用户名: 密码: 验证码:
风力作用下桅杆结构拉耳焊接节点板裂纹萌生疲劳寿命的评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桅杆结构是一种广泛应用于通讯工程的高耸结构。由于它具有高和柔的特点,因此对风荷载的作用比较敏感,历史上曾多次发生桅杆结构风致倒塌破坏的案例。而在桅杆结构风致倒塌破坏的事故中,疲劳损伤主要发生在主桅杆与纤绳联结的拉耳节点处,桅杆结构在风荷载的作用下,其纤绳与桅杆杆身连接的拉耳处最先发生初始裂纹,拉耳耳板与桅杆杆身通常采用焊接的连接方法,而焊接不可避免的会产生残余应力,虽然可以采取一定的措施可以消除一部分焊接残余应力,但是采用不同的方法消残的程度不一致,而且很难彻底清除,于是在焊接残余应力和扰动风荷载的双重作用下,更有可能萌生裂纹。因此,如何在考虑焊接残余应力影响的基础上来进行焊缝裂纹萌生累积疲劳损伤的评定并进行疲劳寿命的计算还是一个新的课题。
     桅杆结构整体的风致动力响应与纤绳分布、外荷载等多种因素有关,桅杆结构在风荷载作用下,因风向不同、风荷载强度等级不同,致使其动力响应不同。于是本文首先考虑采用LINK10三维空间杆单元模拟纤绳和BEAM44三维空间梁单元模拟杆身,建立了桅杆结构整体尺度的非线性有限元模型。然后采用基于FFT算法的改进谐波叠加法进行了标准高度处各种风速等级对应的脉动风速的模拟。再采用Newmark-β直接积分并结合修正的Newton-Raphson迭代法求解桅杆结构在模拟平均风和脉动风荷载共同作用下时域内的动力响应。
     桅杆结构拉耳焊接节点的焊接过程复杂,焊接残余应力对结构的疲劳性能有着重要影响。然而目前无法对实际工程中的焊件测定其焊接残余应力,因此采用有限元数值模拟分析焊接节点的焊接残余应力场分布情况是进行疲劳分析的基础。本文采用ANSYS有限元分析软件,基于热弹塑性力学理论,开发了一套完整的焊接有限元程序,并对桅杆结构拉耳焊接节点的焊接过程成功实现了三维动态模拟,分析了各个时刻的温度场和最终的焊接残余应力场,并模拟消除焊接残余应力技术,进行了各个消除残余应力比例后的应力场结果。
     本文将焊接节点的焊接残余应力考虑在内,提出了一套完整的桅杆拉耳子结构焊接节点的动应力场多尺度有限元分析方法。该方法首先采用ANSYS有限元软件模拟出桅杆结构整体尺度的纤绳动应力响应时程,然后对需要进行疲劳分析的焊接节点施加两端固结的边界条件;接着建立焊接节点的精细实体有限元模型,将焊接残余应力当作初始应力,施加上步得到的力学和位移边界条件进行小尺度的动应力分析,得到焊接节点局部细节处的应力应变状态,最后由Von-mise等效应力准则确定应力最大的节点为疲劳危险点,结果表明拉耳子结构焊接节点的疲劳危险点出现在焊缝的焊趾处。
     本文采用基于应变的多轴疲劳的临界面方法,计算了桅杆拉耳子结构焊接节点的裂纹萌生寿命。首先分析疲劳危险点的应变时程确定临界面的位置,然后采用循环计数方法提取临界面上的正、剪应变循环,并将其合成统一的多轴疲劳损伤参量,再根据是否考虑平均应力,分别采用Mason-coffin公式Morrow公式和Mason-Halford公式计算0°风向、12m/s风速等级的工况下500s内的多轴疲劳累积损伤,发现平均应力对疲劳损伤的影响不可忽略,特别是对弹性阶段的影响比较大。最后考虑风速风向概率分布,利用Miner准则估算了消除40%残余应力的桅杆拉耳子结构的裂纹萌生寿命。
     考虑到焊接残余应力对焊接结构的疲劳强度有着很大的影响,高强度的残余拉应力对疲劳寿命有不利的影响,而残余压应力则对延长结构或构件的疲劳寿命有很好的效果。在焊接残余应力和外荷载的双重作用下,更容易产生疲劳失效。为了能定量的评定焊接残余应力对疲劳强度的影响,前人虽然提出力用平均应力的观点来考虑其对疲劳损伤的影响,但忽略了残余应力其实与材料的状态有关这一事实,于是本文提出将残余应力作为外荷载符合材料的疲劳破坏特性。为了能定量的评定焊接残余应力对桅杆拉耳子结构疲劳裂纹萌生寿命的影响程度,以标准高度处V(10)=12m/s风速等级为例,将不同风向下未消除、消除20%、消除40%、消除60%、消除80%和不考虑残余应力的六种情况下500s内的平均应力结果,以及用不同寿命公式计算出来的不同消残比例下的500s内的疲劳累积损伤进行对比分析,最后考虑风速风向概率分布,对比计算了六种消残比例的疲劳裂纹萌生寿命。
A guyed mast, which is slender, tall and flexible, is widely used in communications engineering structures. The guyed mast is quite sensitive to the wind loading because of its tallness and flexibility, and the collapse of guyed masts due to wind-induced damages has been reported from time to time. The collapse of a guyed mast is often caused by the fatigue damage of the joint welds at the earplates, which connects the mast with the cables. The crack was first occur at the earplate joint which connecting the tow rope and the shaft under wind loads. The welding methods were used to connecting the ear plate and the mast shaft.The welding residual stresses are inevitable in the welds at earplate joints. Although certain measures can be taken to eliminate part of the welding residual stressses, different ways to eliminate residual stresses proportion are in different inconsistency, and hardly to eradicate,.Hence in the dual role of the welding residual stresses and disturbance wind load,are more likely to initiate crack. The study that considers the effects of the welding residual stresses in assessing the crack initiation cumulative fatigue damage assessment and fatigue life calculation at welds does not appear to be reported hitherto in the open literature.
     The guyed mast's overall wind-induced response are related with the distribution of the tow rope、wind load and so on. Different wind direction、different wind load strength may lead to different dynamic response. Considering the nonlinearities of the guyed mast and the mechanical characteristics of the cable, the Link10element was used to simulate the cables, while the mast was simulated using equivalent space Beam44elements.Fluctuating wind speed along the height of the guyed mast have been simulated with harmonic wave superpose method improving by introducing FFT algorithm. A nonlinear dynamic model has been established and the nonlinear dynamic response has been analyzed via Newmark-β direct integration combining to Newton-Raphson integration, so we can get the stress response time history of cable.
     The welding process of the welded joints is very complex, and the welding residual stress would influence the fatigue performances of the guyed mast structure. However, there is no method to determinate the welding residual stresses for practical engineering welded structures. Therefore, it is reasonable to research it with the finite element numerical simulation method. A commercial finite element package ANSYS is used to carry out a coupled thermodynamic and thermal elastic-plastic analysis to obtain the welding residual stresses. In this paper, the3D dynamic simulation for welding process is accomplished, and the finite element analysis of temperature fields and stress fields for joints of guyed mast earplate are finished. At the same time, the technology of eliminating the welding residual stress was also being used to simulate the welding residual stress results of different eliminating proportion.
     The paper introduces a complete dynamic stress finite element analysis for the welded joint of guyed mast earplate with multi-scale method, which included the effects of the welding residual stress for the first time. The first step of the method is to get the dynamic stress response of the large scale of the structure, and imposing fixed end constraints boundary conditions at both end of the shift two ends; the second step is to establish the refined solid finite element model of the joint, taking the welding residual stress as the initial stress, and the boundary condition are applied to the joint with small scale dynamic analysis; the next step is to analysis the strain and stress histories for each critical joint are obtained from the dynamic analysis; the von-Mises equivalent stress at each critical joint is calculated and the joint with the maximum stress amplitude is considered as the most critical one. The result for calculation of the joint of guyed mast earplate show that the fatigue critical point is near the weld toe.
     This paper presents a computational method together with a critical damage plane method for detecting fatigue crack initiations at the welded joints of guyed mast structures. This method consists of three steps. Firstly, the critical damage plane is determined. Secondly, the shear and normal strains are used to formulate the multiaxial fatigue damage parameter. Lastly, the fatigue damage of the joint is assessed by using the multiaxial fatigue life prediction model of Mason-coffin formula、Morrow formula and Mason-Halford formula to caclulate the multiaxial fatigue damage in the load case of0°wind direction and12m/s wind speed level. The results show that the role of mean stress on fatigue damage can not be ignored, especially for elastic stage fatigue damage. Finally, consider the probability distribution of wind speed and direction, the Miner guidelines was used to estimate the earplate sub-structure of guyed mast's fatigue crack initiation life.
     The high strength residual tensile stress can reduce fatigue life, whereas the residual compressive stress have a positive effect on fatigue life of the structure and/or the components when takeing the effect of residual welding stress into account.Under the double action of load and welding residual stress during the service, the structure and/or the components could lightly developed to fatigue failure.Many methods and various standpoints takes the mean stress into consideration to quantificational evaluate the influence of welding residual stress to fatigue strength,but the correlation between residual stress and material status is ignored. In this paper the study that take residual stressas as the load apply to structure to evaluate fatigue life corresponds the characteristics of fatigue failure rationally.To evaluate the influence of welding residual stress to crack initiation life of the earplate substructure of guyed mast, comparative analysis of fatigue accumulation damage is conducted in different working conditions.Take the standard height with V(10)=12m/s as a example, the mean stress under different wind angles with six cases that no residual stress eliminated、eliminated20%、40%、60%、80%and without regard to residual stress is calculated, meanwhile, the fatigue accumulation damage is calculated on the different life calculation formula. Finally, consider the probability distribution of wind speed and direction, the Miner guidelines was used to estimate the earplate sub-structure of guyed mast's fatigue crack initiation life under six different welding residual stress eliminating proportion.
引文
[1]G.Solari. Along wind response estimation:closed-form solution. Journal of structures Division,ASCE,1982.108:225-244.
    [2]张其林,U·Peil欧美塔桅钢结构研究状况—-IASS塔桅工作组95会议简介.特种结构,1996.13(2):58-63.
    [3]K.I.Beitin. Dynamic response of guyed towers to wind loading, in Americal Society Civil Engnieering Annual and Environment Meeting.1969. Chiago.
    [4]M.Shears. Static and dynamic behaviour of guyed masts:1968.
    [5]H.M.Irvine. Cable structures. Massachusets and London:Cambridge,1981.
    [6]U.Peil,H.Nolle. Guyed masts under wind load. Journal of Wind Engineering and Industrial Aerodynamics,1992.41-44:2129-2140.
    [7]U.peil,H.Nolle. Measurement of wind load and response of a guyed mast, in Proceeding of the European Conference on Structure Dynamics.1991.
    [8]U.peil, H.Nolle,Z.H.Wang. Nonlinear dynamic behaviour of guys and guyed masts under turbulent wind load. Journal of International Association for Shell and Spatial Structures, 1996.37:77-88.
    (9]上肇民,王之宏,颜明忠.桅杆结构.北京:科学出版社,2001.
    [10]欧阳可庆,岳昌智.空间桁架法计算桅杆的整体稳定.同济大学学报(自然科学版),1989.17(3):409-414.
    [11]张其林,欧阳可庆.桅杆结构非线性稳定与振动的杆索有限元分析法.土木工程学报,1993.26(5):31-42.
    [12]颜明忠,王肇民.桅杆结构横风向振动响应研究.建筑结构学报,1996,17(3):1-8
    [13]李树逊,王肇民.桅杆结构在模拟风荷载下的非线性动力分析.建筑结构,1999(9):44-46.
    [14]何艳丽.桅杆结构的动力稳定性分析:[博士学位论文].上海:同济大学,1999.
    [15]工仲刚,邓洪洲,工肇民.桅杆风振试验研究[J].工程力学,2003,20(5):42-47.
    [16]Imre.Kovacs. Analytical aerodynamic investigation of cable-stayed helgeland bridge. Journal of Structure Engineering,1992.118(1).
    [17]M.Grigoriu. Simulation of non-stationary Gaussian processes by random trigonometric polynomials. Journal of Engineering Mechanics,1993.119(2).
    [18]刘春华,项海帆,顾明.多个互相关随机过程的计算机模拟及其应用.同济大学学报(自 然科学版),1994.22(增):61-68.
    [19]D Rosenthal.Mathematical Theory of Heat Distrbution during Welding and Cutting[J].Welding Journal,1941,20(5):220.
    [20]H.H.雷卡林.焊接热过程计算[M].徐碧宇,庄鸿寿译.北京:机械工程出版社,1958.
    [21]C M Adams. Cooling Rate and Peak Temperature in Fusion Welding[J].Welding Journal, 1958,37(7):34.
    [22]稻垣道夫.熔接加工(机械工作法)[M].诚文堂新光社,1971.
    [23]Wilson E L, Nickle R E. Application of finite element method to the teat conduct analysis[J], Neuclear engineering and design,1966(10):4.
    [24]Paley Z,Hibbert P D.Computation of Temperation in Actual Weld Designs[J].Welding Journal 1975,54(11):385-392.
    [25]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [26]Sonti N,Amateau M F. Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys[J].Numerical Heat Transfer Part A,1989, (16).351-378.
    [27]K Masubuchi. Prediction and control of residual stress in welded structures[J].Theoretical Prediction in Joining andwelding,1996:71-88.
    [28]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析[J].机械工程学报,1996,32(2):34-39.
    [29]唐慕尧.单面焊时终端裂纹的研究[J].焊接学报,1987,7(3):123-132.
    [30]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算.焊接学报,1983,3:139-148
    [31]陈楚,汪建华,杨洪庆.水下焊接冷却特性的有限元分析.海洋工程,1983,4:34-38
    [32]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析.机械工程学报,1996,32(2):34-39
    [33]段权,张新国,李志军,程光旭.焊接热循环非线性温度场分析及热模拟研究.西安交通大学学报,2001,35(4):411-415
    [34]Cao Z. Metallo-Thermo-Mechanics application to phase transformation incorporated processes[C].Proc Theoretical Prediction in Joining and Welding. Osaka,Japan.2001.
    [35]Wen S W, HILTON P, Farrugia D C J. Modelling of a submerged Arc Welding Process[J]Journal of Materials Processing Technology,2001,119:203-209.
    [36]John Goldak. A new finite model for welding heat source[J].Metallurgual Transactions,1984, 15B (2):299-305.
    [37]孟庆国,方洪渊,徐文立,姬书得.考虑金属逐步填充的多道焊温度场数值模拟[J].焊接学报,2004,5:53-59.
    [38]董志波,魏艳红,刘仁培,董祖珏.不锈钢焊接温度场的三维数值模拟[J].焊接学报,2004,2:9-15.
    [39]汪建华,钟小敏,戚新海.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16(3):140- 145.
    [40]Ueda Y, Nakacho K, Yuan M G. Application of FEM to Theoretical Analysis,Measurement and Prediction of Welding Residual Stresses[J].Transaction of JWRI,1991,20(2):97-107.
    [41]Murakawa H. Computational Welding Mechanics and its Interface with Industrial Application[J]. International Symposium on Theoretical Predication in Joining and Welding,1996,11:231-245.
    [42]Murakawa H. Theoretical Prediction of Residual Stress in Welded Structures[J], Welding Research Abroad,1998,44(6-7):2-7.
    [43]Lindgren L E. Numerical modelling of welding[J]. MethodsAppl Mech Engrg,2006 (195):6710-6736.
    [44]Bachorski A, Painter M J, Smailes A J.Finite Element Prediction of Distortion During Gas Metal Arc Welding Using the Shrinkage Volume Approach[J].Journal of Materials Processing Technology,1999,60(8):405-409.
    [45]Inoue T. Metallo-Thermo-Mechanics Application to Phase Transformation Incorporated Processes[J].Proc.Theoretical Prediction in Jioning and Welding.1996,11:89-112.
    [46]Han, Lee S T, Shin B. Residual stress relaxation of welded steel components under cyclic load[J]. Mater Technol,2002,73:414-420.
    [47]汪建华,戚新海,钟小敏等.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65.
    [48]董俊慧,霍立兴,张玉凤.低碳钢管道焊接残余应力有限元分析[J].焊接,2000,12:11-15.
    [49]金晓军,霍立兴,张玉凤,白秉仁,李晓崴,曹军,双相不锈钢管道全位置焊接残余应力三维有限元数值模拟[J].焊接学报,2004(02):52-56.
    [50]张国栋,周昌玉.管道对接间断焊与连续焊的有限元分析[J].焊接学报,2006(12):85-92.
    [51]张建勋,刘川,张林杰.焊接非线性大梯度应力变形的高效计算技术[J].焊接学报,2009(06):107-112.
    [52]鹿安理,史清宇,赵海燕等.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程,2001,12(2):183-186.
    [53]鹿安理,史清宇,赵海燕等.焊接过程仿真领域的若干关键技术问题及其初步研究[J].中国机械工程,2000,11(2):201-205.
    [54]陈立功等.建筑钢结构的焊接残余应力与消除方法探索.第十一次全国焊接会议论文集,第2册,2005:35-38
    [55]孙先锋等.焊接残余应力的控制与消除.2008年全国建筑钢结构行业大会论文集.
    [56]Suresh S材料的疲劳(第2版)[M].北京:国防工业出版社,1999.
    [57]Hodgkonson E A. Report of the Commissioners Appointed to Enquire into the Application of Iron to Railway Structures[J]. London:His Majesty's Stationery Office,1849.
    [58]Wohler A.Versuche u ber die Festigkeit der Eisenbahnwagenachsen[J].Zeitschrift fu r Bauwesen,1860,Engineering 4:160-161.
    [59]Fairbairn W. Experments to determine the effect of impact、vibratory actioonand long continued changes of load on wrought iron girders[J].Philosophical Transactions of the Royal Society,1864(154):311-312.
    [60]Braithwaite F. On the fatigue and consequent fracture of metals[J].Proceedings of the Institution of Civil Engineers,1854(13):463-475.
    [61]Goodman J. Mechanics Applied to Engineering[M].London:Longmans Green,1899.
    [62]Ewing J A,Hunphrey J C.The fracture of metals under rapid alterations of stress[J]. Philosophical Transactions of the Royal Society,1903(A200):241-250.
    [63]Basquin O H. The exponential law of endueance tests[J].Proceedings of the American Society for Testing and Materials,1910(10):625-630.
    [64]Palmgren A. Die Lebensdauer von Kugellagern[J]. Zeitschrift DES Vereins Deutscher Ingenieure,1924(68):339-341.
    [65]Miner M A.Cumulative damage in fatigue[J] Journal of applied Mechanics,1945 (12): 159-164
    [66]Manson S S,Coffin L F. Experimental support for generalized equation predicting low cycle fatigue[J].Trans Am SocMech Eng,1962,84:533-537.
    [67]Coffin L F. A study of effects of cyclic thermal stresses on a ductile metal[J].Transactions of the American Society of Mechanical Engineers,1954(76):937-650.
    [68]Weibull W A. Statistical distribution function of wide applicability[J] Journal of Applied Mechanics,1951,7(3):293-297.
    [69]Gough H J, Hanson D. The behaviour of metals subjected to repeated stresses[J].Proceedings of the Royal Society.1923(104):535-65.
    [70]Morrow J D. Fatigue Design Handbook-Advances in Engineering[M].Warrendale:Society of Automotive Enginees,1965.
    [71]Findley W N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending[J].ASME Journal of Engineering for Industry,1959, 81:301-306.
    [72]Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress-strain conditions[J]. Proceedings of the Institution of Mechanical Engineers,1973(187):65-73
    [73]Griffith A A.The pehnomenon of reputure and flow in solids[J].Transactions of the Royal Society,1921(A221):163-197.
    [74]Irwin G R. Aaslysis of stresses and strains near the end of a crack travresing a plate[J].Journal of applied mechanics,1957(24):361-364.
    [75]Agerskov H. Fatigue in Steel Structures under Random Loading[J] Journal of Constructional Steel Research,2000,53:283-305.
    [76]Gurney TR. Fatigue of welded structures. Syndics of the Cambridge University Press; 1968.
    [77]Frank KH, Fisher JW. Fatigue strength of fillet welded cruciform joints. In:Proceedings of the ASCE, J Struct Div, ST9,1979. p.1727-40.
    [78]Singh PJ, Guhab B, Acharb DRG. Fatigue life improvement of AISI 304L cruciform welded joints by cryogenic treatment. Eng Fail Anal 2003;10(1):1-12.
    [79]Balasubramanian V, Guha B. Establishing criteria for root and toe cracking of load carrying cruciform joints of pressure vessel grade steel. Eng Fail Anal 2004;11:967-74.
    [80][Kainuma S, Mori T. A fatigue strength evaluation method for loadcarrying fillet welded cruciform joints. Int J Fatigue 2006;28(8):864-72.
    [81]Andersen JU, Brandstrup RD, Sorensen JD, Tychsen J. Fatigue analysis of load-carrying fillet welds. J Offshore Mech Arct Eng 2006; 128(1):65-74.
    [82]Maddox SJ. Fatigue strength of welded structures. Abington Publishing; 1991.
    [83]NIRM Fatigue Data Sheet, No.18:Data sheets on fatigue properties for load-carrying cruciform welded joints of SM50B rolled steel for welded structure (Effect of specimen size), National Research Institute for Metals,1980.
    [84]AWS.Structural Welding Code-Steel[S].ANSI/AWS D1.1-86, American welding society, 1986.
    [85]BSI.Fatigue Design and Assessment of Steel Structures[S].BS7608,London:British Standards Institution,1993.
    [86]余波.基于实测应变的正交异性钢桥面板构造细部疲劳寿命评估[D].南京:东南大学,2009
    [87]方兴,白玲,曾志斌.热点应力法在钢桥构件疲劳评定中的应用方法及实例[J].铁道建筑,2010(9):31-34.
    [88]唐建鹏,刘俊,庄志鹏.LNG船疲劳强度评估及低温影响的讨论[J].船海工程,2009.8,38(4):20-23.
    [89]霍立兴,焊接结构工程强度[M],北京:机械工业出版社,1995
    [90]田锡唐,焊接结构[M],北京:机械工业出版社,1982
    [91]管德清,焊接结构疲劳断裂与寿命预测[M].长沙:湖南大学出版社,1996,1-136.
    [92]Y.X.Zhao,Statistical evolution of small fatigue crack in 1Cr18Ni9Ti weld metal [J],Theoretical and Applied Fracture Mechanics,1999,32:55-64
    [93]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000,358—363
    [94]Fisher. Fracture and Fatigue in Bridges.1985
    [95]HP.Lieurade, I.Huther. Fatigue Strength Improvement Solutions For welded Structures and Components.The 54thinternational welding annual assembly. ⅡW.DOC.XⅢ-1904-01
    [96]K.Padilla,Fatigue behavior of a 4140 steel coated with a NiMoAl deposit applied by HVOF thermal spray[J],Surface and coatings technology,2002,150:151-162.
    [97]王文先,低相变点焊条及其在改善焊接接头疲劳性能中的应用研究,[博士学位论文],天津;天津大学,2002
    [98]Champoux RL, Underwood JH, Kapp JA, editors. Analytical and experimental methods for residual stress effects in fatigue. ASTM STP 1004,1988.
    [99]Glinka G. Advances in surface treatments. In:Kiku-Lari A, editor. Pergamon Press, 1986:413-54.
    [100]Webster GA. In:Lieurade HP, editor. Fatigue and stress. Gournay-sur-Marne (France): IITT International,1989:9-20.
    [101]Suresh S. Fatigue of materials. Cambridge University Press,1991.
    [102]Newman JC. Eng Mater Tech 1995;117:433-9.
    [103]Almer JD, Cohen JB, Winholtz RA. Metall Mater Trans 1998;29A:2127-36.
    [104]Donald JK. Naval Res Rev 1998;50(4):46-54.
    [105]Sadananda K, Vasudevan AK. Fracture mechanics. In:Erdogen F, editor. ASTM STP 1220, vol.25. American Society for Testing and Materials, Philadelphia,1995, pp.484-500.
    [106]Sadananda K, Vasudevan AK. Naval Res Rev 1998;50(4).
    [107]Moshier MA, Hillberry BM. Fatigue Fract Eng Mater Struct 1999;22(2):519-26.
    [108]Wang H, Buchholz F-G, Richard HA, Jagg S, Scholtes B. Comput Mater Sci 1999;16:104-12.
    [109]Almer JD, Cohen JB, Moran B. Mater Sci Eng 2000;A284:268-79.
    [110]Webster GA. ECRS-5, Holland, Sept 1999. Materials Science Forum,347-349,1-9, Trans Tech Publ, Switzerland,2000.
    [111]Webster GA,Ezeilo AN. Phys B 1997;234-236:949-55.
    [112]Tauchert TR, Webster GA, Reed RC. In:Crespo da Silva MRM, Mazzilli CEN, editors. Mechanics Pan-America 1993. Appl Mech Rev 1993;46(Part 2):S12-S20.
    [113]Tauchert TR, Webster GA, Ezeilo A. In:Godoy LA, Idelsohn SR, Laura PAA, Mook DT, editors. Applied mechanics in the Americas, vol. Ⅲ. Santa Fe (Argentina):AAM and AMCA, 1995:185-9.
    [114]沈世钊,徐崇宝,赵臣.悬索结构设计.北京:中国建筑工业出版社,1997
    [115]张其林,欧阳可庆.纤绳初应力对桅杆受力性能的影响.特种结构,1992(2).
    [116]郝文化ANSYS土木工程应用实例.北京:中国水利水电出版社,2005.
    [117]张相庭.结构风压和风振计算.同济大学出版社,1985.
    [118]马星,邓洪洲,王肇民,桅杆结构振动特性简化计算,建筑结构.2004.第五期
    [119]蒋涛,桅杆结构风振系数的计算方法,同济大学硕士学位论文,1999
    [120]赵臣,张小刚,吕伟平,具有空间相关性风场的计算机模拟,空间结构,1996,第二期
    [121]袁波,应惠清,徐佳炜.基于线性滤波法的脉动风速模拟及其Matlab程序的实现.结构工程师,2007.23(04):55-61.
    [122]王吉民,李琳.脉动风的计算机模拟.浙江科技学院学报,2005.17(01):34-37.
    [123]鲁丽君.桅杆结构纤绳连接拉耳风致疲劳裂纹萌生与扩展寿命预测,武汉理工大学博士学位论文,2008
    [124]张相庭.结构风工程.北京:中国建筑工业出版社,2006.
    [125]王仲刚.桅杆结构风振响应及混沌振动研究:[博士学位论文].上海:同济大学,2001.
    [126]徐志宏.桅杆结构焊接节点风致疲劳分析:[硕士学位论文].上海:同济大学,2005.
    [127]程华.基于时频分布的桅杆结构损伤识别方法及试验研究:[博士学位论文].重庆:重庆大学,2005.
    [128]张相庭,工志培,黄本才.结构振动力学.1994,同济大学出版社:上海.
    [129]沈祖炎,陈扬骥,陈以一.钢结构基本原理[M].北京:中国建筑工业出版社,2005:212-245.
    [130]陈绍蕃,顾强.钢结构[M].北京:中国建筑出版社,2003.
    [131]Andersen L F. Residual stresses and deformations in steel structures[D].Denmark University of Technology,2000.12.
    [132]宋天民.焊接残余应力的产生和消除[M].北京:中国石化出版社,2010.
    [133]陈卿.带筋板的铝合金筒形结构残余应力场分析[D].天津:天津大学,2007.
    [134]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003:122-124.
    [135]D.拉达伊.焊接热效应[M].北京:机械工业出版社,1997.
    [136]Krutz G W, Segerlind L J. Finite Element Analysis of Welded Structures[J].SAE760694.
    [137]Wilkening W W, Snow J L.Analysis of welding-induced residual stresses[J], Computers &Structures,1993(47):86-92.
    [138]陈立功等.建筑钢结构的焊接残余应力与消除方法探索[C].第十一次全国焊接会议论文集,2005(2):35-38.
    [139]孙先锋等.焊接残余应力的控制与消除[C].全国建筑钢结构行业大会论文集,2008.
    [140]张彦华.焊接力学与结构完整性原理[M].北京:北京航空航天大学出版社,2007.
    [141]薛忠明,杨广臣,张彦华.焊接温度场与力学场模拟的研究进展[J].中国机械工 程,2006,13(11):976-981.
    [142]Brown S, Song H. Finite simulation of welding of large structures[J] Journal of Engineering for Industry,1992(114):441-451.
    [143]李景湧.有限元法(第一版)[M].北京:北京邮电大学出版社,1999.
    [144]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [145]鹿安理等.焊接过程仿真领域的若干关键问题及其初步研究[J].中国机械工程,2002.2,11(1):214-219.
    [146]张文铖.焊接传热学[M].北京:机械工业出版社,1989.
    [147]上田辛雄,村川英一,麻宁绪.焊接变形和焊接残余应力的数值计算方法与程序[M].成都:四川大学出版社,2008.
    [148]CHAI Li-he.Recent progress of Multi-scale Science[J]. Progress in Chemistry,2005,17(2): 186-191.
    [149]李兆霞,孙正华,郭力,陈鸿天,余洋.结构损伤一致多尺度模拟和分析方法[J].东南大学学报(自然科学版),2007,37(2):251-260.
    [150]孙正华,李兆霞,陈鸿天.大型土木结构的结构行为一致多尺度模拟—模拟方法与策略[J].计算力学学报,2009.12,26(6):886-892.
    [151]张正华,毕丹,李兆霞.基于结构多尺度模拟和分析的斜拉桥应变监测传感器优化布置研究[J].工程力学,2009.1,26(1):142-148.
    [152]Dewolf J T, Lindsay T R, CulmoM P. Fatigue evaluations in steel bridges using field monitoring equipment[C].Proceedings of the 1997 15th Structural Congress. Portland, USA,1997:26-30.
    [153]Chong K P. NSF research inmechanics, computational& other areas [C].Proc of Int Conf on Fracture Mechanics andApplication,Shanghai China,2005:323-332.
    [154]OSKAY C, FISH J. Multi-scale modeling of fatigue for ductile materials[J].Int J of Multiscale Computational Engineering,2004,2(3):1-30.
    [155]MICHOPOULOS J G, FARHAT C, FISH J. Modeling and simulation of multiphysics systems [J].Transactions of ASME,2005,5:198-204.
    [156]SIH G C, Vu-Khanh T, Materials for Safety and Health-Mesoscopic and Multiscale Consideration in Modern Science and Engineering[C].Proc. of the 7th Int. Conf. On Mesomechanics[C], Montreal. Canada,2005.8:1-4.
    [157]曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技研究与发展,2002,24(6):23-29.
    [158]刘晓奇,曹礼群,崔俊芝.复合材料弹性结构的高精度多尺度算法与数值模拟[J].计算数学,2001,23(3):369-384.
    [159]吴佰建,李兆霞,汤可可.大型土木结构多尺度模拟与损伤分析—从材料多尺度力学到结 构多尺度力学[J].力学进展,2007.8,37(3):321-336.
    [160]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [161]王永,孙伟.多轴低周疲劳寿命预测方法研究[J].兰州工业高等专科学校学报,2008.6,15(2):13-16.
    [162]张巧丽,陈旭.多轴非比例载荷下低周疲劳寿命估算方法[J].机械强度,2004,26(1):076-079.
    [163]付德龙,张莉,程靳.多轴非比例加载低周疲劳寿命预测方法的研究[J].应用力学学报,2006.6,23(2):218-222.
    [164]尚德广,王大康,孙国芹,蔡能.多轴疲劳裂纹扩展行为研究[J].机械强度,2004,26(1):423-427.
    [165]Kanazawa K, Miller K J, Brown M W. Low-cycle Fatigue under Out-of-phase Loading Conditions[J].Transactions of ASME:J of Enging Mater and Techno,1997(1):156-164.
    [166]刘灵灵,聂辉.多轴低周非比例加载下疲劳寿命预测方法综述[J].华北科技学院学报,2009.4,6(2):60-63.
    [167]Chu C C. Fatigue damage calculation using the critical plane approach[J]. J Eng Mater Tech ASME 1995,117:41-49.
    [168]尚德广,王俊德.多轴疲劳强度[M].北京:科学出版社,2007
    [169]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [170]张安哥,朱九成,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,2005.
    [171]Jordan E H, Brown W M, MillerK J. Fatigue under severe nonproportional loading[J]. ASTM,1985(853):569-585.
    [172]徐撷.疲劳强度[M].北京:高等教育出版社,1988.
    [173]J. Morrow, Fatigue Design Handbook, Advances in Engineering, Society of Automotive Engineers, Warrendale, PA,1968, pp.21-29.
    [174]S.S. Manson, GR. Halford, Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage, Int. J. Fract.17 (2) (1981) 169-172.
    [175]何波,胡宗武,商伟军等,残余应力对对接接头疲劳性能的影响,机械强度,V61.20,No.3,1998(9)
    [176]H.P. Lieurade. Efects of residual stresses on welded components. Le Soudage dansle Monde. V61.26,No.7/8,pp.159-187,1988.
    [177]Ohta, Y. Maeda, T. Mawari, S. Nishijima, H.Nakamura. Fatigue strength evaluation of welded joints considering high tensiler esidual stresses. DocX Ⅲ-1198-86deP ⅡS/of the ⅡW.
    [178]S.J. M addox, Influence of tensile residual stresses on the fatigue behavior of welded joints in stee s.A STM STP7 76,pp.63-96,1982.
    [179]何家文、胡奈赛、张定锉,残余应力集中及其对疲劳极限和短裂纹扩展的影响,金属学报,Vol.28,No.9,1992.
    [180]文保平、张镇生、阂行,非均匀应力场对构件疲劳强度的影响-应力梯度效应,机械强度,Vol.12,No.1,1990
    [181]胡奈赛、张定锉、何家文,残余应力对材料疲劳性能影响的某些进展,机械强度,Vol.12,No.1,1990.
    [182]N.SkalliandF.Flavenot.P roc.6t hIn t.C onf.on Fracture(1984)
    [183]D. Couratin et al. Residual stress in science and technology. Garmisch-Par-tenkirchen (FRG)(1986)
    [184]K.li.Kloosetal.Z.Werkstofftech.,12 (1981)359.
    [185]H.O.Fu chs,R.L.St ephens. Metal fatigue in egineering.JohnWiley& Sons(1980).
    [186]Maddox5.J.Fatigue Strength of welded Structures(second edition).Cambridge, UK:Abington Publishing,1991
    [187]P.Starketet al.Fatigue of Engineering Materials and Structure,Vol.1 (1979)3 19.
    [188]Bergstrom.Proc.2nd Int.Conf.on Shot Peening(1984)241.
    [189]D. Couratin et al. Residual stress in science and technology. Garmisch-Par-tenkirchen(FRG) (1986)7 93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700