用户名: 密码: 验证码:
地表参量遥感反演理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前向建模和基于模型的反演是定量遥感的两个主要方向。近几十年来,各国科学家在前向建模领域进行了大量的工作,提出了几百种植被与光辐射模型。而遥感模型的反演研究只是在近几年才引起科学家们较为广泛的关注。相对于前向建模而言,遥感模型的反演尚处在探索阶段,尤其在先验知识的应用、反演策略的制定和反演算法上均面临许多困难.高光谱、多角度遥感传感器的出现,丰富了遥感探测手段,为我们提供了更为丰富的光谱维、空间维信息,也对定量遥感提出越来越高的要求。如何充分利用新型遥感传感器为我们提供的种种便利,解决以前定量遥感中无法解决甚至无法想象的问题,使遥感真正进入定量化时代,是遥感科学家们面临的一项艰巨而紧迫的任务。
    本研究即是在上述背景下产生,其主要目的在于进一步完善现有反演理论,并在此基础上,探索高光谱、多角度联合反演地表参数的途径及可行性。
    在反演方面,主要分析了模型反演的误差来源、指出了先验信息、代价函数的定义形式、以及反演算法、反演策略对反演结果的影响,在此基础上,对基于不确定性和敏感性矩阵的多阶段反演策略进行改进,使其更加适合于不确定性反演。
    对于非线性遥感模型反演来说,反演算法对结果的影响不应忽略,然而在目前的遥感反演研究中,反演算法的影响很少被考虑。事实上,非线性优化问题很早就引起了人们的兴趣,但是对于这类问题,至今尚无很好的解决办法。遥感反演中对于非线性反演问题一般采用确定性搜索算法来解决。近年来,随着计算技术的发展,一些新的智能算法(如模拟退火算法,模拟进化算法等)得到了迅速发展和广泛应用。为非线性优化问题的解决提供了一条新途径。本文在综合考虑各种算法的优缺点基础上,将基于实编码的遗传算法引入遥感模型反演中,并通过与确定性搜索算法相比较,肯定了遗传算法在解决非线性反演问题中的作用。
    陆地遥感反演本质上是一个病态反演问题,在反演过程中必须尽可能利用先验知识。本文探讨了从图像本身获取先验信息以及高光谱、多角度结合反演地表参量的可行性,提出了高光谱、多角度结合反演地表参量的思路与方法,并尝试采用GOMS 模型和线性光谱混合模型反演相结合,利用BOREAS 数据提取像元组份高光谱和结构参数以及植冠覆盖度等信息。
    本研究主要有以下创新:
    提出广义遥感反演与狭义遥感反演以及类内混合像元分解与类间混合像元分解的概念,明确所研究内容的内涵和外延。
    从理论上分析了遥感反演的误差来源,并分别加以分析,给出相应的解决方案。
    对基于不确定性和敏感性矩阵的多阶段反演策略进行了改进.采用使不敏感参数按其先验分布随机变化而不是固定在先验值的方法,以获得待反演参数的不确定性。
Both modeling and model-based inversion are important for quantitative remote sensing. Hundreds of models related to vegetation and radiation have been established during the past decade years. However, the model-based inversion caused the attentions of scientists only in recent years. Compared to modeling, model-based inversion is still in the stage of exploration. Lots of difficulties exist in the application of a priori information, inverse strategy and inverse algorithm. The appearance of hyperspectral and multiangular remote sensor enhanced the exploration means, and provided us more spectral and spatial dimension information than before. How to utilize these information to solve the problems faced in quantitative remote sensing to make remote sensing really enter the time of quantification is an arduous and urgent task for remote sensing scientists. Remote sensing inversion is paid more and more attentions in recent years. In a series of international study projections, such as IGBP, WCRP and EOS, remote sensing inversion is included as a focal point of study.
    In China, scientists, represented by Prof. Li X.W., not only have made great achievements in forward modeling, but also realized the importance of remote sensing inversion and studied it as a special direction early. They've done lots of creative work for remote sensing inversion.
    This study arises from the above background. Its main aim is to perfect current inverse theory. On this basis, exploring the method and feasibility to extract terrestrial parameters from hyperspectral and multiangular data.
    On the inverse problem, we analyzed the error source of model-based inversion, and pointed out the effect of a priori information, merit function, inverse algorithm and strategy on the inverse result. On this basis, Improving the Bayes inversion and the USM-based multistage inverse strategy to make them adapt to uncertain inversion. At the same time, we introduced the real-valued Genetic Algorithm (GA) to remote sensing inversion, and compared it with deterministic searching method. The result shows that GA functions well for the nonlinear inverse problem.
    In this dissertation, we put forward the idea and method to combine hyperspectral and multiangular data together to extract terrestrial parameters, and tried to inverse component signatures and structure parameters from Boreas data using GOMS model and linear spectral unmixing model.
    The dissertation has following special points:
    1. Putting forward the concept of broad sense and narrow sense remote sensing inversion and the concept of subpixel unmixing between classes and within classes. 2. Analyzing the error source of remote sensing inversion, and providing the corresponding solution scheme. 3. Improving the USM-based multistage inverse strategy. Using the method to vary insensitivity parameters according to their priori distributions instead of fixing them to priori values to acquire the uncertainties of parameters to be inverted. 4. Suggesting paying some attentions to the constraint conditions for uncertain inversion to make them suitable to circumstances where models or observed data are not certain enough. 5. Introducing real-valued GA to remote sensing model inversion, and improving the objectivity and global convergence of traditional GA from some aspects, such as the initial population, the crossover rate, etc. 6. Comparing GA with general deterministic searching method, analyzing the efficiency and deficiency of GA, and approving the validity of GA in resolving the problem of nonlinear model inversion. On this basis, putting forward the mixed GA method. 7. Presenting the idea to extract terrestrial parameters from hyperspectral and multiangular data together, and studying its validity. 8. Studying the method to acquire and express a priori information, and probe the possibility to extract a priori information from remote sensing images directly. 9. Deducing the formula to calculate crown cover projection(CCP) based on Geometrical-Optical model.
引文
1. Abdelgadir A. Abuelgasim, Sucharita Gopal, and Alan H. Strahler,(1998),Forward and inverse modeling of canopy directional reflectance using a neural network ,Int. J. Remote Sensing.,19(3), 453-471.
    2. Adams, J. B., Smith, M. O., and Johnson P. E. (1996), Spectral mixture modeling: A new analysis of rock and soil type at the Viking lander I site, J. Geophys. Res. 91:8098-8112.
    3. Alan H. Strahler and David L.B. Jupp (1990), Modeling bi-directional reflectance of forest and woodlands using Boolean models and Geometric Optics, Remote Sens. Environ. 34:153-166.
    4. Alan H. Strahler, Yecheng Wu, et al. (1988), Remote estimation of tree size and density from satellite imagery by inversion of a geometric-optical canopy model, Presented at the Twenty-second International Symposium on Remote Sensing of Environment, Abidjan, Cote d'Ivoire.
    5. Approach to Hyperspectral Subpixel Demixing.IEEE transactions on geoscience and remote sensing a publication of the IEEE Geoscience and Remote Sensing Society. 37, no.2, (1999): 846 -849.
    6. Asrar, G., Fuchs,M.,Kanemasu,E.t.,and Hatfield,J.H.(1984), Estimating absorbed photo-synthetic radiation and leaf area index from spectral reflectance in wheat, Agron. J. 76:300-306.
    7. Asrar, G., Kanemasu, E. T., and Yoshida, M. (1985), Estimate of leaf area index from spectral reflectance of wheat under different cultural practices and solar angles, Remote Sens. Environ.,17:1-11.
    8. Boardman, J. W., 1989, Inversion of imaging spectrometry data using singular value decomposition: in Proceedings, IGARSS'89, 12th Canadian Symposium on Remote Sensing, v. 4., p. 2069-2072.
    9. Boardman, J. W., and Kruse, F. A., (1994), Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, p. I-407-I-418..
    10. Boardman, J. W., Kruse, F. A., and Green, R. O., (1995), Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1, v. 1, p. 23-26.
    11. Bryan, et. al.,(1990), Radiometric Measurements of Gap Probability in Conifer Tree Canopies, Remote sens. Eviron., 34: 179-192.
    12. Charles Ichoku and Arnon Karnieli (1996), A review of mixture modeling techniques for sub-pixel land cover estimation, Remote Sensing Review, 13:161-186.
    13. Chen, J.M. and S. Leblance,(1997), A 4-scale bi-directional reflection model based on canopy architecture, IEEE Translations on Geosicence and Remote Sensing, 35:1316-1337.
    14. Clark, R. N., and Swayze, G. A., (1995), Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials: The USGS Tricorder Algorithm: in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Publication 95-1, p. 39 -40.
    15. Clevers J G P W, Buker C,van Leeuwen H J C, et al(1994). A Frame work for Monitoring Crop Growth by Combining Directional and Spectral Remote Sensing Information. Remote Sens. Environ,50:161~170.
    16. Crosta, Alvaro P ; Sabine, Charles ; Taranik, James V. , (1998),Hydrothermal Alteration Mapping at Bodie, California,Using AVIRIS Hyperspectral Data.Remote sensing of environment. 65, no. 3: 309-320
    17. Curtis E. Woodcock, John B. Collins, and Sucharita Gopal (1994), Mapping forest vegetation using Landsat TM imagery and a canopy reflectance model, Remote Sens. Environ. 50:240-254.
    18. Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987) Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm. ACM Transactions on Mathematical Software 13(3):262-280.
    19. Curtis E. Woodcock, Member, IEEE, John B. Colins et al. (1997), Inversion of the Li-Strahler canopy reflectance model for mapping forest structure, IEEE Trans. Geosci. Remote sens. 35:405-414.
    20. Dawson, M. S., Fung, A. K., and Manry, M. T. (1993), Surface Parameter Retrieval Using Fast Learning Neural Networks, Remote Sens. Rev., 7: 1-18.
    21. Deering D W, Leone P (1986). A Sphere scanning Radiometer for Rapid Directional Measurements of Sky and Ground Radiance. Remote Sens Environ,19:1~24.
    22. Deering, D. W.(1995), Temporal attributes of the bidirectional reflectance for three boreal forest canopies, IGARSS’95 Proc., 1239—1241.
    23. Dong G, Li Z(1994). An Improved Method for Accurate Calculation of Albedos of Inhomogeneous Land Surfaces. Int J Remote Sens,15:531~536.
    24. Fabrio Maselli (1998), Multiclass spectral decomposition of remotely sensed scenes by selective pixel unmixing, IEEE Trans. Geosci. Remote sens. 36:1809-1819.
    25. Fraser Gemmell and Jari Varjo (1999), Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site, Remote Sens. Environ. 68:95-111.
    26. Gibbs D P, Betty C L, Fung A K, et al. Automated Measurement of Polarized Bidirectional Relectance. Remote Sens Environ,1993,43:97~114.
    27. Goel N S (1988). Models of Vegetation Canopy Reflectance and Their Use in Estimation of Biophysical Parameters from Reflectance Data. Remote Sensing Rev,4:1~213.
    28. Goel N S, Grier T. (1987), Estimation of canopy parameters of row planted vegetation canopies using reflectance data for only four view directions, Remote Sens. of Environ .21: 37 -51.
    29. Goel N S, Strebel D E (1983). Inversion of vegetation canopy reflectance models for estimating agronomic variables I: Problem definition and initial results using suits model [J]. Remote Sens Environ, 13:487
    30. Goel, N. S. and Grier, T. (1986a), Estimation of Canopy Parameters for Inhomogeneous Vegetation Canopies from Reflectance Data I. Two-Dimensional Row Canopy. Int. J. Remote Sens., 7: 665-681.
    31. Goel, N. S. and Grier, T. (1986b), Estimation of Canopy Parameters for Inhomogeneous Vegetation Canopies from Reflectance Data II. Estimation of Leaf Area Index and Percentage of Ground Cover for Row, Canopies. Int. J. Remote Sens ., 7: 1263-1286.
    32. Goel, N. S. and Strebel, D.E (1983), Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables I: Problem Definition and Initial Results Using Suits` Model [J]. Remote Sens. Environ.,13,487-507.
    33. Goel, N. S. and Thompson, R. L. (1984a), Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables III: Estimation Using Only Canopy Reflectance Data as Illustrated by the Suits Model, Remote Sens. Environ., 15: 223-236.
    34. Goel, N. S. and Thompson, R. L. (1984b), Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables IV: Total Inversion of the SAIL Model, Remote Sens. Environ., 15: 237-253.
    35. Goel, N. S. and Thompson, R. L. (1984c), Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables V: Estimation of LAI and Average Leaf Angle Using Measured Canopy Reflectances, Remote Sens. Environ., 16: 69-85.
    36. Goel, N. S. and Thompson, R. L. (1985), Optimal Solar/viewing Geometry for an Accurate Estimation of Leaf Area Index and leaf Angle Distribution from Bidirectional Canopy Reflectance Data, Int. J. Remote Sens., 6:1493-1520.
    37. Goel, N. S., Grier, T. (1987), Estimation of Canopy Parameters of Row Planted Vegetation Canopies Using Reflectance Data for Only Four View Directions. Remote Sens. Environ., 21: 37-51.
    38. Goel, N. S., Strebel, D. E., and Thompson, R. L. (1984), Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables II: Use of Angle Transforms and Error Analysis as Illustrated by Suits’model. Remote Sens. Environ. 14:77-111
    39. Gregory P. Asner, Carol A. Wessman, and Jeffrey L. Privette, Member, IEEE(1997), Unmixing the directional reflectances of AVHRR sub-pixel landcovers, IEEE Trans. Geosci. Remote sens. 35:868-878.
    40. Hall, F. G., Huemmrich, K.F.,Goetz,S.J., Sellers, P.J.,(1992),Satellite remote sensing of surface energy balance :success,failure and unresolved issue in FIFE, J. Geophys. Res. 97:19,061-19,089.
    41. Hapke B W.(1981),Bidirectional Reflectance Spectroscopy 1.Theory. J Geophys Res,86:3039~3054.
    42. Hapke B W.(1986), Bidirectional Reflectance Spectroscopy 4. The Extinction Coefficient and the Opposition Effect. Icarus,67:264~280.
    43. Harsanyi, J. C., and C. I. Chang, 1994, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach, IEEE Transactions on Geoscience and Remote Sensing, V. 32, pp. 779-785.
    44. Holland J. (1975), Adaptation in natural and arti_cial systems [M]. Ann Arbor: The University ofMichigan Press.5-15.
    45. Houck C, Joines J, and Kay M. (1996), Comparison of genetic algorithms, random restart, and two-opt switching for solving large location-allocation problems [J]. Computers&Operations Research.23 (6):587-597.
    46. Huete A R.(1988),A soil adjusted vegetation index (SAVI).Remote Sens . Environ.,25 :295-309 .
    47. Irons J R, Banson K J, Williams D L, et al.(1991), An Off nadir pointing Imaging Spectroradiometer for Terrestrial Ecosystem Studies. IEEE Trans Remote Sens,29:66~74.
    48. Jacquemoud S. (1993), Inversion of the PROSPECT+SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study. Remote Sens Environ,44:281~292.
    49. Jacquemoud,s. , and Baret, F., and Hanocq, J. F.(1992),modeling spectral and directional soil reflectance, remote sens. Environ.41:121-132。
    50. Jacquemoud,s.(1993)Inversion of the prospect+sail canopy reflectance model from Aviris equivalent spectra:theoretical study,remote sens. Environ.44:281-292。
    51. Jacquemoud,s., and Baret, F.(1990),Prospect: a model of leaf optical properties spectra. remote sens. Environ.34:75-91。
    52. Johnson, P. E., smith, M. O., Taylor-George, s. and Adam J. B. (1983), A semiempirical method for analysis of the reflectance spectra of binary mixtures, Journal of geophysical research, 88(B4): 3557-3561.
    53. Joines, J.; Houck, C. (1994),On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems With Ga's. Ieee World Congress On Computational Intelligence: Piscataway, NJ, 579-584
    54. Jupp D I B, (1991),Strahler A H. A Hotspot Model for Leaf Canopies. Remote Sens Environ,38:193~210.
    55. Jupp; D.L.B., Walker, J., Penridge, L. K. (1986), Interpretation of Vegetation Structure in Landsat MSS Imagery: A Case Study in Disturbed Semi-arid Eucalypt Woodland. Part2, Model –based Analysis, J. Environmental Management, 23:
    35-57.
    56. Kaufman Y J, Tanre D.(1992 ), Atmospherically resistant vegetation index (ARVI) for EOS MODIS. IEEE Trans . Geodesic. Remote Sens , 30 : 261 -270 .
    57. Kimes D S, Harrison P R, Ratcliffe P A(1991). A knowledge-based expert system for inferring vegetation characteristics [J]. Int J Remote Sens, 12(10): 1987-2020.
    58. Kimes D S, Kerber A G, Sellers P J. (1993), Spatial Averaging Errors in Creating Hemispherical Reflectance (albedo) Maps from Directional Reflectance Data. Remote Sens Environ,45:85~94.
    59. Kimes D S,Harrison P A,Harrison P R.(1994),Extension of off nadir view angles for directional sensor system .Remote Sens.Environ., 50 :201-211
    60. Kimes, D. S., Markham, B. L., Tucker, C. J., And McMurtrey, J.E. (1981), Temporal Relationships Between Spectral Response and Agronomic Variables of a Corn Canopy, Remote Sens. Environ., 11: 401-411.
    61. Kimes, D.S., Harrison, P. R., and Ratcliffe, P. A. (1992), Learning Class Descriptions from a Data Base of Spectral Reflectance with Multiple View Angle., IEEE Trans. Geosci. Remote Sens., 30: 315-325.
    62. Kimes, D.S., Smith, J.A., and Lin, L.E. (1981), Thermal IR Exitance Model of a Plant Canopy, Appl. Optics, 20(4): 623—632.
    63. Kimes. D.S., and Kirchner, J. A. (1982), Radiative Transfer Model for Heterogeneous 3-D Scenes, Appl. Opt., 21: 4119-4129.
    64. Knyazikhin Y V, Marshak A L, Myneni R B(1992). Interaction of Photons in a Canopy of Finite Dimensional Leaves. Remote Sens Environ,39:61~74.
    65. Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., and Goetz, A. F. H., (1993), The Spectral Image Processing System (SIPS) -Interactive Visualization and Analysis of Imaging spectrometer Data: Remote Sensing of Environment, v. 44, p. 145 -163.
    66. Kuusk A. (1995), A Fast Invertible Canopy Reflectance Model.Remote Sens Environ, 51:342~350.
    67. Kuusk A.(1991), Determination of Vegetation Canopy Parameters from Optical Measurements. Remote Sens Environ, 37:207~218.
    68. Kuusk A.(1994),A multispectral Canopy Reflectance Model.Remote Sens Environ,50:75~82.
    69. Lang, A. R. G., 项月琴,Norman, J.M. (1989), 作物结构和太阳直接辐射的透过,农业生态环境研究,气象出版社。
    70. Leory M, Roujean J L. (1994),Sun and View Angle Corrections on Reflectances Derived from NOAA/ AVH RR Data. IEEE Trans Geodesic Remote Sens, 32:684~697.
    71. Li X, Strahler A H, Woodcock C E. (1995),A Hybrid Geometric Optical Radiative Transfer Approach for Modeling Albedo and Directional Reflectance of
    Discontinuous Canopies. IEEE Trans Geosci Remote Sens,33:466~480.
    72. Li X, Strahler A H. Gap Frequency in Discontinuous Canopies, IEEE Trans Geosci Remote Sens, 1988,26:161~170.
    73. Li X, Strahler A H. Geometric optical Bidirectional Reflectance Modeling of a Coniferous Forest Canopy. IEEE Trans Geosci Remote Sens,1986,24:906~919.
    74. Li X, Strahler A H.(1985), Geometrical Optical modeling of a conifer forest canopy. IEEE Trans. Trans . Geosci Remote Sens .,GE-23 :705 -721 .
    75. Li, X., and Strahler, A. H. (1996), A Knowledge-based Inversion of Physical BRDF Model and Three Examples. Proc. Int. Geosci. Remote Sens. Symp.96 , pp. 2173-2176.
    76. Li, X., and Strahler, A.H. (1985), Geometric-optical Modeling of a Conifer Forest Canopy, IEEE Trans. Geosci. Remote Sens., GE-23: 705-721.
    77. Li, X., and Strahler, A.H. (1986), Geometric-optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy, IEEE Trans. Geosci. Remote Sens., GE-24: 906-919.
    78. Li, X., and Strahler, A.H. (1988), Modeling the Gap Probability of Discontinuous Vegetation Canopy, IEEE Trans. Geosci. Remote Sens., 26: 161-170.
    79. Li, X., and Strahler, A.H. (1992) Geometric-optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy: Effect of Crown Shape and Mutual Shadowing, IEEE Trans. Geosci. Remote Sens., 30(2): 276-292.
    80. Li, X., and Wan, Z. (1998), Comments on Reciprocity in the Directional Reflectance Modeling, Progress in Natural Science, 8(3): 354-358.
    81. Li, X., Strahler, A.H., and Woodcock, C. (1995), A Hybrid Geometric Optical-radiative Transfer Approach for Modeling Albedo and Directional Reflectance of Discontinuous Canopies, IEEE Trans. Geosci. Remote Sens., 33(2): 466-480.
    82. Li, X., Wang J., Hu, B., and Strahler, A. H. (1998), On Utilization of Prior Knowledge in Inversion of Remote Sensing Models, Science in China(Series D), 41(6): 580-586.
    83. Li, X., Yan Gujian, et al. (1997), Uncertainty and sensitivity matrix of parameters in inversion of physical BRDF models, Journal of remote sensing, vol. 1, Suppl. pp:113-122.
    84. Liang S. Strahler A H.(1995), An analytic radiative transfer model for the coupled atmosphere and canopy . J. Geophys . Res .100 : 5085 -5094 .
    85. Michalewicz Z.(1994),Genetic Algorithms + Data Structures = Evolution Programs. AI Series [M]. New York: Springer-Verlag. 89-120
    86. Myneni R B, Asrar G. (1991), Photon Interaction Cross Sections for Aggregations of Finite Dimensional Leaves. Remote Sens Environ,37:219~224.
    87. Myneni R B, Asrar G.(1994), Atmospheric effects and spectral vegetation indices. Remote Sens. Environ. 47 : 390 -402 .
    88. Myneni R B, et al. (1995), Optical remote sensing of vegetation modeling, caveats, and algorithms. Remote Sens . Environ.,51 :169 -188 .
    89. Myneni R B, Ross J, Asrar G. (1990), Review on the Theory of Photon Transporting Leaf Canopies. Agric For Meteorol,45:1~153.
    90. Myneni R B, Ross J. (1991), Photon Vegetation Interactions: Applications in Optical Remote Sensing and Plant Physiology New York: Springer-Verlag.
    91. Myneni R B, Williams D I. (1994), On the relationship between FAPAR and NDVI. Remote Sens . Environ.,49 :200 -211 .
    92. Myneni R B. Asrar G, Gertl S A W. (1990), Radiatine transferin three dimensional leaf canopies. Transport Theory and Statistical Physics,19: 205 -250 .
    93. Myneni, R. B., Maggion, S., Iaquinta, J., Privette, J, L., Gobron, N., Pinty, B., Kimes, D. S., Verstraete, M. M., and Williams, D. L. (1995), Optical Remote Sensing of Vegetation Modeling, Caveats, and Algorithms, Remote Sens. Environ. 51: 169-188.
    94. Nilson T, Kuusk A. (1989), A Reflectance Model for the Homogeneous Plant Canopy and Its Inversion. Remote Sens. Environ, 31:183~191.
    95. Nilson T., Kuusk A. (1989), A reflectance model for the homogeneous plant canopy and its inversion. Remote Sens. Environ.,27 : 157 -167 .
    96. Norman, J. M., Perry, S. G., Fraser, A. B., and Mach, W. (1978), Remote Sensing of Canopy Structure, Amer. Meteor, Soc. 14th Conf, Agric. Forest Meteor., April 2-4
    97. Otterman J, Brakke T, Marshak.(1995),A.Scattering by Lambertian Leaves Canopy Dependence on Leaf area Projections. Int J Remote Sens,16:1107~1125.
    98. Otterman J.(1990), Inferring Parameters for Canopies Nonuniform in Azimuth by Model Inversion. Remote Sens Environ,33:41~53.
    99. Patricia G. Foschi (1994), A geometric approach to a mixed pixel problem: Detecting subpixel woody vegetation, Remote Sens. Environ. 50:317-327.
    100. Peng Gong, Member, IEEE, John R. Miller, and Michael Spanner (1994), Forest canopy closure from classification and spectral unmixing of scene components-multisensor evaluation of an open canopy, IEEE Trans. Geosci. Remote sens. 32:1067-1080.
    101. Price,J.C.(1990),on the information content of soil reflectance spectra, REMOTE Sens, Environ.33:113-121。
    102. Privette J L, Myneni R B, Emery W J, et al (1996). Optimal Sampling Conditions for Estimating Grassland Parameters via Reflectance Model Inversions. IEEE Trans Geosci Remote Sens,34:272~284.
    103. Privette J L, et al. (1994) Invertibility of a 1-D discrete ordinate canopy reflectance model. Remote Sens. Environ., 48 :89 -105 .
    104. Privette, J.L., Myneni, R. B., Emery, W. J., and Hall, F. G. (1996), Optimal Sampling Conditions for Estimating Grassland Parameters via Reflectance Model Inversions. IEEE Trans. Geosci. Remote Sens., 34(1): 272-284.
    105. Qi J, Cabot F, Moran M S, et al (1993). Biophysical Parameter Estimations Using Multidirectional Spectral Measurements. Remote Sens Environ, 1995,54:71~83.
    106. Qin W (1993), Modeling Bidirectional Reflectance of Multicomponent Vegetation Canopies. Remote Sens Environ,46:235~245.
    107. Qin W, Jupp D L B (1993). An Analytical and Computationally Efficient Reflectance Model for Leaf Canopies. Agric ForM eteorol,66:31~64.
    108. Ranson K J, Irons J R, Williams D L (1994). Multispectral Bidirectional Reflectance of Northern Forest Canopies with the Advanced Solid state Array Spectroradiometer (ASAS). Remote Sens Environ,47:276~289.
    109. Renders J M and Flasse S P (1996). Hybrid Methods Using Genetic Algorithms for Global Optimization[J],IEEE Trans Syst Man,Cybern.26(2 ):243~258.
    110. Roujean, J.L., M. Leroy, and Deschamps, P. Y. (1992), Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Dada, J. Geophys. Res., 97: 20455-20468.
    111. Roy D P, Singh S M (1994) . The Importance of Instrument Pointing Accuracy for Surface Bidirectional Reflectance Distribution Function Mapping. Int J Remote Sens,15:1091~1099.
    112. Schaaf C B, Li X, Strahler A H (1994). Topographic Effects on Bidirectional and Hemispherical Reflectances Calculated with a Geometric Optical Canopy Model. IEEE Trans Geosci Remote Sens,32:1186~1193.
    113. Schluessel G, Dickinson R E, Privette J L, et al (1994). Modeling the Bidirectional Reflectance Distribution Function of Mixed Finite Plant Canopies and Soil. J Geophys Res,99:10577~10600.
    114. Strahler A H, Jupp D L B(1990). Modeling Directional Reflectance of Forests and Woodlands Using Boolean Models and Geometric Optics Remote Sens Environ,34:153~166.
    115. Suits, G.H. (1972), The Calculation of the Directional Reflectance of Vegetative Canopy, Remote Sens. Environ., 2: 117-125.
    116. Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier Science Publishing Company Inc., New York.
    117. Thenkabail, Prasad S, Smith, Ronald B, De Pauw, Eddy (2000). Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics.Remote sensing of environment. 71, no. 2: 158-183.
    118. Verbrugghe M , Cierniewski J(1995). Effects of Sun and View Geometries on Cotton Bidirectional Reflectance. Test of a Geometrical Model. Remote Sens Environ,54:189~197.
    119. Verhoef, W. (1984), Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: The SAIL Model, Remote Sens. Environ., 16: 125-141.
    120. Verstraete M M, Pinty B, Dickinson R E(1990). A Physical Model of the Bidirectional Reflectance of Vegetation Canopies1.Theory. J Geophys Res,95:11755~11765.
    121. Verstraete, M., Pinty, M., B., and Myneni, R. B. (1996), Potential and Limitation of Information Extraction on the Terrestrial Biosphere from Satellite Remote Sensing. Remote Sens. Environ. 58: 201-214.
    122. W. Gao and B. M. Lesht, (1997), Model inversion of satellite-measured reflectance for obtaining surface biophysical and bidirectional reflectance characteristics of grassland, Remote Sens. Environ, 59:461~471.
    123. Walthall C L, Kim M, Williams D L, et al (1993). Data Sets for Modeling. A Retrospective Collection of Bidirectional Reflectance Forest Ecosystems Dynamics Multisensor Aircraft Campaign Data Sets. Remote Sens Environ,46:340~346.
    124. Walthall, C. L., Norman, J. M., Welles, J. M., Campbell, G., and Blad, B. L. (1985), Simple Equation to Approximate the Bidrectional Reflectance from Vegetative Canopies and Bare Soil Surface, Appl. Opt., 24: 383-387.
    125. Wang, J., Li, X., and Xiang, Y. (1997), TCT Algorithm Validation Using Measurement Data of Coniferous and Deciduous Crowns, J. Remote Sensing, Suppl. 1: 62-70.
    126. Wanner, W., Li, X., and Strahler, A. H. (1995); On the Derivation of Kernels for Kernel-driven Models of Bidirectional Reflectance J. Geophys Res. 100: 21077-21089.
    127. Wenhan Qin, N.S. Goel and Bingquan Wang(1996), The hotspot effect in heterogeneous vegetation canopies and performances of various hotspot models, Remote Sensing Reviews, 14:283-332.
    128. William Menke (1989), Geophysical data analysis: discrete inverse theory, San Diego, California: Academic press inc.
    129. Zipoli G, Grifoni D. (1994), Panicle Contribution to Bidirectional Reflectance Factors of a Wheat Canopy. Int J Remote Sens, 15:3309~3314.
    130. 陈宝林(1995). 最优化理论与算法[M]. 北京:清华大学出版社。
    131. 陈述彭, 童庆禧, 郭华东主编(1998), 遥感信息机理研究,科学出版社。
    132. 党亚民,陈俊勇,晁定波. (1999),大地测量非线性随机反演算法[J].测绘通报, 3.
    133. 方红亮,田庆久(1998),高光谱遥感在植被监测中的研究综述,遥感技术与应用,vol13(1):62-69
    134. 高峰(1997),朱启疆,植被冠层多角度遥感研究进展,地理科学,17(4):346~355
    135. 高峰(1997), 植被冠层多角度遥感反演研究,博士学位论文,北京师范大学。
    136. 李天宏,杨海宏,赵永平(1997),成像光谱仪遥感现状与展望,遥感技术与应用,vol12(2):54-58
    137. 李武,辛海英,葛运国(1997),海洋光学遥感与海洋高光谱特性研究,海洋技术,vol16(3):12-16
    138. 李小文(1989).地物的二向反射和方向谱特征 环境遥感,4(1):67~72.
    139. 李小文, Strahler A H., 朱启疆,朱重光.(1993),基本颗粒构成的粗糙表面二向扫射一相互遮蔽效应的几何光学模型.科学通报,38 :86 ~89 .
    140. 李小文, 高峰, 王锦地, 朱启疆(1997), 遥感反演中参数的不确定性与敏感性矩阵, 遥感学报, 1: 1-14。
    141. 李小文,王锦地(1995). 植被光学遥感模型与植被结构参数化[M]. 北京:科学出版社.
    142. 李小文等(1993).不连续植被二向性反射的几何光学与辐射一体化综合模型初探.环境遥感,8(3) :161 ~172 .
    143. 牛铮(1997),植被二向反射特性研究新进展,遥感技术与应用,12(3):49~57
    144. 浦瑞良,宫鹏(1997),森林生物化学与CASI 高光谱分辨率遥感数据的相关分析,遥感学报,vol1(2):115-122。
    145. 浦瑞良,宫鹏(2000),高光谱遥感及其应用,北京:高等教育出版社。
    146. 邵晖等(1998),推帚式超光谱成像仪(PHI)关键技术,遥感学报2(4),251~254
    147. 沈鸣明,王建宇(1998),实用机载成像光谱仪系统,红外与毫米波学报,17(1),7~12
    148. 舒宁(1997),成像光谱仪影像的几种处理方法,武汉测绘科技大学学报,vol22(4):322-323。
    149. 孙艳丰,戴春荣(1998),几种随机搜索算法的比较研究,系统工程与电子技术,2:43-47。
    150. 覃文汉(1992), 遥感植被双向反射光谱的理论研究与应用展望,环境遥感,7(4):290~299.
    151. 田庆久,闵祥军(1998),植被指数研究进展,地球科学进展,13(4):327~333
    152. 童庆禧,郑兰芬,王晋年(1997),湿地植被成像光谱遥感研究,遥感学报,vol1(1):50-56。
    153. 童庆禧等(1990),中国典型地物波谱及其特征分析,北京:科学出版社.
    154. 王江晴,陈幼均(1997)演化计算及其并行处理,中南民族学院学报(自然科学版) ,16(3):73-76。
    155. 吴怀宇,宋玉阶(1998),非线性回归分析中的神经网络方法,武汉冶金科技大学学报,21(1):90~93
    156. 吴继友,杨旭东,张福军等(1997),山东招远金矿区赤松针叶反射光谱红边的季节特征,遥感学报,vol1(2):124-127。
    157. 萧铁树主编(1999),数学实验[M],北京:高等教育出版社。
    158. 闫广建(1999),地表遥感要素反演研究,博士学位论文,中国科学院遥感应用研究所。
    159. 袁慧梅,郭喜庆(1999)。遗传算法的改进[J]。中国农业大学学报,4(2):99-103
    160. 袁亚湘,孙文瑜编(1997).最优化理论与方法[M]。北京:科学出版社。
    161. 张宝光,人工神经网络在遥感数字图像分类处理中的应用,国土资源遥感,1998,1:21~27
    162. 张纪会,高齐圣,徐心和(2000),自适应蚁群算法。控制理论与应用, 17(1):1-8。
    163. 张纪会,徐心和(1998),模拟进化算法研究进展,系统工程与电子技术,8:44-47。
    164. 张纪会,徐心和(1999),一种新的进化算法——蚁群算法,系统工程理论与实践,3:85-87。
    165. 张良培,郑兰芬,童庆禧(1997),利用高光谱对生物变量进行估计,遥感学报,col1(2):111-114。
    166. 周承虎等(1999),遥感影像地学理解与分析,北京:科学出版社。
    167. 周宇峰,王耀俊(1999)。遗传算法在超声检测反演参数中的应用[J]。应用声学,18(6):10-15
    168. 周远晖,陆玉昌,石纯一(1998)。基于克服过早收敛的自适应并行遗传算法[J]。清华大学学报(自然科学版),38(3):93-95
    169. 庄昌文,范明钰,李春辉,虞厥邦(1999),基于协同工作方式的一种蚁群布线系统,半导体学报20(5):400-406。
    170. 庄家礼,徐希儒(2000). 遗传算法在组分温度反演中的应用. 国土资源遥感,1:28~33。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700