用户名: 密码: 验证码:
高通量基因测序图像处理与数据分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高通量基因测序技术的研究在我国刚刚起步,具有非常重要的现实迫切性。目前,国外公司正凭借其基因测序技术和测序设备的先发优势,利用基因资源的唯一性,抢先申请基因专利,谋求垄断未来全球的基因产业。“工欲善其事必先利其器”,没有现代的基因测序技术,就没有现代的生物技术。未来的生物医药、生物能源、个体化医疗等产业都将建立在现代的基因测序技术基础上,尤其是基因诊断和基因治疗为特征的个体化医疗技术。
     在高通量基因测序技术中,获得的原始图像是由含有碱基位信息的荧光点组成,通过图像处理和数据分析,可以得到所测基因序列中的碱基位。因此,本论文的主要研究内容可以为两个部分,即高通量基因测序图像处理和其相关数据的分析。高通量基因测序图像处理主要是对所得到的测序图像进行去噪和锐化处理,分割出碱基基团荧光点,建立含有碱基位信息的荧光强度数据文件和噪声数据文件。数据分析主要是对所得到的荧光强度数据进行信号解耦,碱基相位校正,再结合噪声数据进行碱基位识别和质量评估。本论文主要的研究内容和成果有:
     1)采用小波分析的方法,提出了基于小波系数相关阈值的图像去噪算法。基于小波系数相关阈值的图像去噪算法是根据信号的小波系数具有强相关性,噪声的小波系数是弱相关的或不相关的特点,通过构造小波系数的相关函数,确定相关阈值的方法实现图像的去噪。
     2)在图像信息熵和水平集分割方法的研究基础上,提出了结合图像信息熵的水平集C-V模型分割算法。本文提出的图像分割算法是在水平集图像分割方法C-V模型算法的研究基础上,引入图像信息熵算法,图像信息熵的研究是建立待分割图像目标区域的信息熵统计特征,为目标搜索提供方向性,提高水平集C-V分割模型的抗干扰能力和自适应性,使分割结果更准确,分割效率更高。
     3)提出了基于相关分析的碱基荧光基团信号解耦算法。本论文提出的基于相关分析的碱基荧光基团信号解耦算法,是根据所得荧光强度数据,依据相关分析方法,构造出交叉影响矩阵,交叉影响矩阵构造的方法和有关理论不仅是建立在分析纵向的、一维时间序列信号基础上,也是建立在横向的空间信号基础上,所构造出的交叉影响矩阵进一步进行校正,校正矩阵的因子是通过单样本柯尔莫哥洛夫—斯米诺夫检验方法得到。
     4)在回归分析和markov过程理论研究基础上,提出了碱基相位问题的校正算法。本论文根据高通量基因测序合成反应中,某个待测碱基序列出现的不管是相位“超前”还是“延迟”问题,其在荧光强度上表现为最强,即最大荧光强度值出现在同一循环中现象,提出了碱基相位问题的校正算法,算法的核心是采用回归分析的方法,并结合Markov过程理论,得到实现相位问题校正的概率矩阵。
     5)提出了基于最大后验概率的碱基识别算法。碱基位识别是将可信度最高的碱基位从处理后的荧光强度信号中识别出来,并按合成顺序组成基因序列片段。针对碱基识别问题,本论文提出了基于最大后验概率的碱基识别算法,该算法的核心是在一个降一维的三维超高斯概率球面上求积分的过程。
     6)结合噪声研究,提出了一种碱基质量评估方法。碱基位质量评估方法用来评估碱基位识别结果的质量,本论文在碱基位噪声研究的基础上,通过蒙特卡洛抽样法确定低信噪比碱基位的概率,并给出评估碱基位质量定义。
In China, the high-throughput genome sequencing research is just now starting, which is allimportant and exigent in these days. At present, the foreign corporations are utilizing their superiority in the sequencing technology and equipment, putting in for the genome patents preemptively in case of the uniqueness of the genome, bucking for forestalling the global genome industry in the future.‘Sharpen the knife before cutting the wood’, and no modern genome sequencing technique, no modern biology technique. The tomorrow biology medicine, biology energy source, individualized medical treatment, etc. will be built on the base of the morden genome sequencing, especially the individualized medical treatment with the character of genome diagnosis and therapy.
     In the high-throughput genome sequencing technology, the original image consists of fluorescent spots with base information, and we can get the base of the genome by image processing and data analysis. The paper mainly contains two parts, high-throughput genome sequencing image processing and its relative data analysis. The image processing is mainly denoising and sharpening of the sequencing images, and segmenting fluorescent spots, establishing the fluorescence intensity data file with base information and its noise data file. The data analysis is mainly decoupling the signal of the fluorescence intensity, phasing emendation, base calling and its quality evaluating. The following is the main content of the study.
     1) Adopting wavelet method and putting forward one kind of image denoising arithmetic based on the threshold of the relative wavelet coefficient. The image denoising arithmetic is based on the signal coefficient has strong relativity and the noise has weak or no relativity, constructing the relative function of wavelet coefficient, getting the relative threshold to carry out the image denoising.
     2) Based on the research of the image entropy and level set segmentation, putting forward one king of C-V model segmentation with image entropy. The segmentation arithmetic is based on the research of C-V model of level set segmentation method, introducing image entropy arithmetic, and the research of the entropy is building up the statistical character of the segmenting region, providing the direction of searching the target, improving the anti-jamming ability and adaptivity of the C-V model, making the segment result more accurate and the efficiency higher.
     3) Putting forward one kind of the base fluorescent signal decoupling arithmetic based on the correlation analysis. The decoupling arithmetic is based on the fluorescence intensity data, using the correlation analysis method, constructing the cross-talk matrix, and the method to construct the cross-talk matrix is not only from the analysis of one dimension tme serial sigal but also from space sigal, and the matrix also needs further emendation, the factor of the matrix from one sample kolmogorov-smirnov test.
     4) Putting forward one kind of base phasing emendation arithmetic based on regression analysis and markov process. In high-throughput genome sequencing synthesizing reaction, when one base fragment to sequence has phasing overtaking or delaying, its fluorescence intensity will be highest, namely it has the highest intensity in the same cycle. According to this fact, the emendation arithmetic is mainly to use the regression analysis and markov process, and to seek for the probability matrix of phasing emendation.
     5) Putting forward one kind of base calling arithmetic based on maximum a posteriori. Base calling is to tell the base with the highest reliability from dealed fluorescence intensity signal, and to form the genome fragment by the synthesizing order. The base calling arithmetic of the paper is based on maximum a posteriori, which is mainly a quadrature process on a three dimensions Gaussian probability hypersphere incase of one dimension reducing.
     6) Based on the research of the noise, putting forward one kind of base quality evaluating method. The base quality evaluating method is to judge the result of the base calling, and based on the research of the noise, the paper takes the use of Monto Carlo method to get the probability of the base with low signal noise ratio, and gives the definition of the base quality.
引文
[1] Luckey J A, Drossman H, Kostichka A J, et al. High speed DNA sequencing by capillary electrophoresis [J]. Nucleic Acids Research, 1990, 18(15):4417-4421
    [2] http://jgi.doe.gov/education/how/how_10.html
    [3] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12):5463-5467
    [4] Maxam A M, Gilbert W. A new method for sequencing DNA [J]. Proc Natl Acad Sci U S A, 1977, 74(2):560-564
    [5] http://nobelprize.org/nobel_prizes/chemistry/laureates/1980/
    [6] Kae H. Genome Projects: Uncovering the Blueprints of Biology. http: // www.scq.ubc.ca/ genome- projects-uncovering-the-blueprints-of-biology/
    [7]邱超,孙含丽,宋超. DNA测序技术发展历程及最新国际动态[J].硅谷,2008(17)
    [8] Gibson G, Muse S V. A Primer of Genomics Science [M]. Sunderland, MA, U.S.A : Sinauer Associates, Inc., 2009
    [9] http: //www.labbay.com/item/abi-3700
    [10] Smith L M, Sanders J Z, Kaiser R J, et al. Fluorescence detection in automated DNA sequence analysis [J]. Nature, 1986, 321(12)
    [11] Frans S D, Harris J M. Selection of analytical wavelengths for multicomponent spectrophotometric determinations [J]. Anal. Chem., 1985,57: 2680-2684
    [12] Smith, L M, Kaiser R J, Sanders J Z, et al. The synthesis and use of fluorescent oligonucleotides in DNA sequence analysis [J]. Methods Enzymol, 1987, 155: 260-301
    [13] Smith, L M, Hood L E. Mapping and sequencing the human genome: How to proceed [J]. BioTechnology, 1987, 5: 933-939
    [14] Wilson R K, Chen C, Avdalovic N,et al. Development of an automated procedure for fluorescent DNA sequencing [J]. Genomics, 1990, 6: 626-634
    [15] Luckey J.A, Drossman H, Kostichka A J, et al. High speed DNA sequencing by capillary electrophoresis [J]. Nucleic Acids Res., 1990, 18: 4417-4421
    [16] Hunkapiller T, Kaiser R J, Koop B F, et al. Large-scale and automated DNA sequence determination [J]. Science, 1991, 254: 59-67
    17 Garner H R, Armstrong B, Kramarsky D A. High throughput DNA preparation system [J]. Genet. Anal. Tech. Appl., 1992, 9: 134-139
    [18] Mathies R A, Huang X C. Capillary array electrophoresis: An approach to high-speed, high-throughput DNA sequencing [J]. Nature, 1992, 359: 167-168
    [19] Kostichka A J, Marchbanks M, Brumley Jr. R L, Drossman H, et al. High speed automated sequencing in ultrathin slab gels [J]. BioTechnology, 1992, 10: 78-81
    [20] Dear S, Staden R. A standard file format for data from DNA sequencing instruments [J]. J. DNA Sequence. Map., 1992, 3: 107-110
    [21] Smith L M. Automated DNA sequencing: A look into the future [J]. Cancer Detect. Prevent., 1993, 17: 283-288
    [22] Giddings M C, Brumley Jr. R L, Haker M, et al. An adaptive, object oriented strategy for base calling in DNA sequence analysis [J]. Nucleic Acids Res., 1993, 21: 4530-4540
    [23] Golden J B, Torgersen D, Tibbetts C. Pattern recognition for automated DNA sequencing: I. On-line signal conditioning and feature extraction for basecalling [C]. In Proceedings of the First International Conference on Intelligent Systems for Molecular Biology. Menlo Park, CA: AAAI Press, 1993: 136-144
    [24] Vohradsky′J, Pa′nek J. Quantitative analysis of gel electrophoretograms by image analysis and least squares modeling [J]. Electrophoresis, 1993, 14: 601-612
    [25] Ives J T, Gesteland R F, Stockham Jr T G. An automated film reader for DNA sequencing based on homomorphic deconvolution [J]. IEEE Trans. Biomed. Eng., 1994, 41: 509-519
    [26] Fleischmann R D, Adams M D, White o, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd [J]. Science, 1995, 269: 496-511
    [27] Barbee K A, Morrow J A, Meridith S C. Deconvolution of gel filtration chromatographs of human plasma lipoproteins [J]. Anal. Biochem., 1995, 231: 301-308
    [28] Berno, A. A graph theoretic approach to the analysis of DNA sequencing data [J]. Genome Res., 1996, 6: 80-91
    [29] Carrilho E, Ruiz-Martinez M C, Berka J, et al. Rapid DNA sequencing of more than 1000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions [J]. Anal. Chem., 1996, 68: 3305-3313
    [30] Cooper M L, Maffitt D R, Parsons J D, et al. Lane tracking software for four-color fluorescence-based electrophoretic gel images [J]. Genome Res., 1996, 6: 1110-1117
    [31] Yin Z, Severin J, Giddings M C, et al. Automatic matrix determination in four dye fluorescence-based DNA sequencing [J]. Electrophoresis, 1996, 17: 1143-1150
    [32] Swerdlow H, Jones B J, Wittwer C T. Fully automated DNA reaction and analysis in a fluidic capillary instrument [J]. Anal. Chem., 1997, 69: 848-855
    [33] Huang W, Yin Z, Fuhrmann D R, et al. A method to determine the matrix in 4-dye fluorescence-based DNA sequencing [J]. Electrophoresis, 1997, 18: 23-25
    [34] Gordon D, Abajian C, Green P. Consed: A graphical tool for sequence finishing [J]. Genome Res., 1998, 8: 196-202
    [35] Amari S, Cichocki A. Adaptive blind signal processing– neural network approaches [J]. Proc. IEEE., 1998, 86:2026–2048
    [36] Ewing B, Hillier L, Wendl M C, et al. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment [J]. Genome Res., 1998, 8: 175-185
    [37] Ewing B, Green P. Base-calling of automated sequencer traces using Phred. II, error probabilities [J]. Genome Res., 1998, 8:186-194
    [38] Michael C. Giddings, Jessica Severin, Michael Westphall, et al. A Software System for Data Analysis in Automated DNA Sequencing [J]. Genome Res., 1998, 8: 644-665
    [39] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. Neural Networks, 1999, 10:626-634
    [40] Li L, Speed T P. An estimate of the cross-talk matrix in four-dye fluorescence-based DNA sequencing [J]. Electrophoresis, 2000, 20:1433-1442
    [41] Pereira M, Andrade L, El-Difrawy S, et al.. Statistical learning formulation of the DNA base-calling problem and its solution using a Bayesian EM framework J]. Discrete Appl. Math., 2000, 104:229-258
    [42] Haan N M, Godsill S J. Modelling electropherogram data for DNA sequencing using variable dimension MCMC [C]. Proc. Int. Conf. on Acoustics Speech and Signal Processing– ICASSP, Istanbul, Turkey, 2000, 3542-3545
    [43] Domnlsoru C, Zhan X, Musavl M. Cross-talk filtering in four dye fluorescence-based DNA sequencing [J]. Electrophoresis, 2000, 21:2983-2989
    [44] Li L. DNA sequencing and parametric deconvolution [J]. Statistica Sinica, 2001, 12:179-202
    [45] Boufounos P, El-Difrawy S, Ehrlich D. Basecalling using hidden Markov models [J]. Journal of the Franklin Institute, 2004, 341:23-36
    [46] Freschi V, Bugliolo A. Computer-aided DNA base calling from forward and reverse electropherograms [J]. Trans. on Computat. Systems Biol., 2005, LNBI3737:1-13
    [47] Liang K C, Wang X D, Anastassiou D. Bayesian Basecalling for DNA Sequence Analysis Using Hidden Markov Models [J]. IEEE/ACM Transactions on computational biology and bioinformatics, 2007,4(3):430-440
    [48] Tonazzini A, Bedini L G. Statistical analysis of electrophoresis time series for improving basecalling in DNA sequencing [J]. Int. J. Signal and Imaging Systems Engineering, 2008, 1(1): 36-41
    [49] Karger B L, Guttman A. DNA sequencing by CE [J]. Electrophoresis, 2009, 30: S196-S202
    [50] Wan F, He W D, Zhang J, et al. Reduced matrix viscosity in DNA sequencing by CE and microchip electrophoresis using a novel thermoresponsive copolymer [J]. Electrophoresis, 2009, 30:2488-2498
    [51]王立世,杨晓云,席绍,等.毛细管电泳信号的小波平滑与去噪[J].高等学校化学学报, 1999,20(3):383-386
    [52]秦向东,裴静,沈建红等.毛细管电泳与DNA序列分析[J].现代仪器, 2001,6:9-12.
    [53]仲红波,李关宾,刘辉等.利用二进样条小波模极大法消除毛细管电泳信号噪声的研究[J].高等学校化学学报, 2002,23(5):796-800
    [54]汪俊,孙光明,白吉玲等.旋转激光扫描共焦荧光检测式毛细管阵列电泳[J].分析化学研究报告, 2004,10:1414-1415
    [55]郑华,石岩,汪洁等. DNA测序电泳荧光信号的小波去噪分析[J].光学仪器, 2007,29(2):17-21
    [56]郑华,王立强,石岩等.多通道DNA测序仪的新型设计[J].生命科学仪器, 2007,5(9):39-42
    [57]郑华,石岩,汪洁等. DNA测序信号去噪分析的一种新方法[J].光谱学与光谱分析, 2008,28(5)
    [58] Lina S W, Hsub J H, Changa C H, et al. Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis [J]. Biosensors and Bioelectronics, 2009, 25:450-455
    [59] Zhou D, Yang L P, Yang R M, et al. Functionalized gold nanoparticles as additive to form polymer/metal composite matrix for improved DNA sequencing by capillary electrophoresis [J]. Talanta, 2009, 80:195-201
    [60] Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human tran-scriptome [J]. Science, 2008, 321(5891): 956-960
    [61] http://www.454.com/about-454/index.asp
    [62] http://www.biology-online.org/articles/human-genome-project/figures.html
    [63] http://keck.med.yale.edu/microarrays/solexa/technology.html
    [64] http://privatewww.essex.ac.uk/~mastal/illumina_tech.html
    [65] http://starchildproject.com/research.htm
    [66] https://www.roche-applied-science.com/gseq/plate.html
    [67] http://seqanswers.com/forums/showthread.php?t=10
    [68] http://www.polonator.org/
    [69] http://arep.med.harvard.edu/gmc/
    [70] http://www.hykgene.com/default.aspx?pn=Home
    [71] http://www.genome.gov/25522229
    [72] Leamon J H, Lee W L, Tartaro K R, et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions [J]. Electrophoresis, 2003, 24:3769-3777
    [73] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437:376-380
    [74] Hinds D A, Stuve L L, Nilsen G B, et al. Whole-genome patterns of common DNA variation in three human populations [J]. Science, 2005, 307(5712):1072-1079
    [75] Gill S R, Pop M, Deboy R T, et al. Metagenomic analysis of the human distal gut microbiome [J]. Science, 2006, 312:1355-1359
    [76] Green R E, Krause J, Ptak S E, et al. Analysis of one million base pairs of Neanderthal DNA [J]. Nature, 2006, 444:330-336
    [77] Cheung F, Haas B J, Goldberg S M, et al. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology [J]. BMC Genomics, 2006, 7:272
    [78] Wicker T, Graner A, Close T J, et al. 454 sequencing put to the test using the complex genome of barley [J]. BMC Genomics, 2006, 7:275
    [79] Noonan J P, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA [J]. Science, 2006, 314:1113-1118
    [80] Bentley D R. Whole-genome re-sequencing [J]. Current Opinion in Genetics & Development, 2006, 16(6):545-552
    [81] Yakovchuk P, Protozanova E, Frank-Kamenetskii M D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix [J]. Nucleic Acids Research, 2006, 34(2):564-574
    [82] Mardis E R. Anticipating the 1,000 dollar genome [J]. Genome Biol., 2006, 7(7):112
    [83] Warren R L, Sutton G G, Jones S J, et al. Assembling millions of short DNA sequences using SSAKE [J]. Bioinformatics, 2007, 23(4):500-501
    [84] Van Orsouw N J, Hogers R C, Janssen A, et al. Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes [J]. PLoS ONE, 2007, 2(11): e1172
    [85] Levy S, Sutton G, Ng P C, et al. The diploid genome sequence of an individual human [J]. PLoS Biol., 2007,5:e254
    [86] Gilbert M T, Tomsho L P, Rendulic S, et al.. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts [J]. Science, 2007, 317:1927-1930
    [87] Briggs A W, Green R E, Kelso J, et al. Patterns of damage in genomic DNA sequences from a Neandertal [J]. Proc. Natl. Acad. Sci. USA., 2007, 104:14616–14621
    [88] Cox-Foster, D L, Conlan S, Holmes E C, et al. A metagenomic survey of microbes in honey bee colony collapse disorder [J]. Science, 2007, 318:283-287
    [89] Korbel J O, Affourtit J P, Godwin B, et al. Paired-end mapping reveals extensive structural variation in the human genome [J]. Science, 2007, 318:420-426
    [90] Jeck W R, Reinhardt J A, Baltrus D A, et al.. Extending assembly of short DNA sequences to handle error [J]. Bioinformatics, 2007, 23(21):2942-2944
    [91] Iseli C, Ambrosini G, Bucher P, et al.. Indexing strategies for rapid searches of short words in genome sequences [J]. PLoS ONE., 2007, 2(6):e579
    [92] Korbel J O, Urban A E, Affourtit J P, et al.. Paired-end mapping reveals extensive structural variation in the human genome [J]. Science, 2007, 318(5849):420-426
    [93] Gr?f S, Nielsen FG, Kurtz S, et al.. Optimized design and assessment of whole genome tiling arrays [J]. Bioinformatics, 2007, 23(13):195-204
    [94] Mikkelsen T, Ku M, Jaffe D, et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells [J]. Nature, 2007, 448(7153):553-560
    [95] Wheeler D, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing [J]. Nature, 2008, 452:872-877
    [96] Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases [J]. NEJM., 2008, 358: 991-998
    [97] Rusk N, Kiermer V. Primer: sequencing—the next generation [J]. Nat. Methods, 2008, 5:15
    [98] Wheeler D, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing [J]. Nature, 2008, 452: 872-877
    [99] Rothberg J M, Leamon J H. The development and impact of 454 sequencing [J]. Nature Biotechnology, 2008, 26: 1117-1124
    [100] Fullwood M J, Wei C L, Liu E T, et al.. Next-generation DNA sequencing [J]. Nature Biotechnology, 2008, 26: 1135-1145
    [101] Bentley D R, Balasubramanian S, Swerdlow H P, et al.. Accurate whole human genomesequencing using reversible terminatorchemistry [J]. Nature, 2008,456: 53-59
    [102] Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome [J]. Science, 2008, 320(5872): 106-109 [103 Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-141
    [104] Hillier L W, Marth G T, Quinlan A R, et al. Whole-genome sequencing and variant discovery in C. elegans [J]. Nat Methods, 2008, 5(2): 183-188
    [105] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 2008, 5(7): 621-628
    [106] Sugarbaker D J, Richards W G, Gordon G J, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors [J]. Proc Natl Acad Sci USA, 2008, 105(9): 3521-3526
    [107] Vera J C, Wheat C W, Fescemyer H W, et al. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing [J]. Mol Ecol., 2008, 17(7):1636-1647
    [108] Friedl?nder M R, Chen W, Adamidi C, et al. Discovering microRNAs from deep sequencing data using miRDeep [J]. Nat Biotechnol., 2008, 26(4):407-415
    [109] Erlich Y, Mitra P P, Delabastide M, et al.. Alta-Cyclic: a self-optimizing base caller for next-generation sequencing [J]. Nat Methods, 2008, 5(8):679-682
    [110] Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing [J]. Nucleic Acids Research, 2008, 36(16):e105
    [111] Dolan P C, Denver D R. TileQC: a system for tile-based quality control of Solexa data [J]. BMC Bioinformatics, 2008, 9(1):250
    [112] Myers E W, Miller W. Optimal alignments in linear space [J]. Comput Appl Biosci., 1988, 4(1):11-17
    [113] Smith A, Xuan Z, Zhang M. Using quality scores and longer reads improves accuracy of Solexa read mapping [J]. BMC Bioinformatics, 2008, 9(1):128
    [114] Pop M, Salzberg S L. Bioinformatics challenges of new sequencing technology [J]. Trends Genet., 2008, 24(3):142-149
    [115] Rougemont J, Amzallag A, Iseli C, et al. Probabilistic base calling of Solexa sequencing data [J]. BMC Bioinformatics, 2008, 9:431
    [116] Hormozdiari F, Alkan C, Eichler E E, et al. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes [J]. Genome Res., 2009, 19: 1270-1278
    [117] Prabhu S, Pe'er I. Overlapping pools for high-throughput targeted resequencing [J]. Genome Res., 2009, 19: 1254-1261
    [118] Bozdag D, Barbacioru C C, Catalyurek U V. Parallel short sequence mapping for high throughput genome sequencing [C]. 2009 IEEE International Symposium on Parallel &Distributed Processing. 2009, ipdps, pp.1-10
    [119] Stiller M, Knapp M, Stenzel U, et al. Direct multiplex sequencing (DMPS)—a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA [J]. Genome Res., 2009, 19: 1843-1848
    [120] Jackson B G, Schnable P S, Aluru S. Parallel short sequence assembly of transcriptomes [J]. BMC Bioinformatics, 2009, 10:S14
    [121] Ye Binggang,Ling You. Principle and Realization of Nano-molecular Probe in Molecular Imaging Technologies [C]. The 3rd International Conference on Bioinformatics and Biomedical Engineering, icbbe2009, Beijing, June
    [122] Sonek G. J, Berns M W, Keller R A. Applications of optical trapping to single molecule DNA. http://www.osti.gov/bridge/
    [123] Eid J, Fehr A, Gray J, et al.. Real-time DNA sequencing from single polymerase molecules [J]. Science, 2009, 323: 133-138
    [124] BarskiA,Cud d apah S,CuiK,etal.H ig h-resolutionprofiling of histone methylations in the human genome [J]. Cell, 2007, 129(4):823-837.
    [125] Morin R D, O'Connor M D, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells [J]. Genome Res., 2008, 18(4): 610-621
    [126] Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells [J]. Cell, 2008, 133(6): 1106-1117
    [127] http://tech.qq.com/a/20091203/000576.htm
    [128] http://www.inspur.com/about/channel_news/company_8033.shtml
    [129] http://finance.ifeng.com/usstock/realtime/20091208/1555991.shtml
    [130] http://www.cnetnews.com.cn/2009/1203/1535546.shtml
    [131] Little wood J.E., et al. Theorems on Fourier series and power series [M]. J.L.M.S., 1931, 6:230-238
    [132] Chuff C.K. An Introduction to Wavelets [M]. Academic Press, 1992
    [133] Mallat S.A. Theory for multiresolution signal decomposition: the wavelet representation [C]. IEEE Trans. On PAMI, 1989, 11(7):674-693
    [134] Mallat S. Multiresolution and Wavelets [M]. Philadelphia: university of Pennsylvania, 1988
    [135] Daubechies L. Orthonormal Bases of Compactly supported Wavelets [J]. Communications on pure and Applied Math, 1988(41):909-996
    [136] Chuff C.K., Wang J.Z. A Cardinal spline Approach to Wavelet, proc [J]. Amer. Math. Soc., 1991(113):785-793
    [137] Special issue on adaptive wavelet transforms, Opt. Eng., 1994, 33 (7)
    [138] Sweldens w. The lifting scheme: a construction of second generation wavelets [J], J. Math. Anal., 1997, 29(2): 511-546
    [139] Vidakovic B, Lozoya C B. On time2dependent wavelet denoising [J]. IEEE Trans. Signal Processing, 1998, 46 (9): 2549-2551
    [140] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81: 425-455
    [141] Weyrich N , Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising [J]. IEEE Trans. Image P rocessing, 1998, 7 (1): 82-90
    [142] Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images w ith correlated noise [J]. IEEE Trans. Image Processing, 1999, 8 (7): 947-953
    [143] Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding [J]. Signal Processing, 1997, 56 (1):33-44
    [144] Krim H, Tucker D, Mallat S G et al. On denoising and best signal rep resentation [J]. IEEE Trans. Information Theory, 1999, 5 (7): 2225-2238
    [145]谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报, 2002, 7(3):209~217
    [146] Choi H, Baraniuk R G. Multiple basis wavelet denoising using besov projections [C]. In: Proceedings of International Conference on Image Processing, Kobe J apan, 1999: 595-599
    [147] SezanM I, Stark H. Image restoration by the method of convex projection [J]. IEEE Trans. Medical Imaging, 1982, M I-1 (2):95-101
    [148] Tekalp A M , Trussell H J. Comparative study of some recent statistical and set-theoretic methods for image restoration [C]. In: Proceedings of IEEE International Conference on A coustics, speech, signal processing, New York USA , 1988: 988-991
    [149] Youla D C, Webb H. Image restoration by the method of convex projections. Part I-theory [J]. IEEE Trans. Medical Imaging, 1982, M I-1 (2):81-94
    [150] John M, Sundaresan S N, Ramakrishna P V. Wavelet based image denoising: VQ-Bayesian technique [J]. Electronics Letter,1999, 35 (19):1625-1626
    [151]季忠,秦树人,彭承琳.基于连续小波变换的心电信号特征提取及其仪器实现[J].生物医学工程学杂志, 2006,23 (6):1186-1190
    [152]罗小刚,彭承琳,郑小林等. ECG信号小波变换与峰谷检测算法的研究[J].北京生物医学工程, 2003,22(3):168-173
    [153]杨军,彭承琳,吴宝明.小波分析在医学中的应用[J].国外医学生物医学工程分册, 2002,25(2):89-93
    [154]王海松,王伟.基于曲波变换和小波变换的图像去噪算法[J].计算机工程, 2009,35(15):217-219
    [155]马莉,郑世宝,刘成国.一种基于小波变换的图像去噪算法[J].现代电子技术, 2008,28(281):260-262
    [156]孙俊喜,赵永明,陈亚珠.基于小波域隐马尔可夫树模型的超声图象贝叶斯去噪[J].中国图象图形学报, 2003,8(A)(6):657-663
    [157]杨晓峰,李鹏,张大龙等.一种基于小波变换的多普勒胎儿心率信号去噪算法[J].系统仿真学报, 2008,20(12):3138-3141
    [158]甘祥超,武栓虎,谈正.基于小波四叉树的图像去噪方法[J].计算机研究与发展, 2001,38(3):341-343
    [159]杨英立,叶大田,岳喜才.诱发电位提取的聚类分析和小波去噪复合方法[J].北京生物医学工程, 2002,21(2):98-101
    [160]高建波,杨恒,胡鑫尧等.基于最大熵原理的小波去噪方法[J].光谱学与光谱分析, 2001,21(5):620-622
    [161]郭蔚,陈雅颂.自适应联合小波去噪算法[J].吉林大学学报(信息科学版), 2007,25(2):145-150
    [162]周宇,杨翠微,方祖祥.一种新的心外膜电位标测信号分析方法[J].仪器仪表学报, 2009,30(1):76-81
    [163]李军,陈光梦.小波域中基于模糊的图像去噪方法[J].复旦学报(自然科学版), 2005,44(6): 971-975
    [164]郑华,石岩,汪洁等. DNA测序电泳荧光信号的小波去噪分析[J].光学仪器, 2007,29(2):17-21
    [165]赵一鸣,王兵,王柏祥等.基于小波域多尺度积的心音去噪方法[J].江南大学学报(自然科学版), 2008,7(5):526-530
    [166]熊凯,侯民贤,叶关荣等.基于小波变换的颜色视觉诱发电位检测去噪研究[J].生物医学工程学杂志, 2006,23 (3):496-498
    [167]范显峰,姜兴渭.基于小波包变换的信号去噪方法研究[J].哈尔滨工业大学学报, 2003,35(7):809-811
    [168]李治,汪曣,,刘凤军等.入睡脑电信号的去噪[J].中国组织工程研究与临床康复, 2007,11(13):2531-2533
    [169]夏颖,沈保锁.多小波在信号去噪中的应用[J].电子测量技术, 2006,29(3):36-37
    [170]潘磊,张军,邹采荣.基于小波变换的一种心电信号去噪算法[J].科技资讯, 2006,36:53-54
    [171]赵一凡,李久贤,吴游等.一种基于小波域系数收缩的图像降噪改进算法[J].电路与系统学报, 2008,13(5):26-30
    [172]党艳军,杨林,林家瑞.利用小波变换实现ECG信号去噪[J].武汉科技学院学报, 2008,18(10):48-50
    [173]谭毅华,田金文,柳健.基于小波局部统计特性的图像去噪方法[J].信号处理, 2005,21(3):298-302
    [174]刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程, 2007,34(6):77-81
    [175]黄玉程,胡国清,吴雄英等.人脸识别系统中图像噪声去除方法研究[J].微计算机信息, 2005,21(12):187-189
    [176]徐新艳,彭玉华,李立.基于非参数自适应密度估计理论的医学超声图像去噪方法[J].中国生物医学工程学报, 2006,25(4):400-404
    [177]张艳丽,元慧,陈振生.小波变换在ECG信号滤波中的应用研究[J].中国医学物理学杂志, 2005,22(1):422-425
    [178]贺继德,刘波峰,符聪等.基于多尺度小波变换的X射线图像去噪[J].微计算机信息, 2009,25(2):285-286
    [179]刘妍,刘波峰,肖湘等. X射线数字底片去噪方法的研究[J].电子测量技术, 2007,30(2):33-36
    [180]张佃中,谭小红.心音信号噪声消除的小波变换方法[J].生物数学学报, 2004 ,19(4):477-480
    [181]盖强,殷福亮,邹岩崑.二维局域波分析在图像消噪中的应用研究[J].电子学报, 2008,36(9):1763-1765
    [182]方高球,王正勇,吴晓红.基于快速离散曲波变换的图像去噪算法[J].计算机应用, 2008,28(12):3138-3140
    [183]王立世,杨晓云,席绍峰等.毛细管电泳信号的小波平滑与去噪[J].高等学校化学学报, 1999,20(3):383-386
    [184]张顺利,张定华,程云勇等.基于小波阈值去噪的CT图像重建[J].核电子学与探测技术, 2008,28 (4 ):849-853
    [185]郭敏,马远良,朱霆.基于小波变换的医学超声图像去噪及增强方法[J].中国医学影像技术, 2006,22 (9 ):1435-1437
    [186] Bing-gang Ye, Xiao-miang Wu. Wavelet denoising arithmetic research of small hepatocellular carcinoma CT image [C]. The 3rd International Conference on Bioinformatics and Biomedical Engineering, icbbe2009, Beijing, June.
    [187] Osher S., Sethian J. Fronts Propagating with Curvature Dependent Speed: AlgorithmsBased on Hamilton-Jacobi Formulations [J]. Journal of Computational Physics, 1988, 79(1): 12-49
    [188] Malladi R., Sethian J. A., Vemuri B. C. Shape modeling with front propagation: a level set approach [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1995, 17(2): 158-175
    [189] Caselles V, Kimmel R, Sapiro G, et al. Minimal surfaces based object segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4):394-398
    [190] Caselles V, Morel J M, Sapiro G, et al. Introduction to the special issue on PDEs and geometry-driven diffusion in image processing and analysis [J]. IEEE Transa ctions on Image Processing, 1998, 7(3):269-274
    [191] Xu C, Prince J. Snakes, Shapes, and Gradient Vector Flow [J]. IEEE Transactions on Image Processing, 1998, 7(3):359-369
    [192] Caselles V, Coll B, Morel J M. Topographic Maps and Local Contrast Changes in Natural Images [J]. International Journal of Computer Vision, 1999, 33(1):5-27
    [193] Paragios N, Mellina-Gottardo O, Ramesh V. Gradient Vector Flow Fast Geometric Active Contours [J]. IEEE IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3):402-407
    [194] Yezzi A, Kichenassamy S, Kumar A, et al. A Geometric Snake Model for Segmentation of Medical Imagery [J]. IEEE Transactions on Medical Imaging, 1997, 16(2):199-209
    [195] Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours [J]. International Journal of Computer Vision, 1997, 22(1):61-79
    [196] Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3):266-280
    [197] Siddiqi K, Lauziere Y B, Tannenbaum A, et al. Area and Length Minimizing Flow for Shape Segmentation [J]. IEEE Transactions on Image Processing, 1998, 7(3):433-443
    [198] Paragios N, Deriche R. Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Compute Communication and Image Representation [M], 2002, 13(1-2):249-268
    [199] Paragios N, Deriche R. Geodesic Active Regions Level Set Methods for Supervised Texture Segmentation [J]. International Journal of Computer Vision, 2002, 46(3): 223-247
    [200] Chan T, Sandberg B Y, Vese L. Active Contours without Edges for Vector-Valued Images [J]. Journal of Visual Communication and Image Representation, 2000, 11(2):130-14
    [201] Vese V, Chan T. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model [J]. International Journal of Computer Vision, 2002, 50(3):271-293.
    [202] Tsai A, Yezzi A, Willsky A. Curve Evolution Implementation of the Mumford–Shah Functional for Image Segmentation, De noising, Interpolation, and Magnification [J]. IEEE Trans.Image Processing, 2001, 10(8):1169-1186
    [203] Yezzi A, Tsai A, Willsky A. A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations [J]. Journal of Visual Communication and Image Representation, 2002, 13(1-2):195-216.
    [204] Chan T, Vese L. Active contours without edges [J]. IEEE Trans.Image Processing, 2001, 10(2):266-277
    [205]李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报, 2002, 25(11):1175-1183
    [206]林亚忠,程跃斌,陈武凡.一种水平集分割的快速算法.南方医科大学学报, 2006, 26(6): 764 - 766
    [207]杨莉,杨新.基于区域划分的曲线演化多目标分割.计算机学报, 2004, 27(3): 420 - 425
    [208]黄福珍,苏剑波,席裕庚.基于几何活动轮廓模型的人脸轮廓提取方法.中国图象图形学报, 2003, 8(A)(5):546-550
    [209]徐旦华,鲍旭东,舒华忠.基于区域划分和改进C-V法的医学图像分割方法[J].东南大学学报(自然科学版),2006,36(5):863-868
    [210]金大年,杨丰,陈武凡.基于贝叶斯分类的水平集MR图像分割方法[J].中国医学物理学杂志, 2005, 22(4):568-571
    [212]蔡超,周成平,丁明跃,张天序.基于C_V方法改进的红外图像自动分割[J].华中科技大学学报(自然科学版), 2006, 34(3):62-64
    [213]冯志林,尹建伟,石慧,陈刚,董金祥.提花织物纹理的Allen_Cahn水平集去噪方法[J].计算机辅助设计与图形学学报, 2004,16(8):1033-1039.
    [214]陈强,周则明,王平安,夏德深.带标记线左心室MR图像的自动分割[J].中国图象图形学报, 2004,9(6):666-673
    [215]周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报, 2005,17(1):129-133
    [216]张建伟,刘聪,夏德深.基于非线性扩散滤波的水平集模型MRI分割[J].计算机工程与设计, 2006, 27(18):3553-3381
    [217]朱昀,杨杰,于志强.基于混合水平集模型的CT颅面眼眶分割[J].生物医学工程学杂志, 2005, 22(5):875-879
    [218]罗宏文,马驷良,徐中宇.基于水平集方法的显微细胞图像分割[J].吉林大学学报(理学版), 2006, 44(5):760-763
    [219]李俊韬,张海,范跃祖.复杂交通场景中多运动目标分割算法[J].北京航空航天大学学报, 2006,32(3):297-300
    [220]张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片图像分割[J].中国图象图形学报, 2004,9(12):1459-1465
    [221]李钥,唐庆玉.一种基于水平集的医学图像分割算法[J].北京生物医学工程,2005,24 (5):370-372
    [222]吕佩卓,赖声礼,胡蓉,陈佳阳.基于局部统计特征约束的Snake模型图像分割方法[J].华南理工大学学报(自然科学版), 2007, 35(9)36-39
    [223]叶丙刚,姜涛,罗朝辉.结合图像熵的C-V模型算法研究[J].计算机应用, 2009,29(12):3320-3321
    [224]叶丙刚,汪德鹏,李京湘等.高通量基因测序相位问题的校正研究[J].计算机应用(已录用),2010年第4期刊出
    [225] Ye Binggang, Li Jing-xiang, Zhou Yan, et al. Cross-talk calibrating based on correlation analysis in high-throughput genome sequencing [C].The 4rd International Conference on Bioinformatics and Biomedical Engineering, icbbe2010, Chengdu, June
    [226] Ye Binggang, Li Jing-xiang, Zhou Yan, et al. Base-calling mode research in high-throughput genome sequencing [J]. Acta Mathematicae Applicatae Sinica. In reviewing
    [227]陈正兴.小波分析与应用实例[M].西安交通大学出版社,西安,2006, 9
    [228]徐晨,赵瑞珍,甘小冰.小波分析?应用算法[M].科学出版社,北京,2004,5
    [229]成礼智,郭汉伟.小波与离散变换理论及工程实践[M].清华大学出版社,北京,2005,1
    [230] Mallat S G, Zhang Z F. Marching pursits with time-frequency dictionaries [J]. IEEESignal Processing, 1993,41(12):3397-3415
    [231] Chio H, Baranink R G. Multiple basis wavelet denoising using besov projections [C]. In; Proceedings of International Conference on Image Processing, Kobe Japan,1999:362-366
    [232] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81:425-455
    [233] John M, Sundaresan S N, Ramakrishna P V. Wavelet based image denoising: VQ-Bayesing technique [J]. Electronics Letter, 1999, 35(19):1625-1626
    [234] Xu Yansun, Weaver J B, Healy M J et al. Wavelet transform domain filters: A spatially selective noise filtration technique [J]. IEEE Trans Image Processing, 1994, 3(6):743-758
    [235] Meer P, Jolion J M, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance [J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 1990, 12(2): 216-223
    [236] Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers [J]. Remote Sensing of Environment, 1993, 43(1): 23-33
    [237] Curran P J, Dungan J L. Estimation of signal to noise: a new pro-cedure applied to AVIRIS data [J]. IEEE Transactions on Geo-science and Remote Sensing, 1989, 27(5): 620—628
    [238]谢杰成,张大力,许文立.一种小波系数模型在图像噪声参数模型参数估计中的应用[J].电子与信息学报, 2004,26(5)673-678
    [239]林哲民,康学雷,张立明.在小波域中进行图像噪声方差估计的EM方法[J].红外与毫米波学报, 2001,20(3):199-202
    [240]张旗,梁德群,樊鑫.基于小波域的图像噪声估计新方法[J].计算机工程, 2004,30(8):37-39
    [241]张旭升,周桃庚,沙定国.数字图像噪声估计的方法及数学模型[J].光学技术,2005,31(5)719-722
    [242] Sethian J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science [M]. New York: Cambridge University Press, 1999
    [243] Sethian J A. A fast marching level set method for monotonically advancing fronts [J]. Proc Natl Acad Sci USA, 1996, 93(4): 1591-1595
    [244]肖昌炎,赵永明,张素.陈亚珠.水平集方法中符号距离函数快速重构[J].信号处理, 2003 ,19(6):551-555
    [245]杨新,李俊,施鹏飞.对水平集方法鲁棒初始化的双向快速步进法[J].系统仿真学报(增刊), 2001, 13:163-167
    [246]王峥,杨新,李俊,施鹏飞.提高水平集方法初始化计算速度的研究[J].信号处理, 2002, 18(2):97-101
    [247]王峥,杨新,李俊,施鹏飞.水平集方法中曲线跟踪算法的改进[J].上海交通大学学报, 2002,36(12):1833-1836
    [248]王峥,杨新,施鹏飞.基于窄带Mumford-Shah模型的图像分割方法(英文).红外与毫米波学. 2002, 21(3):161-166
    [250]杨莉,杨新.基于水平集方法的多运动目标分割[J].上海交通大学学报, 2004, 38(5):713-717
    [251]龚永义,罗笑南,黄辉,廖国钧,张余.基于单水平集的多目标轮廓提取[J].计算机学报,2007年1月第30卷第1期。
    [252]于洪川,王德军,唐泽圣,唐龙.水平集演化中的奇点与改进的窄带算法[J],软件学报, 2003, 14(4):811-817
    [253]郑罡,王惠南,李远禄,汤敏.基于Chan_Vese模型的目标多层次分割算法[J].中国图象图形学报, 2006, 11(6):804-810
    [254]朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割[J].软件学报, 2002, 13(9): 1866-1872
    [255]肖亮,吴慧中,韦志辉,汤淑春.图像分割中分段光滑Mumford-Shah模型的水平集算法[J].计算机研究与发展, 2004,41(1):129-135.
    [256]周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建计算机研究与发展, 2006,42(7):1173-1178
    [257]陈强,周则明,王平安,夏德深.带标记线左心室MR图像的自动分割[J].中国图象图形学报, 2004, 9(6):666-673
    [258]陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报, 2005, 28(6):991-999
    [259]张建伟,夏德深.基于双水平集的图像分割模型[J],计算机研究与发展, 2006,43(1):120-125
    [260]周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报, 2005,17(1):129-133
    [261]张建伟,刘聪,夏德深.基于非线性扩散滤波的水平集模型MRI分割[J].计算机工程与设计, 2006, 27(18):3553-3381
    [262]余瑞星,李言俊,张科.利用对数极坐标的快速水平集算法[J].光电工程, 2006, 33(5):71-75
    [263]朱昀,杨杰,于志强.基于混合水平集模型的CT颅面眼眶分割[J].生物医学工程学杂志, 2005, 22(5):875-879
    [264]罗宏文,马驷良,徐中宇.基于水平集方法的显微细胞图像分割[J].吉林大学学报(理学版).2006, 44(5):760-763
    [265]李俊韬,张海,范跃祖.复杂交通场景中多运动目标分割算法[J].北京航空航天大学学报, 2006, 32(3):297-300
    [266]罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形报, 2006, 11(3):301-309
    [267]贾迪野,黄凤岗,文小芳.一种全局优化的水平集图像分割方法[J].中国图象图形学报, 2005,10(1):25-30
    [268]陈允杰,张建伟.遗传算法在Snake模型中的应用[J].计算机应用, 2004, 24(05): 80-81
    [269]张继武,张道兵,史舒娟等.基于水平集方法的数字胸片图像分割[J].中国图象图形学报, 2004,9(12):1459-1465
    [270]吴仲乐,王遵亮,罗立民.基于GPU的快速Level Set图像分割[J].中国图象图形学报, 2004, 9(6):679-683
    [271]马波,张田文.基于曲线进化的目标检测算法[J].信号处理, 2003,19(3):237-241
    [272] John Z M. An information theoretic approach to content based image retrieval [D]. Louisiana State University and Agricultural and Mechanical College, Phd. Thesis, 2000, 45-62
    [273]孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的彩色图像检索方法[J].红外与毫米波学报,2005,24(2):135-139
    [274]洪清启,王备战,史亮等.基于二维直方图信息熵的图像检索方法[J].广西师范大学学报(自然科学版),2007,25 (4):265-268
    [275]何姗,郭宝龙,洪俊标.基于区域熵的图像检索[J].计算机工程,2006,32(18):214-216
    [276]凌建国,刘小军,徐心和等.基于熵的变分辨率彩色图像分割[J].上海交通大学学报,2005,39 (12):1975-1978
    [277]宋家慧.基于遗传算法的最大熵阈值的图像分割[J].电子工程师,2005,31(2):60-63
    [278] Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989, 42(4):577-685
    [279] Rougemont J, Amzallag A, Iseli C, et al. Probabilistic base calling of Solexa sequencing data [OL], [2009-8-9]. http://www.biomedcentral.com/1471-2105/9/431
    [280] Li L, Speed T P. An estimate of the crosstalk matrix in four-dye fluorescence-based DNA sequencing [J]. Electrophoresis, 1999, 20:1433-1442
    [281] Haan N M, Godsill S J. Bayesian models for DNA sequencing [C]. ICASSP 2002. Washington, DC: IEEE, 2002: IV-4020- IV-4023
    [282] Varghese R S, Musavi M T, Ressom H. A Fuzzy Confidence Value for DNA Bases [C]. Fuzzy Systems, 2004. Washington, DC: IEEE, 2004: 25-29
    [283] Thornley D, Petridis S. Machine Learning in Basecalling--Decoding Trace Peak Behaviour [C]. Computational Intelligence and Bioinformatics and Computational Biology, 2006. Washington, DC: IEEE, 2006: 1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700