systemic cancer therapy in the United Kingdom in 2006." Br J Cancer 99(5):695-703.
    Winer-Muram, H. T., S. G. Jennings, et al. (2002). "Volumetric growth rate of stage Ⅰ lung cancer prior to treatment:serial CT scanning." Radiology 223(3):798-805.
    Yankelevitz, D. F., W. J. Kostis, et al. (2003). "Overdiagnosis in chest radiographic screening for lung carcinoma:frequency." Cancer 97(5):1271-1275.
    Afaq, A. and O. Akin (2011). "Imaging assessment of tumor response:past, present and future." Future Oncol 7(5):669-677.
    Allen-Auerbach, M. and W. A. Weber (2009). "Measuring response with FDG-PET: methodological aspects." Oncologist 14(4):369-377'.
    Anderson, H., N. Singh, et al. (2010). "Tumour response evaluation with fluorodeoxyglucose positron emission tomography:research technique or clinical tool?" Cancer Imaging 10 Spec no A:S68-72.
    Berghmans, T., M. Dusart, et al. (2008). "Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC):a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project." J Thorac Oncol 3(1):6-12.
    de Geus-Oei, L. F., H. F. van der Heijden, et al. (2007). "Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer." J Nucl Med 48(10):1592-1598.
    Eisenhauer, E. A., P. Therasse, et al. (2009). "New response evaluation criteria in solid tumours:revised RECIST guideline (version 1.1)." Eur J Cancer 45(2):228-247.
    Eschmann, S. M., G. Friedel, et al. (2007). "Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer.' Lung Cancer 55(2):165-171.
    Harry, V. N., S. I. Semple, et al. (2010). "Use of new imaging techniques to predict tumour response to therapy." Lancet Oncol 11(1):92-102.
    Herrmann, K., B. J. Krause, et al. (2009). "Monitoring response to therapeutic interventions in patients with cancer." Semin Nucl Med 39(3):210-232.
    Hicks, R. J., V. Kalff, et al. (2001). "(18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer." J Nucl Med 42(11):1596-1604.
    Hicks, R. J., V. Kalff, et al. (2001). "The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy:impact on management and prognostic stratification." J Nucl Med 42(11):1605-1613.
    Hicks, R. J., M. P. Mac Manus, et al. (2004). "Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer:inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation." Int J Radiat Oncol Biol Phys 60(2):412-418.
    Hofman, M. S. and R. J. Hicks (2010). "Restaging:should we percist without pattern recognition?" J Nucl Med 51(12):1830-1832.
    Huang, Y. E., C. F. Chen, et al. (2010). "Interobserver variability among measurements of the maximum and mean standardized uptake values on (18)F-FDG PET/CT and measurements of tumor size on diagnostic CT in patients with pulmonary tumors." Acta Radiol 51(7):782-788.
    Ichiya, Y., Y. Kuwabara, et al. (1996). "A clinical evaluation of FDG-PET to assess the response in radiation therapy for bronchogenic carcinoma." Ann Nucl Med 10(2): 193-200.
    Kaira, K., M. Endo, et al. (2010). "Ratio of standardized uptake value on PET helps predict response and outcome after chemotherapy in advanced non-small cell lung cancer." Ann Nucl Med 24(10):697-705.
    Kalff, V., R. J. Hicks, et al. (2001). "Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer:a prospective study." J Clin Oncol 19(1):111-118.
    Kinahan. P. E. and J. W. Fletcher (2010). "Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy." Semin Ultrasound CT MR 31(6):496-505.
    Kong, F., K. Frey, et al. (2007). "A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer." J Clin Oncol 25(21):3116-3123.
    Lammertsma, A. A., C. J. Hoekstra, et al. (2006). "How should we analyse FDG PET studies for monitoring tumour response?" Eur J Nucl Med Mol Imaging 33 (Suppl 1):16-21.
    Langer, A. (2010). "A systematic review of PET and PET/CT in oncology:a way to personalize cancer treatment in a cost-effective manner?" BMC Health Serv Res 10:283.
    Lee, H. Y, H. J. Lee, et al. (2010). "Value of combined interpretation of computed tomography response and positron emission tomography response for prediction of prognosis after neoadjuvant chemotherapy in non-small cell lung cancer." J Thorac Oncol 5(4):497-503.
    Mac Manus, M. P., R. J. Hicks, et al. (2001). "F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma:powerful correlation with survival and high impact on treatment." Cancer 92(4):886-895.
    Mac Manus, M. P., R. J. Hicks, et al. (2003). "Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer." J Clin Oncol 21(7):1285-1292.
    Mac Manus, M. P., R. J. Hicks, et al. (2005). "Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure." Lung Cancer 49(1):95-108.
    Mac Manus, M. P., K. Wong, et al. (2002). "Early mortality after radical radiotherapy for non-small-cell lung cancer:comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center." Int J Radiat Oncol Biol Phys 52(2):351-361.
    Miller, A. B., B. Hoogstraten, et al. (1981). "Reporting results of cancer treatment. Cancer 47(1):207-214.
    Mohammed, N., I. S. Grills, et al. (2011). "Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors." Radiother Oncol 99(1):18-22.
    Obrzut, S., J. Bykowski, et al. (2010). "Utility of fluorodeoxyglucose-positron emission tomography in the identification of new lesions in lung cancer patients for the assessment of therapy response." Nucl Med Commun 31(12):1008-1015.
    Paesmans, M., T. Berghmans, et al. (2010). "Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer:update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project." J Thorac Oncol 5(5):612-619.
    Paquet, N., A. Albert, et al. (2004). "Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues." J Nucl Med 45(5):784-788.
    Sasaki, R., R. Komaki, et al. (2005). "[18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer." J Clin Oncol 23(6):1136-1143.
    Segall, G. M. (2010). "Therapy response evaluation with positron emission tomography-computed tomography." Semin Ultrasound CT MR 31(6):490-495.
    Shankar, L. K., J. M. Hoffman, et al. (2006). "Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials." J Nucl Med 47(6):1059-1066.
    Shiraishi, K., H. Nomori, et al. (2010). "Repeat FDG-PET for predicting pathological tumor response and prognosis after neoadjuvant treatment in nonsmall cell lung cancer:comparison with computed tomography." Ann Thorac Cardiovasc Surg 16(6):394-400.
    Storto, G., E. Nicolai, et al. (2009). "[18F]FDG-PET-CT for early monitoring of tumor response:when and why." Q J Nucl Med Mol Imaging 53(2):167-180.
    Therasse, P., S. G. Arbuck, et al. (2000). "New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada." J Natl Cancer Inst 92(3):205-216.
    Tylski, P., S. Stute, et al. (2010). "Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET." J Nucl Med 51(2):268-276.
    Vansteenkiste, J., B. M. Fischer, et al. (2004). "Positron-emission tomography in prognostic and therapeutic assessment of lung cancer:systematic review." Lancet Oncol 5(9):531-540.
    Wahl, R. L., H. Jacene, et al. (2009). "From RECIST to PERCIST:Evolving Considerations for PET response criteria in solid tumors." J Nucl Med 50 (Suppl 1):122S-150S.
    Wahl, R. L., K. Zasadny, et al. (1993). "Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography:initial evaluation." J Clin Oncol 11(11):2101-2111.
    Weber, W. A. (2005). "Use of PET for monitoring cancer therapy and for predicting outcome." J Nucl Med 46(6):983-995.
    Weber, W. A. (2009). "Assessing tumor response to therapy." J Nucl Med 50 (Suppl 1): 1S-10S.
    Weber, W. A., V. Petersen, et al. (2003). "Positron emission tomography in non-small-cell lung cancer:prediction of response to chemotherapy by quantitative assessment of glucose use." J Clin Oncol 21(14):2651-2657.
    Wong, C. Y., J. Schmidt, et al. (2007). "Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging.' Radiat Oncol 2:18.
    Xu, X., J. Yu, et al. (2008). "The prognostic value of 18F-fluorodeoxyglucose uptake by using serial positron emission tomography and computed tomography in patients with stage Ⅲ nonsmall cell lung cancer." Am J Clin Oncol 31(5):470-475.
    Yoon, D. H., S. Baek, et al. (2011). "FDG-PET as a potential tool for selecting patients with advanced non-small cell lung cancer who may be spared maintenance therapy after first-line chemotherapy." Clin Cancer Res 17(15):5093-5100.
    Young, H., R. Baum, et al. (1999). "Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group." Eur J Cancer 35(13): 1773-1782.
    Zander. T., M. Scheffler, et al. (2011). "Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography." J Clin Oncol 29(13):1701-1708.
    Zhu, A., D. Lee, et al. (2011). "Metabolic positron emission tomography imaging in cancer detection and therapy response." Semin Oncol 38(1):55-69.
    Alkhawaldeh, K., G. Bural, et al. (2008). "Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules." Eur J Nucl Med Mol Imaging 35(2):246-252.
    Alongi, F., P. Ragusa, et al. (2006). "Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non-small cell lung cancer." Tumori 92(4): 327-333.
    Annema, J. T., J. P. van Meerbeeck, et al. (2010). "Mediastinoscopy vs endosonography for mediastinal nodal staging of lung cancer:a randomized trial." JAMA 304(20): 2245-2252.
    Bayne, M., R. J. Hicks, et al. (2010). "Reproducibility of "intelligent" contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method." Int J Radiat Oncol Biol Phys 77(4):1151-1157.
    Belderbos, J. S., W. D. Heemsbergen, et al. (2006). "Final results of a Phase Ⅰ/Ⅱ dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy." Int J Radiat Oncol Biol Phys 66(1):126-134.
    Birim, O., A. Kappetein, et al. (2005). "Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer." Ann Thorac Surg 79(1):375-382.
    Black, Q. C., I. S. Grills, et al. (2004). "Defining a radiotherapy target with positron emission tomography." Int J Radiat Oncol Biol Phys 60(4):1272-1282.
    Bollineni, V. R., J. Widder, et al. (2012). "Residual (18)F-FDG-PET Uptake 12 Weeks after Stereotactic Ablative Radiotherapy for Stage Ⅰ Non-Small-Cell Lung Cancer Predicts Local Control." Int J Radiat Oncol Biol Phys. [Epub ahead of print]
    Cerfolio, R., B. Ojha, et al. (2004). "The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer." Ann Thorac Surg 78(3):1017-1023; discussion 1017-1023.
    Cerfolio, R. J., A. S. Bryant, et al. (2010). "The true false negative rates of esophageal and endobronchial ultrasound in the staging of mediastinal lymph nodes in patients with non-small cell lung cancer." Ann Thorac Surg 90(2):427-434.
    Daisne, J. F., T. Duprez, et al. (2004). "Tumor volume in pharyngolaryngeal squamous cell carcinoma:comparison at CT, MR imaging, and FDG PET and validation with surgical specimen." Radiology 233(1):93-100.
    Daisne, J. F., M. Sibomana, et al. (2003). "Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients:accuracy, reproducibility and consistency." Radiother Oncol 69(3): 237-245.
    Daisne, J. F., M. Sibomana, et al. (2003). "Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios:influence of reconstruction algorithms." Radiother Oncol 69(3):247-250.
    De Ruysscher, D., S. Wanders, et al. (2005). "Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose Limiting normal tissues and radiation dose-escalation:A planning study. Radiotherapy and Oncology 77(1):5-10.
    De Ruysscher, D., S. Wanders, et al. (2005). "Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer:a prospective clinical study." Int J Radiat Oncol Biol Phys 62(4):988-994.
    Defranchi, S. A., E. S. Edell, et al. (2010). "Mediastinoscopy in patients with lung cancer and negative endobronchial ultrasound guided needle aspiration." Ann Thorac Surg 90(6):1753-1757.
    Demura, Y., T. Tsuchida, et al. (2003). "18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax." J Nucl Med 44(4):540-548.
    Deniaud-Alexandre, E., E. Touboul, et al. (2005). "Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer." Int J Radiat Oncol Biol Phys 63(5):1432-1441.
    Devic, S., N. Tomic, et al. (2010). "Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: still a Pandora's box?" Int J Radiat Oncol Biol Phys 78(5):1555-1562.
    Dwamena, B., S. Sonnad, et al. (1999). "Metastases from non-small cell lung cancer: mediastinal staging in the 1990s--meta-analytic comparison of PET and CT." Radiology 213(2):530-536.
    Edet-Sanson, A., B. Dubray, et al. (2012). "Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC)." Radiother Oncol 102(2):251-257.
    Eisenhauer, E. A., P. Therasse, et al. (2009). "New response evaluation criteria in solid tumours:revised RECIST guideline (version 1.1)." Eur J Cancer 45(2):228-247.
    Eschmann, S. M., G. Friedel, et al. (2007). "Impact of staging with 18F-FDG-PET on outcome of patients with stage Ⅲ non-small cell lung cancer:PET identifies potential survivors." Eur J Nucl Med Mol Imaging 34(1):54-59.
    Ferlay J, H.R. Shin, et al. (2010) "GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide:IARC CancerBase No.10 [Internet]." Lyon, France:International Agency for Research on Cancer. Available from:http://globocan.iarc.fr.
    Fischer, B., U. Lassen, et al. (2009). "Preoperative Staging of Lung Cancer with Combined PET-CT." New England Journal of Medicine 361(1):32-39.
    Fischer, B. M., J. Mortensen, et al. (2001). "Positron emission tomography in the diagnosis and staging of lung cancer:a systematic, quantitative review." Lancet Oncol 2(11):659-666.
    Fleckenstein, J., D. Hellwig, et al. (2011). "F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy:results of the PET-PLAN pilot trial." Int J Radiat Oncol Biol Phys 81(4):e283-289.
    Geets, X., J. A. Lee, et al. (2007). "A gradient-based method for segmenting FDG-PET images:methodology and validation." Eur J Nucl Med Mol Imaging 34(9): 1427-1438.
    Geets, X., J. A. Lee, et al. (2009). "[Potential place of FDG-PET for the GTV delineation in head and neck and lung cancers]." Cancer Radiother 13(6-7):594-599.
    Giraud, P., D. Grahek, et al. (2001). "CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers." Int J Radiat Oncol Biol Phys 49(5):1249-1257.
    Gould, M, W. Kuschner, et al. (2003). "Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer:a meta-analysis." Ann Intern Med 139(11):879-892.
    Gould, M., C. Maclean, et al. (2001). "Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions:a meta-analysis." JAMA 285(7):914-924.
    Green, S. and G. R. Weiss (1992). "Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria." Invest New Drugs 10(4):239-253.
    Grgic, A., U. Nestle, et al. (2009). "Nonrigid versus rigid registration of thoracic 18F-FDG PET and CT in patients with lung cancer:an intraindividual comparison of different breathing maneuvers." J Nucl Med 50(12):1921-1926.
    Grgic, A., U. Nestle, et al. (2009). "FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning--an intraindividual comparison." Int J Radiat Oncol Biol Phys 73(1):103-111.
    Hamberg, L. M., G. J. Hunter, et al. (1994). "The dose uptake ratio as an index of glucose metabolism:useful parameter or oversimplification?" J Nucl Med 35(8): 1308-1312.
    Hicks, R. J., V. Kalff, et al. (2001). "(18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer." J Nucl Med 42(11):1596-1604.
    Hong, R., J. Halama, et al. (2007). "Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning." Int J Radiat Oncol Biol Phys 67(3):720-726.
    Junker, K., K. Langner, et al. (2001). "Grading of tumor regression in non-small cell lung cancer:morphology and prognosis." Chest 120(5):1584-1591.
    Kong, F., K. Frey, et al. (2007). "A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer." J Clin Oncol 25(21):3116-3123.
    Laffon, E., H. de Clermont, et al. (2009). "Assessment of dual-time-point 18F-FDG-PET imaging for pulmonary lesions." Nucl Med Commun 30(6):455-461.
    Lardinois, D., W. Weder, et al. (2003). "Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography." N Engl J Med 348(25):2500-2507.
    Leong, T., C. Everitt, et al. (2006). "A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer." Radiother Oncol 78(3):254-261.
    Liao, S., B. C. Penney, et al. (2012). "Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer." Eur J Nucl Med Mol Imaging 39(1):27-38.
    Lopez Guerra, J. L., G. Gladish, et al. (2012). "Large decreases in standardized uptake values after definitive radiation are associated with better survival of patients with locally advanced non-small cell lung cancer." J Nucl Med 53(2):225-233.
    Mac Manus, M. P., R. J. Hicks, et al. (2003). "Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer." Journal of Clinical Oncology 21(7):1285-1292.
    Mac Manus, M. P., R. J. Hicks, et al. (2005). "Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure." Lung Cancer 49(1):95-108.
    MacManus, M. P., R. J. Hicks, et al. (2001). "High rate of detection of unsuspected distant metastases by pet in apparent stage Ⅲ non-small-cell lung cancer: implications for radical radiation therapy." Int J Radiat Oncol Biol Phys 50(2): 287-293.
    Matthies, A., M. Hickeson, et al. (2002). "Dual time point 18F-FDG PET for the evaluation of pulmonary nodules." J Nucl Med 43(7):871-875.
    Miller, A. B., B. Hoogstraten, et al. (1981). "Reporting results of cancer treatment." Cancer 47(1):207-214.
    Miller, T. R. and P. W. Grigsby (2002). "Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy." Int J Radiat Oncol Biol Phys 53(2):353-359.
    Morita, K., N. Fuwa, et al. (1997). "Radical radiotherapy for medically inoperable non-small cell lung cancer in clinical stage I:a retrospective analysis of 149 patients." Radiother Oncol 42(1):31-36.
    Nehmeh, S. A., Y. E. Erdi, et al. (2002). "Effect of respiratory gating on quantifying PET images of lung cancer." J Nucl Med 43(7):876-881.
    Nehmeh, S. A., Y. E. Erdi, et al. (2003). "Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET:methodology and comparison with respiratory gated PET." J Nucl Med 44(10):1644-1648.
    Nestle, U., S. Kremp, et al. (2005). "Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer." J Nucl Med 46(8):1342-1348.
    Nestle, U., A. Schaefer-Schuler, et al. (2007). "Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer." Eur J Nucl Med Mol Imaging 34(4):453-462.
    Nestle, U., K. Walter, et al. (1999). "18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer:high impact in patients with atelectasis." Int J Radiat Oncol Biol Phys 44(3):593-597.
    Paquet, N., A. Albert, et al. (2004). "Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues." J Nucl Med 45(5):784-788.
    Patz, E. F., Jr., J. Connolly, et al. (2000). "Prognostic value of thoracic FDG PET imaging after treatment for non-small cell lung cancer." AJR Am J Roentgenol 174(3): 769-774.
    Paulino, A. C. and P. A. Johnstone (2004). "FDG-PET in radiotherapy treatment planning: Pandora's box?" Int J Radiat Oncol Biol Phys 59(1):4-5.
    Pieterman, R., J. van Putten, et al. (2000). "Preoperative staging of non-small-cell lung cancer with positron-emission tomography." N Engl J Med 343(4):254-261.
    Scarfone, C., W. C. Lavely, et al. (2004). "Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging." J Nucl Med 45(4):543-552.
    Schaefer. A., S. Kremp. et al. (2008). "A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer:derivation from phantom measurements and validation in patient data." Eur J Nucl Med Mol Imaging 35(11):1989-1999.
    Shon, I. H., J. O'Doherty M, et al. (2002). "Positron emission tomography in lung cancer." Semin Nucl Med 32(4):240-271.
    Stroom, J., H. Blaauwgeers, et al. (2007). "Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors." Int J Radiat Oncol Biol Phys 69(1):267-275.
    Sura, S., C. Greco, et al. (2008). "(18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy." Int J Radiat Oncol Biol Phys 70(5): 1397-1402.
    Therasse, P., S. G. Arbuck, et al. (2000). "New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada." J Natl Cancer Inst 92(3):205-216.
    Toloza, E., L. Harpole, et al. (2003). "Noninvasive staging of non-small cell lung cancer: a review of the current evidence." Chest 123(1 Suppl):137S-146S.
    Vali, F. S., S. Nagda, et al. (2010). "Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy." Int J Radiat Oncol Biol Phys 78(4):1057-1063.
    van Baardwijk, A., G. Bosmans, et al. (2007). "PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes." Int J Radiat Oncol Biol Phys 68(3):771-778.
    van Baardwijk, A., C. Dooms, et al. (2007). "The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer." Eur J Cancer 43(9):1392-1398.
    van Elmpt, W., J. Hamill, et al. (2011). "Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours." Eur J Nucl Med Mol Imaging 38(5):843-855.
    Wahl, R. L., H. Jacene, et al. (2009). "From RECIST to PERCIST:Evolving Considerations for PET response criteria in solid tumors." J Nucl Med 50 (Suppl 1):122S-150S.
    Wanet, M., J. A. Lee, et al. (2011). "Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer:a comparison with threshold-based approaches, CT and surgical specimens." Radiother Oncol 98(1):117-125.
    Werner-Wasik, M., A. D. Nelson, et al. (2011). "What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom." Int J Radiat Oncol Biol Phys 82(3):1164-1171.
    Wu, K., Y. C. Ung, et al. (2010). "PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer:how close are we to the pathologic findings?" Int J Radiat Oncol Biol Phys 77(3):699-706.
    Xiu, Y., C. Bhutani, et al. (2007). "Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity." Clin Nucl Med 32(2):101-105.
    Yaremko, B., T. Riauka, et al. (2005). "Thresholding in PET images of static and moving targets." Phys Med Biol 50(24):5969-5982.
    Young, H., R. Baum, et al. (1999). "Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group." Eur J Cancer 35(13): 1773-1782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700