用户名: 密码: 验证码:
基于压缩感知的信息反馈、检测与重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知技术是针对稀疏信号或可压缩信号提出的采样和压缩同时进行的技术,引发了信号处理思想的巨大变革,是近年来国内外学术界兴起的一个研究热点。多输入多输出(MIMO)技术和信道自适应技术是未来提高频谱效率的关键技术,而发送端的信道状态信息对多用户MIMO下行链路和信道自适应技术的实现具有重要意义。压缩信号处理技术是近年来从压缩感知理论中发展而来的一种非传统性的信号处理方法,直接在压缩测量域解决信号处理问题,也是一个新的研究热点。因此,本论文主要研究了基于压缩感知的信息反馈、检测和重建问题。主要工作包含以下五个部分:
     (一)研究了MIMO-OFDM系统中基于压缩感知的信道质量信息(CQI)反馈压缩问题。分别提出了MIMO空间分集和空间复用两种模式下的基于压缩感知的CQI压缩反馈方法,所提出的新方法主要利用了各子载波的信道信息与相邻子载波的信道信息具有高度的相关性。我们提供了一种CQI反馈压缩的新思路,仿真结果表明,所提出的基于压缩感知的方案在减少CQI反馈量方面是有效的。
     (二)研究了多用户MIMO-OFDM系统中的基于压缩感知的信道方向信息(CDI)压缩反馈问题。提出了将压缩感知方法引入到多用户MIMO-OFDM系统的CDI反馈压缩中,该方案能够在减少反馈量的同时,给基站提供更精确的信道状态信息,从而提高系统容量。该方案利用了每根发送天线到用户端天线在相邻时频域上的信道系数是高度相关的这样一个事实。仿真结果表明,所提方案比基于码本的方案在分簇的情况下需要更少的反馈量,而且能够提供给发送端更精确的信道状态信息进行预编码来抑制多用户干扰。
     (三)研究了基于分布式压缩感知(DCS)的信道信息压缩反馈问题。提出了一种基于分布式压缩感知的信道状态信息(CSI)压缩反馈方案。首先,使用子空间矩阵对CSI信息进行逼近,然后,近似的CSI信息通过设计的测量矩阵的压缩量化,最后送到反馈链路反馈到基站。在基站端,近似的CSI信息能够利用先前反馈的CSI信息,由同时正交匹配追踪(SOMP)重建算法可靠的恢复出来。仿真结果表明了所提出的基于分布式压缩感知的压缩反馈算法能够在少的吞吐量损失的前提下提高系统的可靠性。
     (四)研究了压缩信号处理领域中的信号压缩检测问题。提出了一种基于粒子群(PSO)的随机矩阵的最优化方案。粒子群最优化是群体智能理论中的一种重要方法,首次用来解决信号压缩检测中的随机投影矩阵最优化问题。我们主要在两种场景下通过仿真研究了所提方案的性能:已知稀疏信号的检测和未知稀疏信号的检测。仿真结果表明基于PSO的检测器比传统的没有使用PSO的压缩检测器需要更少的测量值数目而且能够获得更好的检测性能。
     (五)研究了压缩信号处理领域中期望信号在窄带干扰情况下的压缩重建问题。提出了新的测量矩阵设计方案,为了进一步减少测量数目,对测量矩阵进行了优化设计,在测量的同时有效的滤除了窄带干扰,仿真结果表明,所提方案在减少测量数目的同时提高了信号重建性能。
Compressive sensing (CS) is a novel signal sampling theory for sparse or compressible signals and it implements signal sampling and data compression at the same time. It is a revolution in signal processing and has become a hot topic in academic world. MIMO and channel adaptative transmission are key techniques to improve spectral efficiency. Channel state information at the transmitter (CSIT) plays a very important role in the multiuser MIMO system and the implementation of chananel adaptative transmission. Compressive signal processing develops from compressive sensing theory and it is a non-traditional signal processing method. It tries to solve signal processing problem in the compressive domain and is a new hot topic. Thus, this dissertation mainly focuses on information feedback, detection and reconstruction based on compressive sensing. The main work is composed of the following five parts:
     1. The problem of CQI feedback compression based on compressive sensing (CS) for MIMO-OFDM system is stuied. We propose the new schemes of CQI feedback compression based on CS under two modes of MIMO diversity and multiplexing. The new methods mainly exploit the reality that the channel information of neighboring subcarriers is highly correlated. We provide a new idea of CQI feedback compression. Simulation results show that the proposed schemes are very effective to reduce the overhead of CQI feedback.
     2. A novel channel direction information (CDI) feedback compression scheme based on the recently proposed compressive sensing (CS) theory to be used in multi-user MIMO-OFDM system is proposed. The new method mainly exploits the reality that the channel coefficients of neighboring subcarriers from every transmit antenna to every receiver antenna are highly correlated. Simulation results show that our proposed scheme has the potential of reducing the CSI feedback overhead and providing more accurate CSI at the transmitter than the codebook-based method to suppress multi-user interference.
     3. The problem of channel compression feedback based on distributed compressed sensing (DCS) is studied. A new compressive feedback (CF) scheme based on distributed compressed sensing for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robustly recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.
     4. The problem of signal compressive detection which belongs to compressive signal processing domain is studied. The random matrix in the compressive and subspace compressive detectors is optimized based on the particle swarm optimization (PSO). The PSO, which belongs to swarm intelligent theory, is used for the first time to solve the optimization problem of the random projection matrix, leading to an improved version of the conventional compressive and subspace compressive detectors. Simulation results show the proposed PSO-based detectors can achieve a better detection performance and require less number of measurements than the traditional compressive detectors without using PSO.
     5. The problem of signal compression reconstruction with narrow-band interference is studied. The new scheme is proposed. To further reduce the number of measurement values, measurement matrix is optimated. The narrow-band interference information is filitered out at the measurement stage. Simulation results show that the proposed schemes reduce the required measurement values and also improve the signal reconstruction performance.
引文
[1]. Candes, E.J., J. Romberg, and T. Tao, Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,2006.52(2):p.489-509.
    [2]. Candes, E.J. and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory,2006.52(12): p.5406-5425.
    [3]. Donoho, D., Compressed sampling. IEEE Transactions on Information Theory,2006. 52(4).
    [4]. Donoho, D.L., Compressed sensing. IEEE Transactions on Information Theory,2006. 52(4):p.1289-1306.
    [5]. Candes, E.J. and M.B. Wakin, An introduction to compressive sampling. IEEE Signal Processing Magazine,2008.25(2):p.21-30.
    [6]. Candes, E. and J. Romberg, Practical signal recovery from random projections. IEEE Trans. Signal Processing,2005.
    [7]. Candes, E.J. Compressive sampling. in proceedings of international congress of mathematics, Madrid Spain.2006.3:p.1433-1452
    [8]. Chen, S.S., D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit. SIAMjournal on scientific computing,1999.20(1):p.33-61.
    [9]. Donoho, D.L., M. Elad, and V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006.52(1):p.6-18.
    [10]. Stephane Mallat and Zhifeng Zhang. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing,1993,41 (12):p.3397-3415.
    [11]. Tropp, J. and A.C. Gilbert, Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory,2006.52(13):p. 4655-4666.
    [12]. Donoho, D.L., et al., Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit.2006:Department of Statistics, Stanford University.
    [13]. La, C. and M.N. Do, Signal reconstruction using sparse tree representations. Proc. Wavelets XI at SPIE Optics and Photonics, San Diego,2005.5914
    [14]. Needell, D. and R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing,2010.4(2):p.310-316.
    [15]. Needell, D. and R. Vershynin, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of computational mathematics, 2009.9(3):p.317-334.
    [16]. Gilbert, A., et al., Algorithmic linear dimension reduction in the 1_1 norm for sparse vectors. Arxiv preprint cs/0608079,2006.
    [17]. Gilbert, A.C., et al. One sketch for all:fast algorithms for compressed sensing. in paoceedings of the 39th ACM symp. theory of computing. San Diego,2007:p.237-246
    [18]. Kim, S.J., et al., An interior-point method for large-scale 11-regularized least squares. IEEE Journal of Selected Topics in Signal Processing,2007.1(4):p.606-617.
    [19]. Figueiredo, M.A.T., R.D. Nowak, and S.J. Wright, Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing,2007.1(4):p.586-597.
    [20]. Daubechies, I., M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on pure and applied mathematics,2004.57(11):p.1413-1457.
    [21]. Baron, D., et al., Distributed compressed sensing.2005.
    [22]. Duarte, M.F., et al. Distributed compressed sensing of jointly sparse signals. Conf. Rec. Asilomar Conf Signals, Systems and Computers,2005.p.1537-1541
    [23]. Shihao, J., X. Ya, and L. Carin, Bayesian Compressive Sensing. IEEE Transactions on Signal Processing,2008.56(6):p.2346-2356.
    [24]. Boufounos, P.T. and R.G. Baraniuk.1-Bit compressive sensing. in Information Sciences and Systems,2008.42nd Annual Conference on CIS.2008.p.16-21
    [25]. Bhattacharya, S., et al. Fast encoding of synthetic aperture radar raw data using compressed sensing. Proc. IEEE/SP Stat. Signal Process..2007:p.448-452
    [26]. Bajwa, W., et al. Compressive wireless sensing. In:Proceedings of Fifth Int. Conf. on Information Processing in Sensor Networks,2006:p.134-142.
    [27]. Takhar, D., et al. A new compressive imaging camera architecture using optical-domain compression. In Proc. IS&T/SPIE Symposium on Electronic Imaging,2006.
    [28]. Lustig, M., D.L. Donoho, and J.M. Pauly. Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories. in proceedings of ISMRM, Seattle,WA,2006.
    [29]. Sheikh, M.A., et al., Compressed sensing DNA microarrays. Rice ECE Department technical report TREE 0706, May,2007.
    [30]. Sami, K., et al. Analog-to-Information Conversion via Random Demodulation. in Design, Applications, Integration and Software, IEEE Dallas/CAS Workshop on. 2006.p.71-74
    [31]. Jason, L., et al. Random Sampling for Analog-to-Information Conversion of Wideband Signals. in Design, Applications, Integration and Software, IEEE Dallas/CAS Workshop on.2006.p.119-122
    [32]. Jianwei, M. and F.X. Le Dimet, Deblurring From Highly Incomplete Measurements for Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing,2009.47(3):p. 792-802.
    [33]. Borgnat, P. and P. Flandrin. Time-frequency localization from sparsity constraints. in Acoustics, Speech and Signal Processing, IEEE International Conference on ICASSP. 2008.p.3785-3788
    [34]. Cotter, S.F. and B.D. Rao, Sparse channel estimation via matching pursuit with application to equalization. IEEE Transactions on Communications,2002.50(3):p. 374-377.
    [35]. Bajwa, W.U., et al. Compressed channel sensing. in Information Sciences and Systems, 2008.42nd Annual Conference on CISS.2008.p.5-10
    [36]. Bajwa, W.U., A. Sayeed, and R. Nowak. Compressed sensing of wireless channels in time, frequency, and space. in 42nd Asilomar Conference on Signals, Systems and Computers.2008.p.2048-2052
    [37]. Taubock, G., et al., Compressive Estimation of Doubly Selective Channels in Multicarrier Systems:Leakage Effects and Sparsity-Enhancing Processing. IEEE Journal of Selected Topics in Signal Processing,2010.4(2):p.255-271.
    [38]. Yoon-Chul, K., S.S. Narayanan, and K.S. Nayak. Accelerated 3D MRI of vocal tract shaping using compressed sensing and parallel imaging. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP) 2009.p.389-392
    [39]. Jia, M., et al. Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP),2010.p.3114-3117
    [40]. Wei, C., M.R.D. Rodrigues, and I.J. Wassell. Distributed Compressive Sensing Reconstruction via Common Support Discovery. IEEE International Conference on. Communications (ICC),2011.p.1-5
    [41]. Mu, L., et al. Compressive Data Persistence in Large-Scale Wireless Sensor Networks. IEEE Global Telecommunications Conference (GLOBECOM).2010.p.1-5
    [42]. Takhar, D., et al., A compressed sensing camera:New theory and an implementation using digital micromirrors. Proc. Computational Imaging Ⅳ at SPIE Electronic Imaging, San Jose, California, January 2006.
    [43]. Duarte, M.F., et al., Single-Pixel Imaging via Compressive Sampling. IEEE Signal Processing Magazine,2008.25(2):p.83-91.
    [44]. 刘丹华,信号稀疏分解及压缩感知理论应用研究.西安电子科技大学博士学位论文,2009.
    [45]. Danhua, L., S. Guangming, and G. Dahua. A new method for signal sparse decomposition. in International Symposium on Intelligent Signal Processing and Communication Systems(ISPACS).2007.p.750-753
    [46]. Yifu, Z., et al. A novel image/video coding method based on Compressed Sensing theory. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). 2008.p.1361-1364
    [47].傅霆and尧德中,稀疏分解的加权迭代方法及其初步应用.电子学报,2004.32(4):p.4.
    [48]. Li, Y.J. and R.F. Song, Novel schemes of CQI Feedback Compression based on Compressive Sensing for Adaptive OFDM Transmission. KSII Transactions on Internet and Information Systems,2011.5(4):p.703-719.
    [49]. Gao, H., R. Song, and J. Zhao. Compression of CQI feedback with compressive sensing in adaptive OFDM systems. international conference on wireless communications and signal processing,2010:p.1-4.
    [50]. Li, Y., R. Song, and W. Wang, Particle Swarm Optimization of Compression Measurement for Signal Detection. Circuits, Systems, and Signal Processing,2011:p. 1-18.
    [51]. Ruizhen, Z., et al. Signal pre-processing method suitable for compressive sensing based on frequency modulation. IEEE 10th International Conference on Signal Processing (ICSP),2010.p.62-65
    [52]. Love, D.J., et al., An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications,2008.26(8):p.1341-1365.
    [53]. Viswanath, P., D.N.C. Tse, and R. Laroia. Opportunistic beamforming using dumb antennas. IEEE International Symposium on.Information Theory,2002.
    [54]. Sharif, M. and B. Hassibi, On the capacity of MIMO broadcast channels with partial side information. IEEE Transactions on Information Theory,2005.51(2):p.506-522.
    [55]. Roh, J.C. and B.D. Rao, Transmit beamforming in multiple-antenna systems with finite rate feedback:a VQ-based approach. IEEE Transactions on Information Theory,2006. 52(3):p.1101-1112.
    [56]. Roh, J.C. and B.D. Rao, Design and Analysis of MIMO Spatial Multiplexing Systems With Quantized Feedback. IEEE Transactions on Signal Processing,2006.54(8):p. 2874-2886.
    [57]. Penefei, X. and G.B. Giannakis. Design and analysis of transmit-beamforming based on limited-rate feedback. IEEE 60th. Vehicular Technology Conference(VTC2004-Fall). 2004.p.1653-1657
    [58]. Chun Kin Au, Y. and D.J. Love. Performance Analysis of Random Vector Quantization Limited Feedback Beamforming. in Conference Record of the Thirty-Ninth Asilomar Conference on.Signals, Systems and Computers,2005.p.408-412.
    [59]. Santipach, W. and M.L. Honig. Asymptotic capacity of beamforming with limited feedback. Proceedings. International Symposium on Information Theory, (ISIT).2004.
    [60]. Chun Kin, A.-Y. and J.L. David, On the performance of random vector quantization limited feedback beamforming in a MI SO system. IEEE Transactions on Wireless Communications,2007.6(2):p.458-462.
    [61]. Jindal, N. MIMO broadcast channels with finite rate feedback. in IEEE Global Telecommunications Conference(GLOBECOM'05).2005.
    [62]. Taesang, Y., N. Jindal, and A. Goldsmith, Multi-Antenna Downlink Channels with Limited Feedback and User Selection. IEEE Journal on Selected Areas in Communications,2007.25(7):p.1478-1491.
    [63]. Love, D.J., R.W. Heath, and T. Strohmer, Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory,2003. 49(10):p.2735-2747.
    [64]. Love, D.J., R.W. Heath, and T. Strohmer, Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE International Conference on Communications, Vols 1-5,2003:p.2618-2622.
    [65]. Mukkavilli, K.K., et al., On beamforming with finite rate feedback in multiple-antenna systems. IEEE Transactions on Information Theory,2003.49(10):p.2562-2579.
    [66]. Love, D.J. and R.W. Heath, Limited feedback unitary precoding for spatial multiplexing systems. IEEE Transactions on Information Theory,2005.51(8):p.2967-2976.
    [67]. Love, D.J. and R.W. Heath, Limited feedback unitary precoding for orthogonal space-time block codes. IEEE Transactions on Signal Processing,2005.53(1):p.64-73.
    [68]. Khoshnevis, B., W. Yu, and R. Adve, Grassmannian Beamforming for MIMO Amplify-and-Forward Relaying. IEEE Journal on Selected Areas in Communications, 2008.26(8):p.1397-1407.
    [69]. Love, D.J. and R.W. Heath, Grassmannian beamforming on correlated MIMO channels. Globecom'04:IEEE Global Telecommunications Conference, Vols 1-6,2004:p. 106-110.
    [70]. Dai, W., YE. Liu, and B. Rider, Quantization bounds on Grassmann manifolds and applications to MIMO communications. IEEE Transactions on Information Theory, 2008.54(3):p.1108-1123.
    [71]. She, F., et al., BER-based codebook construction for MIMO-OFDM precoded spatial multiplexing systems. Globecom 2007:IEEE Global Telecommunications Conference, Vols 1-11,2007:p.3494-3498.
    [72]. Samsung, R1-073181, "Way-forward on codebook for SU-MIMO precoding," 3GPP TSG RAN WG1 49bis, Orlando, USA, June 2007.
    [73]. Clerckx, B., Y. Zhou, and S. Kim, Practical codebook design for limited feedback Spatial Multiplexing. IEEE International Conference on Communications, Proceedings, Vols1-13,2008:p.3982-3987.
    [74]. Samsung, R.-., "MIMO for LongTerm Evolution," 3GPP TSGRAN WGI_42, London, UK, August-September 2005.
    [75]. Clerckx, B., K. Gil, and K. Sungjin. Correlated Fading in Broadcast MIMO Channels: Curse or Blessing? in IEEE Global Telecommunications Conference.2008.p.1-5
    [76]. Xia, P.F., et al., DFT Structured Codebook Design with Finite Alphabet for High Speed Wireless Communications.6th IEEE Consumer Communications and Networking Conference, Vols 1 and 2,2009:p.236-240.
    [77]. Windpassinger, C., et al., Precoding in multiantenna and multiuser communications. IEEE Transactions on Wireless Communications,2004.3(4):p.1305-1316.
    [78].3GPP R1-062650.Texas Instruments, Codebook design for E-UTRA MIMO precoding, 3GPP TSG RAN WG1 meeting#46bis.
    [79].3GPP R1-070878. NEC Group, Codebook design for EUTRA MIMO,3GPP TSG RAN WG1 meeting#48.
    [80]. GPP R1-070730.Texas Instruments, Precoding Codebook design for 4 node-B antenna, 3GPP TSG RAN WG1 meeting#48.
    [81]. Lai, J.Z.C., Y.C. Liaw, and J.L. Liu, A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognition,2008.41(1):p.315-319.
    [82]. Zeger, K., A. Bist, and T. Linder, Universal Source-Coding with Codebook Transmission. IEEE Transactions on Communications,1994.42(2-4):p.336-346.
    [83]. Borgmann, M. and H. Bolcskei. Interpolation-based efficient matrix inversion for MIMO-OFDM receivers. in Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,2004.p.1941-1947
    [84]. Choi, J. and R.W. Heath, Interpolation based transmit beamforming for MIMO-OFDM with limited feedback. IEEE Transactions on Signal Processing,2005.53(11):p. 4125-4135.
    [85]. Choi, J., B. Mondal, and R.W. Heath, Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback. IEEE Transactions on Signal Processing,2006.54(12):p.4730-4740.
    [86]. Mondal, B. and R.W. Heath, Algorithms for quantized precoded MIMO-OFDM systems. 39th Asilomar Conference on Signals, Systems and Computers, Vols 1 and 2,2005:p. 381-385.
    [87]. Pande, T., D.J. Love, and J.V. Krogmeier, Reduced feedback MIMO-OFDM precoding and antenna selection. IEEE Transactions on Signal Processing,2007.55(5):p. 2284-2293.
    [88]. Liu, L. and H. Jafarkhani, Successive transmit beamforming algorithms for multiple-antenna OFDM systems. IEEE Transactions on Wireless Communications, 2007.6(4):p.1512-1522.
    [89]. Zhang, H., et al., A reduced CSI feedback approach for precoded MIMO-OFDM systems. IEEE Transactions on Wireless Communications,2007.6(1):p.55-58.
    [90]. M. Johansson, Benefits of multiuser diversity with limited feedback, in Proc. IEEE Workshop on Signal Processing Advances in Wireless Commun., Rome, Italy,2003, p. 155-159.
    [91]. Floren, F., O. Edfors, and B.A. Molin, The effect of feedback quantization on the throughput of a multiuser diversity scheme. Globecom'03:IEEE Global Telecommunications Conference, Vols 1-7,2003:p.497-501.
    [92]. Johansson, M. Diversity-enhanced equal access-considerable throughput gains with 1-bit feedback. IEEE 5th Workshop on Signal Processing Advances in Wireless Communications,2004.p.6-10
    [93]. Johansson, M., On scheduling and adaptive modulation with limited channel feedback. Signals and Systems Group, Uppsala University, Uppsala, Sweden,2004.
    [94]. Sanayei, S. and A. Nosratinia, Exploiting multiuser diversity with only 1-bit feedback. IEEE Wireless Communications and Networking Conference, Vols 1-4,2005:p. 978-983.
    [95]. Gesbert, D. and M.S. Alouini, How much feedback is multi-user diversity really worth? IEEE International Conference on Communications, Vols 1-7,2004:p.234-238.
    [96]. Hassel, V., et al., Rate-optimal multiuser scheduling with reduced feedback load and analysis of delay effects. Eurasip Journal on Wireless Communications and Networking, 2006.p.1-6
    [97]. Vicario, J.L. and C. Anton-Haro, Robust exploitation of spatial and multi-user diversity in limited-feedback systems. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vols 1-5,2005:p.417-420.
    [98]. Hassel, V., et al., Exploiting multiuser diversity using multiple feedback thresholds. Vtc2005-Spring:IEEE 61st Vehicular Technology Conference, Vols 1-5, Proceedings, 2005:p.1302-1306.
    [99]. Al-Harthi, Y., A. Tewfik, and M.S. Alouini, Opportunistic scheduling with quantized feedback in wireless networks. ITCC 2005:International Conference on Information Technology:Coding and Computing, Vol 2,2005:p.716-722.
    [100]. Svedman, P., et al., A simplified opportunistic feedback and scheduling scheme for OFDM. Vtc2004-Spring:IEEE 59th Vehicular Technology Conference, Vols 1-5, Proceedings,2004:p.1878-1882.
    [101]. Hamalainen, J. and R. Wichman, Performance of multiuser diversity in the presence of feedback errors. IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications, Vols 1-4, Proceedings,2004:p.599-603.
    [102]. Qin, X.P. and R. Berry, Opportunistic splitting algorithms for wireless networks. IEEE Infocom 2004:The Conference on Computer Communications, Vols 1-4, Proceedings, 2004:p.1662-1672.
    [103]. Hyunsoo, C., P. Byungjoon, and H. Daesik. Adaptive multicarrier system with reduced feedback information in wideband radio channels. in Vehicular Technology Conference, 1999. VTC 1999-Fall. IEEE VTS 50th.1999.p.2880-2884
    [104]. Lestable, T. and M. Bartelli. LZW adaptive bit loading.2002.
    [105]. Welch, T.A., A Technique for High-Performance Data-Compression. Computer,1984. 17(6):p.8-19.
    [106]. Nguyen, H. and T. Lestable, Compression of bit loading power vectors for adaptive multi-carrier systems.47th Midwest Symposium on Circuits and Systems, Vol Iii, Conference Proceedings,2004:p.243-246.
    [107]. Capon, J., A probabilistic model for run-length coding of pictures. IRE Transactions on Information Theory,1959.5(4):p.157-163.
    [108]. Jimenez, V.P.G. and A.G. Armada, An adaptive MIMO-OFDM system:Design and performance evaluation.3rd International Symposium on Wireless Communication Systems, Vols 1-2,2006:p.809-813.
    [109]. Gross, J., et al., Performance analysis of dynamic OFDMA systems with inband signaling. IEEE Journal on Selected Areas in Communications,2006.24(3):p.427-436.
    [110]. Eriksson, T. and T. Ottosson, Compression of feedback in adaptive OFDM-based systems using scheduling. IEEE Communications Letters,2007.11(11):p.859-861.
    [111]. LG Electronics,3GPP R1-062954, "Analysis on DCT based CQI reporting," Seoul, Korea, OCT.2006. Available at http://www.3gpp.org.
    [112]. Eriksson, T. and T. Ottosson, Compression of Feedback for Adaptive Transmission and Scheduling. Proceedings of the IEEE,2007.95(12):p.2314-2321.
    [113]. Zeng, E.L., S.H. Zhu, and M. Xu, CQI feedback overhead reduction for multicarrier MIMO transmission. IEICE Transactions on Communications,2008. E91b(7):p. 2310-2320.
    [114]. Healy, D., Analog-to-Information (A-to-I). DARPA/MTO Broad Agency Announcement BAA,2005:p.05-35.
    [115]. Walden, R.H., Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,1999.17(4):p.539-550.
    [116]. Needell, D. and J.A. Tropp, CoSaMP:Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis,2009.26(3):p. 301-321.
    [117]. Cohen, A., W. Dahmen, and R. DeVore, Instance Optimal Decoding by Thresholding in Compressed Sensing. Harmonic Analysis and Partial Differential Equations,2008.505: p.1-28.
    [118]. Blumensath, T. and M.E. Davies, Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis,2009.27(3):p.265-274.
    [119]. Baraniuk, R.G., M.A. Davenport, and P.T. Boufounos, Compressive Domain Interference Cancellation.2009, RICE UNIV HOUSTON TX DEPT OF ELECTRICAL AND COMPUTER ENGINEERING.
    [120]. Davenport, M.A., M.B. Wakin, and R.G. Baraniuk, Detection and estimation with compressive measurements. Dept. of ECE, Rice University, Tech. Rep,2006.
    [121]. Wang, Z., G.R. Arce, and B.M. Sadler. Subspace compressive detection for sparse signals. IEEE international conference on ICASSP 2008:p.3873-3876.
    [122]. Zhongmin Wang, New sampling and detection approaches for compressed sensing and their application to ultra wideband communications, Dissertation for the Doctoral Degree, University of Delaware,2010.
    [123]. Gomaa, A., K.M.Z. Islam, and N. Al-Dhahir, Two Novel Compressed-Sensing Algorithms for Nbi Detection in Ofdm Systems. IEEE International Conference on Acoustics, Speech, and Signal Processing,2010:p.3294-3297.
    [124]. Davenport, M.A., et al., Signal Processing With Compressive Measurements. IEEE Journal of Selected Topics in Signal Processing,2010.4(2):p.445-460.
    [125]. Wang, Z.M., et al., Compressed UWB signal detection with narrowband interference mitigation. IEEE International Conference on Ultra-Wideband, Vol 2, Proceedings, 2008.2:p.157-160.
    [126]. Duarte, M.F., et al. Sparse signal detection from incoherent projections. IEEE international conference on ICASSP,2006:.
    [127]. Davenport, M.A., et al. The smashed filter for compressive classification and target recognition.2007. http://hdl.handle.net/1911/21679
    [128]. Duarte, M.F., et al. Multiscale Random Projections for Compressive Classification. IEEE International Conference on. Image Processing,2007.p.161-164.
    [129]. Wright, J., et al., Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009.31(2):p.210-227.
    [130]. Haupt, J., et al., Compressive Sampling for signal classification.2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Vols 1-5,2006:p.1430-1434.
    [131]. Haupt, J. and R. Nowak, Compressive sampling for signal detection. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol Ⅲ, Pts 1-3, Proceedings, 2007:p.1509-1512.
    [132]. van Zelst, A. and T.C.W. Schenk, Implementation of a MIMO OFDM-based wireless LAN system. IEEE Transactions on Signal Processing,2004.52(2):p.483-494.
    [133]. Forenza, A., et al., Performance of the MIMO downlink channel with multi-mode adaptation and scheduling. IEEE 6th Workshop on Signal Processing Advances in Wireless Communications,2005:p.695-699.
    [134]. Knopp, R. and P.A. Humblet. Information capacity and power control in single-cell multiuser communications. IEEE International Conference on Communications,1995. ICC'95 Seattle,'Gateway to Globalization',1995.p.331-335.
    [135]. Kuhne, A. and A. Klein, Adaptive MIMO-OFDM using OSTBC with imperfect CQI feedback. International Itg Workshop on Smart Antennas,2008:p.82-89.
    [136]. Donoho, D.L., For most large underdetermined systems of equations, the minimal 1(1)-norm near-solution approximates the sparsest near-solution. Communications on pure and applied mathematics,2006.59(7):p.907-934.
    [137]. A. Goldsmith, Wireless Communication, Chapter 6, Cambridge University Press,2005.
    [138]. Vicario, J.L., et al. A Throughput Analysis for Opportunistic Beamforming with Quantized Feedback. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications,.2006.p.1-5.
    [139]. Spencer, Q.H., et al., An introduction to the multi-user MIMO downlink. IEEE Communications Magazine,2004.42(10):p.60-67.
    [140]. Pham, H.H., T. Taniguchi, and Y. Karasawa, Spatial-temporal adaptive MIMO beamforming for frequency-selective fading channels. IEICE Transactions on Communications,2007. E90b(3):p.578-585.
    [141]. Wang, C. and R.D. Murch, MU-MISO transmission with limited feedback. IEEE Transactions on Wireless Communications,2007.6(11):p.3907-3913.
    [142]. Trivellato, M., S. Tomasin, and N. Benvenuto, On Channel Quantization and Feedback Strategies for Multiuser MIMO-OFDM Downlink Systems. IEEE Transactions on Communications,2009.57(9):p.2645-2654.
    [143]. Shenouda, M.B. and T.N. Davidson, Tomlinson-Harashima precoding for broadcast channels with uncertainty. IEEE Journal on Selected Areas in Communications,2007. 25(7):p.1380-1389.
    [144]. Dietrich, F.A., P. Breun, and W. Utschick, Robust Tomlinson-Harashima precoding for the wireless broadcast channel. IEEE Transactions on Signal Processing,2007.55(2):p. 631-644.
    [145]. Yoo, T. and A. Goldsmith, On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communications,2006. 24(3):p.528-541.
    [146]. Zhang, J., et al., Multi-Mode Transmission for the MIMO Broadcast Channel with Imperfect Channel State Information. IEEE Transactions on Communications,2011. 59(3):p.803-814.
    [147]. Ding, P.L., D.J. Love, and M.D. Zoltowski, Multiple antenna broadcast channels with shape feedback and limited feedback. IEEE Transactions on Signal Processing,2007. 55(7):p.3417-3428.
    [148]. Caire, G. and H. Shirani-Mehr, Feedback Schemes for Multiuser MIMO-OFDM Downlink. Information Theory and Applications Workshop,2008:p.54-61.
    [149]. Dabbagh, A.D. and D.J. Love, Multiple Antenna MMSE Based Downlink Precoding with Quantized Feedback or Channel Mismatch. IEEE Transactions on Communications, 2008.56(11):p.1859-1868.
    [150]. Trivellato, M., F. Boccardi, and H. Huang, On Transceiver Design and Channel Quantization for Downlink Multiuser MIMO Systems with Limited Feedback. IEEE Journal on Selected Areas in Communications,2008.26(8):p.1494-1504.
    [151]. Qaseem, S.T., T.Y. Al-Naffouri, and S. Alghadhban. Compressive sensing for feedback reduction in MIMO broadcast channels. IEEE 17th International Conference on Telecommunications (ICT),.2010.p.356-361.
    [152]. Shirani-Mehr, H. and G. Caire, Channel State Feedback Schemes for Multiuser MIMO-OFDM Downlink. IEEE Transactions on Communications,2009.57(9):p. 2713-2723.
    [153]. Bajwa, W.U., et al., Compressed Channel Sensing:A New Approach to Estimating Sparse Multipath Channels. Proceedings of the IEEE,2010.98(6):p.1058-1076.
    [154]. Molisch, A.F., Ultrawideband propagation channels-Theory, measurement, and modeling. IEEE Transactions on Vehicular Technology,2005.54(5):p.1528-1545.
    [155]. Czink, N., et al., Cluster characteristics in a MIMO indoor propagation environment. IEEE Transactions on Wireless Communications,2007.6(4):p.1465-1475.
    [156]. Vuokko, L., et al., Measurement of large-scale cluster power characteristics for geometric channel models. IEEE Transactions on Antennas and Propagation,2007. 55(11):p.3361-3365.
    [157]. Gilbert, A.C., S. Muthukrishnan, and M.J. Strauss, Approximation of functions over redundant dictionaries using coherence. Proceedings of the Fourteenth Annual Acm-Siam Symposium on Discrete Algorithms,2003:p.243-252.
    [158]. Donoho, D.L. and X.M. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory,2001.47(7):p.2845-2862.
    [159]. Vary, P. and R. Martin, Digital speech transmission:enhancement, coding and error concealment.2006:Wiley.
    [160]. Song, H., W. Seo, and D. Hong, Compressive Feedback Based on Sparse Approximation for Multiuser MIMO Systems. IEEE Transactions on Vehicular Technology,2010.59(2): p.1017-1023.
    [161]. Zhang, L.M., et al., On the Minimum Differential Feedback for Time-Correlated MIMO Rayleigh Block-Fading Channels. IEEE Global Telecommunications Conference Globecom,2010.
    [162]. S.M.Kay, Fundamentals of statistical signal processing detection theory, vol.2, Prentice Hall PTR,1998.
    [163]. Kennedy, J. and R. Eberhart. Particle swarm optimization. IEEE international conference on neural networks.1995:p.1942-1948.
    [164]. Kashan, A.H. and B. Karimi, A discrete particle swarm optimization algorithm for scheduling parallel machines. Computers & Industrial Engineering,2009.56(1):p. 216-223.
    [165]. Davenport, M.A., Compressive domain interference cancellation.2009, DTIC Document.
    [166]. Elad, M., Optimized projections for compressed sensing. IEEE Transactions on Signal Processing,2007.55(12):p.5695-5702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700