用户名: 密码: 验证码:
航空发动机单晶叶片的多轴低周疲劳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶高温合金具有优异的高温力学性能,是制造先进航空发动机涡轮叶片的主要材料。涡轮叶片工作在高温、高压和高转速的环境中,并且受到反复的疲劳载荷作用,疲劳断裂是引起叶片断裂的一个主要原因。本文将晶体塑性理论和非线性运动硬化规律应用于低周疲劳研究,采用理论分析、数值模拟与试验研究相结合的方法,基于国内第一代镍基单晶高温合金DD3,以航空发动机单晶叶片为研究对象,对其单轴、多轴疲劳等多种疲劳形式进行了深入系统的研究,以期探索一种合理有效的航空发动机单晶叶片低周疲劳本构模型。论文的主要工作如下:
     1.在Hill屈服准则基础上,考虑单晶材料剪应力分量之间的相互作用对屈服的影响,提出一个更适合单晶的屈服准则(简称SC屈服准则),SC屈服准则能更精确地预测DD3三个主要承载方向的屈服应力。以此为基础,建立了一个基于晶体塑性理论和非线性运动硬化的航空发动机单晶叶片低周疲劳本构模型(简称NLDH本构模型),并给出了NLDH本构模型中运动硬化背应力、参考剪应力、分解剪切应力的确定方法,开发了基于有限元软件ABAQUS的用户子程序,实现了SC屈服准则和NLDH本构模型数值模拟工具的开发。
     2.应用NLDH本构模型对DD3单晶三种晶体取向的单轴低周疲劳标准试样的应力-应变响应进行了模拟,并开展了相应的试验研究。有限元分析方法模拟的应力-应变曲线和试验结果非常吻合,证明了NLDH本构模型在单晶单轴低周疲劳预测中的应用可行性。试验结果还表明:DD3单晶合金的单轴低周疲劳具有显著的各向异性,以[111]取向的寿命最长,[001]取向次之,[011]取向的寿命最短。此外,本文还首次探讨了棘轮效应对单晶低周疲劳寿命的影响。
     3.应用NLDH本构模型对带切口的DD3单晶试样低周疲劳应力-应变响应进行了模拟,并开展了不同温度和应力比条件下的带切口单晶试样的低周疲劳行为的试验研究。有限元分析结果表明:试样的切口尖端都存在着应力松弛现象,应力松弛的程度受加载条件和应力集中程度的影响,应力松弛能在一定的程度上减弱疲劳裂纹的扩展速率,从而延长疲劳寿命。同时,切口尖端出现了明显的棘轮效应,当塑性变形累积增加到一定的程度,切口就会有裂纹启裂直至试样最后断裂。试验结果表明:在相同温度和应力比条件下,切口疲劳寿命受应力集中程度和加载条件的共同影响,这与有限元分析结果是一致的。因此,在分析某一部件切口位置的疲劳寿命时,必须把部件切口部位的应力集中程度和其实际受力情况进行综合考虑。此外,采用有限元计算结果预测的切口试样低周疲劳寿命与试验得到的低周疲劳寿命基本一致,证明了NLDH本构模型可以应用到多轴应力状态下的低周疲劳行为研究。
     4.利用正交优化试验设计方法进行了非标准DD3单晶薄壁圆筒试样拉-扭复合加载下的试验方案设计,首次进行了非标准DD3单晶薄壁圆筒试样的设计和加工。首次进行了非标准DD3单晶薄壁圆筒试样的拉-扭复合加载低周疲劳试验,并利用电子扫描显微镜观察了断口,对试验结果进行比较全面深入地分析。利用NLDH本构模型对薄壁圆筒试样-多轴应力下的低周疲劳行为进行了有限元分析和寿命预测,有限元模拟结果能在一定程度反映拉-扭加载下的低周疲劳行为特性,寿命预测也有较高的准确度,这进一步验证了本文提出的NLDH本构模型在多轴低周疲劳分析中的可行性。
     5.采用国外先进的XactLIFETM系统和本文提出的NLDH本构模型分别对某单晶涡轮叶片出现的裂纹故障进行了深入的分析,两系统都能较为准确的预测该涡轮叶片的断裂位置。但XactLIFETM系统分析认为蠕变是裂纹形核的主要驱动力。而NLDH本构模型预测的断裂模式是疲劳断裂,这与该单晶涡轮叶片的断裂形貌更为一致,说明本文提出的NLDH本构模型可以更好的描述镍基单晶涡轮叶片的断裂机理。
With superior high-temperature mechanical properties, single crystal blades have been introduced into most of the advanced aero-engines. Fatigue fracture is a pervasive problem because of elevated temperature, pressure and rotating speed and iterative fatigue loading. Taking aero-engine single crystal blade made by nickel-based single crystal superalloy DD3 as its objective, some main research on low cycle fatigue (LCF) in this paper is performed under the crystal plastic theory and non-linear dynamic hardening rule, by methods of theoretical analysis and numerical simulation combing with experiment research. After deep and systematic research on kinds of fatigues such as un-axial fatigue, notch fatigue and multi-axial fatigue, the writer tries to seek after a reasonable and effective aero-engine single crystal blade LCF constitutive model. The main works described in the paper are:
     (1) A more fitting yield rule (SC rule) was put forth to estimate yield stress along three major bearing orientations for single crystal based on Hill's yield rule. An aero-engine single crystal blad LCF constitutive model (NLDH model) was set up by crystal plastic theory and non-linear dynamic hardening rule, and the calculating methods of dynamic hardening back stress, reference shear stress and resolved shear stress in the model were given. The user subroutine UMAT based on the finite element program ABAQUS was compiled, and the numerical simulation tool about SC rule and NLDH model was empoldered.
     (2) The NLDH model was used to predict the LCF behavior along DD3 three crystal orientations with finite element (FE) method. And then relevant tests were performed. The FE result was in good agreement with that of the experiment, which indicated that the NLDH model was feasible in nickel-based SC un-axial LCF. Furthermore, the experiment results showed that DD3 had obviously anisotropic for un-axial LCF, [111] had the longest fatigue life, [001] took second place and [011] was the shortest.The effect of ratcheting on LCF of SC was first discussed.
     (3) The NLDH model was used to predict the LCF behavior of SC notched specimens under different conditions. Stress relaxation and ratcheting at notch tip was observed from the FE simulation under fatigue loading. Stress relaxation could decrease the rate of crack propagation and prolong fatigue life. The presence of ratcheting showed that crack at notch tip would grow till rupture when plastic distortion cumulating to some degree. And then relevant experiments were carried out, and the scanning electron microscopy (SEM) was employed to investigate the fracture mechanism. The experimental results showed that both stress concentration factor and loading conditions affected notched specimens LCF life under the same temperature and stress ratio, which was in good agreement with the results of FE. Thus, stress concentration and loading conditions should be considered together in the analysis of fatigue life at some especial position.The predicted life with simulation results was true. All of these proved the feasibility of developed model applying to multi-axial LCF for SC.
     (4) The paper presented orthogonal experimental design (OED) method for the thin-walled cylindrical tensile-torque experiment schemes of DD3 SC. It was the first time that the design and manufacture of non-standard thin-wall cylindrical specimens were performed. The tensile-torque experiments at elevated temperature on DD3 SC thin-wall cylinder were successfully completed for the first time, and the SEM was employed to investigate the fracture mechanism too. All experimental results were studied entirely.The NLDH model was used to predict the LCF behavior of thin-wall cylindrical specimens, and the simulation results reflected the LCF characteristics under tensile-torque loading to some degree, the life prediction was in good agreement with the test results, which further demonstrated the feasibility of NLDH model in multi-axial LCF.
     (5) An in-depth analysis of the blade crack was undertaken using some advanced XactLIFETM system and the NLDH model respectively. The two methods both predicted the exact fracture position at turbine blade, but the fracture modes were different:creep is the major driver of crack with XactLIFETM system, and LCF rupture with the NLDH model. The later agreed with the fracture appearance, which showed the NLDH model could depict the fracture mechanism of SC turbine blade more exactly.
引文
[1]Hill R. A theory of the yielding and flow of anisotropic metals. Proc Roy Soc (London), Ser A,1948,193(A1033):281-296.
    [2]Hill R. The Mathematical Theory of Plasticity. London:Oxford University Press, 1950.
    [3]Tsai S W, Wu E M. A general theory of strength for on isotropic mater.Composite Material,1971,5:58.
    [4]何君毅,林祥都.工程结构非线性问题的数值解法.北京:国防工业出版社,1994.8
    [5]Liu C, Huang Y, Stout M G. On the asymmetric yield surface of plastically ortho tropic materials:A phenomendogical study. Acta Mater.,1997,45(6): 2396-2406
    [6]周柏卓,聂景旭.正交各向异性材料屈服准则研究.航空发动机,1996,(3):30-35
    [7]丁智平,刘义伦,尹泽勇等.镍基单晶高温合金的屈服准则研究.机械强度,2004,26(2):175-179.
    [8]丁智平,刘义伦,尹泽勇等.面心立方晶体单晶材料弹塑性本构模型.中南大学学报,2004,35(13):423-428
    [9]丁智平,刘义伦,尹泽勇等.镍基单晶合金弹塑性本构模型.航空动力学报,2004,19(5):755-761
    [10]丁智平,刘义伦,尹泽勇等.立方晶体单晶材料屈服面的研究.力学与实践,2004,16:14-18
    [11]Lee K D, Kremple E. An orthotropic Theory of viscoplasticity Bases on Overstress for Thermo-mechanical Deformations. Int. J. Solids Struc. 1991;27:1445-1459
    [12]岳珠峰,吕震宙,郑长卿等.一种立方对称晶体结构的唯象连续非线性本构模型及其分析.机械强度,1996,18(2):38-41
    [13]G. I. Taylor. Plastic Strain in Metals. J. Inst. Met,1938,62:307-324.
    [14]G. I. Taylor, C. F. Elam. The Distortion of an Aluminum Crystal during a Tensile Test. Proceedings of the Royal Society,1923,102A:643-644. London.
    [15]G. I. Taylor, C. F. Elam. The Plastic Extension of Fracture of Aluminum Crystal. Proceedings of the Royal Society,1925,108A:643-644. London.
    [16]G. I. Taylor. The Mechanism of Plastic Deformation of Crystal. Part I. Theoretical. Proceedings of the Royal Society,1934,145 A:362-386. London.
    [17]E. Orowan. Z. Phys,1934,89:634-651.
    [18]E. Schmid. Plasticity of Crystal,1935.
    [19]Polanyi VM,Z. Phy,1934,89:660-673
    [20]R. Hill. J.Mech. Phys.Solids.1966,14:95-110.
    [21]R. Hill, J. R. Rice. Constitutive Analysis of Elastic-Plastic Crystal at Arbitrary Strain. J. Mech Phys. Solids.1972,20:401-415.
    [22]R. J. Asaro, J. R. Rice. Strain Localization in Ductile Single Crystal. J. Mech Phys. Solids.1977,25:309-338.
    [23]R. J. Asaro. Crystal Plasticity. J. Appl.Mech.1983,50:921-934.
    [24]R. J. Asaro. Micromechanics of Crystals. In:Advances in Applied Mechanics, 23(1983):Eds.J. W. Hutchinson.
    [25]J. R. Rice. Inelastic Constitutive Relations for Solids:an Internal-Variable Theory and its Application to Metal Plasticity. J. Mech. Phys. Solids,1971, 19:433-455.
    [26]D. Peirce, R. J. Asaro, A. Needleman. An Analysis of Non-uniform and Localized Deformation in Ductile Single Crystal [J]. Acta Metal,1982, 30:1087-1119.
    [27]D. Peirce, R. J. Asaro, A. Needleman. Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metal,1983,31:1951-1976.
    [28]S. N. Nasser. Rate-Dependent Finite Elastic-Plastic Deformation of Poly crystals.Proc.R.Soc. Land,1986, A407:45-49
    [29]M. M. Rashid, S. N. Nasser. A Constitutive Algorithm for Rate-Dependent Crystal Plasticity. Comput. Methods Appl. Mech Engrg.1992,94:201-228.
    [30]冯露,张克实,张光.基于能量极值原理的单晶体塑性滑移的有限变形分析.固体力学学报,2002,23(3):280-287
    [31]张光,张克实,冯露.率相关晶体塑性模型的塑性各向异性分析.应用数学和力学,2005,26(1):111-118
    [32]尹泽勇,岳珠峰.各向异性单晶合金结构强度与寿命.北京:国防工业出版社,2003.
    [33]岳珠峰,郭一,郑长卿.Ni基单晶高温合金结构强度与寿命研究方法分析.机械强度,1994,16(2):63-71.
    [34]岳珠峰,吕震宙,郑长卿.Ni基单晶高温合金蠕变过程中的方向特性研究.机械强度,1995,17(4):57-61.
    [35]岳珠峰,郑长卿,尹泽勇.Ni基单晶高温合金的蠕变本构方程及寿命预测模型研究.机械强度,1994,16(4):1-5.
    [36]岳珠峰,郑长卿.单晶叶片材料拉/压屈服特性的力学研究.机械强度,1993,15(4):53-58.
    [37]岳珠峰,陶仙德,尹泽勇.一种镍基单晶超合金高温低周疲劳的晶体取向相关性模型.应用数学与力学,2000,21:373-381.
    [38]岳珠峰,吕震宙.镍基定向结晶合金蠕变损伤的细观模型.应用数学与力学,1999,20:175-180.
    [39]Z. F Yue. Multiaxial Creep Damage Constitutive Relationship for Nickel-Base Single Crystal Superalloys Based on the Microstructural Assessment and Application. WCCM V, Fifth world congress on the computerational mechanics, Vienna, Austria,2002:July 6-12.
    [40]Z. F Yue, M. Probst-Hein, G. Eggeler. Influence of Boundary Conditions on the Finite Element Creep Stress and Strain Analysis of a Double Shear Specimen for Isotropic Creep Conditions. Materialwissenschaft und Werkstofftechnik,2002, 33(7).
    [41]Y. Z. Yong, C. X. Ming, Y. Z. Guo, Z. F. Yue. Study on the Strength and Life of Anisotropic Single Crystal Blade-Part 1:Crystallographic Constitutive Models and Applications. Chinese Journal of Aeronautics,2001,14(1):18-23.
    [42]Y. Z. Yong, C. X. Ming, Y. Z. Guo, Z. F. Yue. Study on the Strength and Life of Anisotropic Single Crystal Blade-Part 2:Experimental Research. Chinese Journal of Aeronautics,2001,14(1):24-29.
    [43]Z. F. Yue, Z. Z. Lu. The Influence of Crystallographic Orientation and Strain Rate on the High Temperature Low Cyclic Fatigue Property of a Nickel-base Single Crystal Superalloy. Metallurgical and Material Transaction,1998,29A: 1093-1099.
    [44]Z. F. Yue, Z. Z. Lu. Life Study of Nickel-Base Single Crystal Turbine Blade: Viscoplastic Crystallographic Constitutive Behavior. Theoretical and Applied Fracture Mechanics,1996,24:139-145.
    [45]Z. F. Yue, Z. Z. Lu. Evaluation of Creep Damage Behavior of Nickel-Base Directionally Solidified Superalloys with Different Crystallographic Orientations. Theoretical and Applied Fracture Mechanical,1996,25:126-138.
    [46]Z. F. Yue, Z. Z. Lu. The Creep-Damage Constitutive Life Predictive Model for Nickel-base Single Crystal Superalloys. Metallurgical and Material Transaction, 1995,26A:1052-1067
    [47]万建松.基于有限变形晶体滑移理论的单晶力学行为及应用研究[博士学位论文].西安:西北工业大学,2003.
    [48]于庆民.基于晶体塑性理论的镍基单晶构件力学性能的有限元模拟[硕士学位论文].西安:西北工业大学,2005.
    [49]温志勋.晶体塑性理论及其在镍基单晶和双晶合金中的应用[硕士学位论文].西安:西北工业大学,2006.
    [50]W. Prager and P. G. Hodge., Theory and perfectly plastic solids, New York wiley,1951
    [51]Armstrong, P.J., Frederick, C.O., A Mathematical Representation of the Multiaxial Bauschinger Effect. CEGB Report RD/B/N731. Berkeley Nuclear Laboratories,1996.
    [52]Chaboche, J.L., Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bull. Acad. Pol. Sci. Ser. Sci. Tech.1977,25: 33-48.
    [53]A.N.Suprun. A constitutive model with three plastic constants:The description of anisotropic work hardening. International Journal of Plasticity 2006,22:1216-1233
    [54]张克实,Brocks Wolfgang, Chaboche.热粘塑性损伤模型的应用研究.航空动力学报,2002,17(5):615-622
    [55]杨显杰,高庆,蔡力勋等.304不锈钢在室温下非比例应力和应变循环变形行为实验研究.金属学报,2004,40(9):935-942
    [56]杨显杰,高庆,向阳开,等.紫铜的非比例循环塑性变形行为实验研究.金属学报,1998,34(10):1055-1060
    [57]杨显杰,高庆,蔡力勋等.纯铝的多轴非比例循环塑性行为实验研究.西南交通大学学报,1999,35(5):485-490
    [58]I.N.Basuroychowdhury, G.Z.Voyiadjis. A multiaxial cyclic plasticity model for non-proportion loading cases. International Journal of Plasticity, 1998,14(9):855-870
    [59]H.Jahed, S.B.Lambert, R.N.Dubey. Total deformation theory for non-proportional loading. International Journal of Pressure Vessels and Piping.1998,75:633-642
    [60]Mcdowell D.L. A two surfaces model for transient non-propotional cyclic plasticity:Part Ⅰ-Development of appropriate equations. Journal of applied mechanics,1982,52:298-308
    [61]H.W.Zhang,周春田,黄克智等.率无关非比例循环弹塑性本构模型.力学学报,1996,28(2):171-180
    [62]于海生,李佳.复杂循环载荷条件下金属的应力、应变规律.机械科学与技术,2001,20(6):923-926
    [63]赵社戌,匡震邦.考虑路径相关性的非比例循环塑性本构模型.力学学报,1999,31(4):484492
    [64]郭运强.循环载荷作用下镍基高温合金的微观塑性和后继破坏分析.西北工业大学硕士学位论文,2008.
    [65]徐.疲劳强度.北京:高等教育出版社,1988
    [66]Fash J W, Socie D F, Mcdodwell D L, Miller K J,Brown M W,ed. Fatigue Life Estimates for a Simple Notched Component under Biaxial Loading. Multiaxial Fatigue. ASME STP853,1985:496-513
    [67]Garud Y S. A new approach to the evaluation of fatigue under multi-axial loading. Transaction ASME, J. Eng. Mater. Tech.,1981,103:118-125.
    [68]Ellyin F, Golos K. Multi-axial fatigue criterion. Transaction ASME, J. Engng. Mater. Tech,1988,110:63-68.
    [69]Ellyin F, Golos K. In-phase and out-of-phase multi-axial fatigue.Transaction ASME, J. Engng. Mater. Tech,1991,113:112-118.
    [70]Eliyin F, rown M W,Miller K J ed. Cyclic Strain Energy Density as a Criterion for Biaxial and Multiaxial Fatigue. EGF Publications 3,1987:571-583
    [71]Glinka G, Shen G, Plumtree A. A multi-axialfatigue strain energy density parameter related to the critical fracture plane. Fatigue. Frac. Eng. Mater. Struct.1995,18(1):36-46.
    [72]Glinka G, Shen G, Plumtree A. Mean stress effects in multiaxial fatigue Fatigue. Frac. Eng. Mater. Struct.1995,18(6-8):755-764.
    [73]Pan W F, Hung C Y. Chen L L. Fatigue life estimation under multiaxial loading. Int.J.Fatigue,1999,21:3-10.
    [74]Lohr R D, Ellision G D. A Simple Theory for Low Cycle Multiaxial Fatigue. Fatigue Frac t Engng Mater Struct,1980,3:1-17
    [75]Kanazawa K, Miller K J, Brown M W. Low-cycle Fatigue under Out-of-phase Loading Conditions. Transactions of ASME:J of Engng Mater and Techno,1997,1:156-164
    [76]Socie D F, Shield T W. Mean Stress Effects in Biaxial Fatigue of Inconel 718. ASME J of Engng Mater and Techno,1984,106:226-232
    [77]Fatemi A, Socie D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Engng Mater Struct,1988,11(3):149-165
    [78]Socie D F. Multiaxial fatigue damage models. Trans ASME, J Engng Mater.Tech,1987,109:293-298
    [79]尚德广,王德俊,周志革.一种新的多轴疲劳损伤参量.东北大学学报:自然科学版,1997,18(2):133-137.
    [80]尚德广,姚卫星,王德俊等.基于剪切形式的多轴疲劳寿命预测模型.机械强度,1999.21(2):141-144.
    [81]尚德广.多轴疲劳损伤与寿命预测的研究.沈阳:东北大学,1996
    [82]尚德广,王德俊.多轴疲劳强度.北京:科学出版社,2007
    [83]尚德广,王大康,李明.基于临界面法的缺口件多轴疲劳寿命预测.机械强度,2003,25(2):212-214
    [84]尚德广,孙国芹,蔡能等.高温比例与非比例加载下多轴疲劳寿命预测.机械强度,2006,28(2):245-249
    [85]Shang D G, Wang D J. A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue,1998,20(3):241-245
    [86]Shang D G, Yao W X, Wang D J. A simple approach to description of multiaxial cyclic stress-strain relationship. International Journal of Fatigue,2000,22(3):251-256
    [87]Chen X, Gao Q, Abel A, WuS. Evaluation of cycle fatigue under non-proportional loading. Fatigue Frac. Eng. Mater. Struct.,1996,19(10): 1161-1168.
    [88]Chen. X, Xu. S, Huang. D. A critical plane-strain energy density critierion for multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Frac.Eng.Mater.Struct.,1999,22:679-686.
    [89]陈旭,安柯,齐荣.非比例载荷下304不锈钢低周疲劳寿命预测.机械强度,2001,23(3):316-318.
    [90]Farahani A V. A new energy-critical plane for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions. Int. J.Fatigue,2000, (22):295-305.
    [91]王雷,王德俊.多轴疲劳寿命预测.东北大学学报:自然科学版,2002, 23(2):174-177.
    [92]王雷,王德俊.一种随机多轴疲劳的寿命预测方法.机械强度,2003,25(2):204-206.
    [93]Langlais T E, Vogel J H. Multiaxial cycle counting for critical plane methods. Int. J.Fatigue,2003(25):641-647
    [94]Navarro A, Vallellano C. A constitutive model for elast-plastic deformation under variable amplitude multiaxial cyclic loading. Int.J. Fatigue,2005(27):838-846
    [95]金丹,陈旭.多轴随机载荷下的疲劳寿命估算方法.力学进展,2006,36(1):65-74.
    [96]李玉春,姚卫星,温卫东.应力场强法在多轴疲劳寿命估算中的应用.机械强度,2002,24(2):258-261.
    [97]岳珠峰,郭一,郑长卿等.Ni基高温单晶合金结构强度与寿命研究方法分析.机械强度,1994,16(2):64-69.
    [98]Li.S. X, Smith. D. J. High temperature fatigue-creep behaviour of single crystal SRR99 Nickel base superalloys:Part 1-cyclic mechanical response. Fatigue Fract. Engng Mater,1995,18(5):617-629.
    [99]Li. S. X, Smith. D. J. High temperature fatigue-creep behaviour of single crystal SRR99 Nickel base superalloys:Part 2-fatigue-creep life behavior. Fatigue Fract. Engng Mater,1995,18(5):631-643
    [100]Mitsuru Kanda, Masao Sakane, Masateru Ohnami. High temperature multiaxial low cycle fatigue of CMSX-2 Ni-base single crystal superalloy. ASME Journal of Engineering Materials and Technology,1997,119:153-160.
    [101]Swanson G R, Arakere N K. Effect of crystal orientation on analysis of single-crystal Nickel-based turbine blade superalloys. NTIS 20000037784/XAB, 2000,2:78-80
    [102]Mac Lachlan, Knowles D M. Fatigue behaviour and lifing of two single crystal superalloys. Fatigue Fract Enging Mater Struct,2001,24:503-521
    [103]王纪安,于永泗.循环频率对CMSX-3单晶合金高温疲劳行为的影响.宇航材料工艺,2001,2:56-59
    [104]岳珠峰,吕震宙.复杂应力状态下镍基单晶合金低周疲劳寿命预测模型.稀有金属材料工程,2000,29(1):28-31
    [105]岳珠峰,陶仙德,尹泽勇等.一种镍基单晶超合金高温低周疲劳的晶体取向相关性模型.应用数学和力学,2000,21(4):373-383
    [106]丁智平,刘义伦,尹泽勇.非对称循环载荷下镍基单晶合金低周疲劳损伤研究.机械工程材料,2005,29(8):6-8
    [107]丁智平,陈吉平,尹泽勇等.非对称循环载荷下镍基单晶合金低周疲劳寿命预测.航空材料学报,2006,26(4):6-10
    [108]陈吉平,丁智平,尹泽勇.面心立方晶体单晶材料多轴低周疲劳寿命的估算方法.机械工程学报,2008,44(2):213-218
    [109]陈吉平,丁智平,尹泽勇.DD3镍基单晶合金非对称循环载荷低周疲劳寿命预测.机械强度,2006,28(2):250-254
    [110]丁智平,刘义伦,尹泽勇.复杂应力状态下镍基单晶合金低周疲劳损伤模型.应用力学学报,2005,22(2):310-314
    [111]陈吉平,丁智平,尹泽勇等.DD3镍基单晶合金低周疲劳寿命研究.机械工程材料,2006,30(4):9-13
    [112]N.Ohno, ASME Appl. Mech.Rev. Vol.43,1990, pp.283-295
    [113]Hill R. The mathematical theory of plasticity. London:Oxford University Press, 1950
    [114]周柏卓,杨士杰,聂景旭.正交各向异性材料屈服准则研究.中国航空学会第八届发动机结构强度振动学术会议论文集,中国西安,1996.44-48
    [115]赵萍,何清华,李维等.DD3单晶Hill屈服准则应用研究.航空材料学报,2010,30(3) :70-73
    [116]岳珠峰,于庆民,温志勋等.镍基单晶涡轮叶片结构强度设计.北京:科学出版社,2007
    [117]J.Lemaitre, J.L.Chaboche固体材料力学.北京:国防工业出版社,1997
    [118]HKS公司.ABAQUS用户说明书,1996
    [119]赵腾伦编著ABAQUS6.6在机械工程中的应用.北京:中国水利出版社,2007
    [120]石亦平,周玉蓉ABAQUS有限元分析实例详解.北京:机械工业出版社,2006
    [121]Martin C. Brown著Python技术参考大全.康博译.北京:清华大学出版社,2004
    [122]庄茁,张帆等ABAQUS(?)线性有限元分析与实例.北京:科学出版社,2005
    [123]尹泽勇,岳珠峰.各向异性单晶合金结构强度与寿命.北京:国防工业出版社,2003.
    [124]吴仲棠,陈德厚,钟振刚.DD3单晶涡轮叶片合金.航空材料1987,(5):1-5.
    [125]吴仲棠,温仲元,陈德厚.DD3单晶合金的成分设计和实验研究.金属学报, 1987,23:171-178.
    [126]中国航空材料手册.变形高温合金-铸造高温合金第二版(第二卷).北京:中国标准出版社,2002
    [127]陈吉平,丁智平,尹泽勇等.DD3镍基单晶合金低周疲劳寿命研究.机械工程材料,2006,30(4):9-12
    [128]魏朋义,杨治国,成晓明等.DD3单晶高温合金拉伸蠕变各向异性.航空材料学报,1999,19(3):6-12
    [129]成晓明,尹泽勇,陈兆靖.DD3单晶合金蠕变参数的确定.机械强度,2000,22(3):196-199
    [130]赵萍,杨治国,何清华.DD3单晶合金蠕变性能的试验研究.材料工程,2009,4:10-13
    [131]韩梅,骆宇时.DD3单晶高温合金的高温蠕变断裂行为.失效分析与预防,2008,3:28-31
    [132]万建松,岳珠峰.镍基单晶DD3涡轮叶片蠕变寿命晶体取向相关性分析.燃气涡轮试验与研究,2004(17),2:18-22
    [133]Gabb T P, Gayda J, Miner R V. Orientation and temperature dependence of some mechanical properties of the single crystal nickel-base superalloy N4:Part Ⅱ-Low cycle fatigue. Metall.Trans.A,1990,17A:496-505
    [134]N.X.Hou, Z.X. Wen, Q.M. Yu, Z.F. Yue. A combined high and low cycle fatigue life model used for the single crystal turbine blade. International Journal of Fatigue,2009,31(4),616-619
    [135]G. Z.Kang, Q.Gao, X. J. Yang. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratchetting of SS304 stainless steel at room temperature. Mech. Mater.,2002,34:521-531.
    [136]张娟.循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现[博士学位论文].西南交通大学,2006
    [137]刘宇杰,康国政,高庆等.调质42CrMo钢的棘轮-疲劳交互作用研究.实验室研究与探索,2007,26(11):185-187
    [138]刘宇杰,蔡力勋,邱绍宇等.描述T225NG钛合金高温单轴棘轮行为的粘塑性本构模型.西安交通大学学报,2005,39(3):321-24
    [139]Liu Yujie, Kang Guozheng, Gao Qing. Multiaxial rachteting-fatigue interaction of SS304 stainless steel.9th International Conference on Engineering Structural Integrity Assessment, Beijing, China,2006.
    [140]Kang Guozheng, Liu Yujie, Li Zhao. Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stress. Materials Science & Engineering A,2006,435-436, p396-404.
    [141]Kang Guozheng, Liu Yujie, Ding Jun. Multiaxial ratchetting-fatigue interaction of 42CrMo steels:experimental observations. International Journal of Fatigue, 2008,30,2104-2118
    [142]Kang Guozheng, Liu Yujie. Uniaxial ratchetting and low-cycle fatigue failure of the steels with cyclic stabilizing or softening feature. Materials Science & Engineering A,2008,472(1-2), p258-268.
    [143]ASME Boiler and Pressure Vessel Code, Section III. American Society of Mechanical Engineers, New York,2005.
    [144]Kerntechnischer Ausschu β (KTA), Sicherheitstechnische Regel des KTA; Teil:Auslegung, Konstruktion und Berchnung, Regeladerungsentwurf,1995.
    [145]Design Rules for Class I Equipment. RCC-MR, June,1985,RB3000.
    [146]D. L. McDowell. Stress state dependence of cyclic ratchetting behavior of two rail steels. Int. J. Plast.1995,11:397-421.
    [147]T. Hassan, S. Kyriakides. Ratchetting of cyclically hardening and softening materials, PartⅠ:Uniaxial behavior. Int. J. Plast.1994,10 (2):149-184.
    [148]T. Hassan, S. Kyriakides. Ratchetting of cyclically hardening and softening materials, PartⅡ:Multiaxial behavior. Int. J. Plast.1994,10 (2):185-212.
    [149]G Z. Kang, Q. Gao, X. J. Yang. Uniaxial cyclic ratchetting and plastic flow properties of SS304 stainless steel at room and elevated temperatures. Mech Mater,2002,34:145-159.
    [150]X. J. Yang. A viscoplastic model for 316L stainless steel under uniaxial cyclic straining and stressing at room temperature. Mech Mater,2004,36:1073-1086.
    [151]M. Mizuno, et al. Uniaxial ratchetting of 316FR steel at room temperature:I. Experiments. ASME J Eng Mate Tech,2000,122:29.
    [152]杨显杰,高庆,蔡力勋.紫铜的循环棘轮行为研究.西南交通大学学报,1997,32(6):604-610.
    [153]康国政,高庆,蔡力勋.304不锈钢非比例循环棘轮行为的实验研究.金属学报,2000,36(5):497-501
    [154]田涛,陈旭,安柯1Cr18Ni9Ti不锈钢多轴棘轮效应实验研究.机械工程材料,2002,26(1):19-21.
    [155]T. Hassan, E. Corona. Ratchetting in cyclic plasticity, PartⅠ:Uniaxial behavior. Int. J. Plast.1992,8:91-116.
    [156]T. Hassan, E. Corona. Ratchetting in cyclic plasticity, PartⅡ:Multiaxial behavior. Int. J. Plast.1992,8:117-146.
    [157]杨显杰,高庆,蔡力勋等.纯铝在单轴应力循环作用下棘轮行为的实验研究.固体力学学报,1998,19(2):133-138.
    [158]Y. Jiang, H. Sehitogu. Cyclic ratchetting of 1070 steel under multiple stress state. Inter. J. Plasticity,1994,10(5):579-608
    [159]Y. Jiang, H. Sehitogu. Multiaxial cyclic ratchetting under multiple steps loading. Inter. J. Plasticity,1994,10(5):849-870.
    [160]G. Z. Kang, Q. Gao. Uniaxial and non-proportionally multiaxial ratchetting of U71Mn rail steel:experiments and simulations. Mech. of Mater,2002,34: 809-820
    [161]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003
    [162]P. Luka's(?), L. Kunz, M. Svoboda. High-temperature ultra-high cycle fatigue damage of notched single crystal superalloys at high mean stresses. International Journal of Fatigue,2005 (27):1535-1540
    [163]A.M. Eleiche, M.M. Megahed, N.M. Abd-Allah. Low-cycle fatigue in rotating cantilever under bending.Ⅲ:Experimental investigations on notched specimens. International Journal of Fatigue,2006 (28):271-280
    [164]F.J. Gomez, M. Elices, F. Berto, P. Lazzarin. Fracture of U-notched specimens under mixed mode:Experimental results and numerical predictions. Engng Fract Mech,2008:1-14
    [165]F.J. Gomez, M. Elices, F. Berto, P. Lazzarin. A generalised notch stress intensity factor for U-notched components loaded under mixed model. Engineering Fracture Mechanics,2008 (75):4819-4833
    [166]丁智平,陈吉平,尹泽勇等.镍基单晶合金复杂应力状态低周疲劳寿命预测.稀有金属材料与工程,2006(35),10:1548-1553
    [167]丁智平,陈吉平,尹泽勇.复杂应力状态镍基单晶合金低周疲劳损伤模型.应用力学学报,2005(22),2:310-314
    [168]N.-A. Noda, M. Sera and Y. Takase, Stress concentration factors for round and flat test specimens with notches. Int. J. Fatigue,17(1995):163-178
    [169]肖林,白菊丽.Zr-4合金双轴疲劳行为及其微观机理Ⅰ:双轴疲劳变形行为.金属学报,2000,36(9):913-918
    [170]付德龙,张莉,程靳.多轴非比例加载低周疲劳寿命预测方法的研究.应用力学学报,2006,23(2):218-222
    [171]王雷,王德俊.在多轴载荷下45钢的循环特性.材料研究学报,2002,16(4):439-442
    [172]张莉,唐立强,付德龙.多轴非比例低周疲劳寿命估算方法的研究.中国机械工程,2006,17(1):95-98
    [173]肖林,宋凯,顾海澄.Zr-4合金拉-扭复合比例加载条件下的低周疲劳特性.稀有金属材料与工程,1999,28(6):349-352
    [174]Xu Chen, Dan Jin, Kwang Soo Kim, Fatigue life Prediction of type 304 stainless steel under sequential biaxial loading, Int.J.Fat.,2006,28:289-299
    [175]Xu Chen, Gang Chen, Cyclic stress-strain relationship of 63Sn37Pb solder under biaxial proportional and non-proportional loading, Materials & Design, 2007,28(1):85-94
    [176]Wang.Y,Y.Yao, W.X, A multiaxial fatigue criterion for various metallic materials under proportional and non-proportional loading, Int.J.Fat.,2006, 28:401-408
    [177]Jiao F., Osterle, W., Portella, P.D., et.al. Biaxial path-dependence of low-cycle fatigue behaviour and microstrue of alloy 800H at room temperature. Mat.Sci.Eng. A,1995,196:19-24
    [178]Bentachfine S., Pluvinage G., Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy.Eng.Fract.Meeh.,1996,54(4): 513-522
    [179]Sonsino C.M. Multi-axial fatigue of welded joints under in-phase and out-of-Phase local strains and Stresses. Int.J.Fatigue,1995,17(1):55-70
    [180]王亚芳,王心美,岳珠峰.中心孔形状记忆合金板在双轴加载下的响应研究.材料科学与工艺2006,增刊1:8-12
    [181]王万中,茆诗松.试验设计与分析.上海:华东师范大学出版社,1997
    [182]白新桂.数据分析与实验优化设计.北京:清华大学出版社,1989
    [183]董如何,肖必华,方永水.正交试验设计的理论分析方法及应用.安徽建筑工业学院学报(自然科学版),2004,12(5):103-106
    [184]郝拉娣,于化东.正交试验设计表的使用分析.编辑学报,2005,17(5):334-335
    [185]王建国,刘灵灵.非标准试样高温拉-扭引伸仪的剪切应变信号换算.理化检验-物理分册,2005,41(3):128-130
    [186]E.Fleury and L. Remy. Low cycle fatigue damage in nickel-base superalloy single crystal at elevated temperature. Mater.Sci.Eng.,1993,A167,23
    [187]李影.第二代单晶高温合金DD6的高温低周疲劳研究[博士学位论文].航 空材料研究院,2001,8
    [188]郑旭东,蔚夺魁,王兆丰等.某型航空发动机涡轮叶片和轮盘榫齿裂纹故障力学分析.航空发动机,2005,31,(3):35-38.
    [189]孟憬非,黄庆南,赵光电等.某型发动机新件涡轮叶片叶冠掉块故障分析.航空发动机,2006,32(3):16-22.
    [190]Wu X J, Koul A K. Modeling creep in complex engineering alloys creep and stress relaxation in miniature structures and components. Merchant H,ed.TMS, 1996:3-19.
    [191]赵萍,何清华,李维.某燃气涡轮工作叶片裂纹分析.航空动力学报,2009,24(9):2033-2039
    [192]钟群鹏,赵子华.断口学.北京:高等教育出版社,2006.
    [193]岳珠峰,吕震宙,杨治国等.晶体取向的偏差和随机性对镍基单晶叶片强度与蠕变寿命的影响.航空动力学报,2003,18(4):476-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700