用户名: 密码: 验证码:
吉林省积雪遥感信息时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪是地球表面重要的覆盖物,北半球的森林地区季节性积雪覆盖范围是全球陆地表面的8%。积雪是冰冻圈中分布最广泛、季节变化最显著因素,也是全球大气与地表相互作用的重要影响因素。因此基于气候模型,利用积雪遥感数据预测气候变化趋势预计雪融洪水可能造成的影响成为可能。积雪融水也是农田灌溉等的主要水源来源。
     中国稳定积雪覆盖区主要在新疆、青藏高原和东北地区。吉林省位于中国东北三省的中部,南邻辽宁省,西接内蒙古自治区,北与黑龙江省相连。吉林省地貌形态差异明显。地势由东南向西北倾斜,呈现明显的东南高、西北低的特征。吉林省属于温带大陆性季风气候,四季分明,冬季寒冷漫长。冬季平均气温在-11℃以下,降雪量大。
     吉林省是我国商品粮的主产区,担负着全国商品粮供给的重要责任。研究中以吉林省作为研究对象,对该区影响积雪信息提取的因素包括遥感影像上云覆盖、地形起伏和森林区对积雪信息提取的影响分别进行分析。由此分析吉林省2000年至2010年10年间的积雪覆盖时空变化及与研究区地形、气候和土地覆盖类型的关系。主要工作及其结论有:
     1.云覆盖区积雪信息提取研究。利用MODIS云掩膜产品,结合多时相数据融合恢复目标日期的云下地物。从恢复前后积雪提取结果看出,对云下地物的恢复不仅提取了云遮挡处的积雪信息,还对误判为雪的云信息进行有效的去除。因此在对遥感数据进行应用前,对云噪声的处理很必要。
     2.复杂地形区积雪信息提取研究。利用余弦校正算法完成研究区地形校正,校正后的雪盖指数值略低于校正前的值,并且阳坡校正后的雪盖指数降低,而阴坡的变化不显著。通过分析余弦校正模型中各参数对雪盖指数的影响,结果显示不同的太阳天顶角和坡度对积雪提取结果有很大的影响。坡度和坡向对积雪覆盖提取影响的分析表明,坡向对积雪覆盖影响不显著,坡度对积雪覆盖率呈正相关大。对比校正前后积雪提取结果,校正后积雪像元的数量要多于校正前。
     3.植被覆盖区积雪信息提取研究。根据几何光学模型,提出适合长白山地区的混合反射率模型。将植被与积雪的混合分为:树冠上有雪而下垫面完全积雪覆盖、树冠上无雪而下垫面完全积雪覆盖、树冠上有雪而下垫面为无雪。利用模型分别模拟混合反射率,结果与实测反射率曲线变化趋势吻合。研究表明,树上有雪、下垫面有雪的情况和树上有雪、下垫面无雪的情况变化趋势相同,而且雪盖指数的值较相近。树上无雪、下垫面有雪的情况与前两种情况相差较大,变化趋势也相反。选择对雪盖指数影响较大的树冠半径和叶面积指数对积雪信息提取影响的研究表明随着树冠半径的增加积雪覆盖率在半径为0.5到1米不变,1到1.5米降低后在1.5到2.5米又呈升高趋势。而叶面积指数与积雪覆盖率呈负相关关系,太阳天顶角与积雪覆盖率呈正相关关系。
     4.研究区积雪信息提取流程。通过不同参数对积雪信息提取的敏感度分析,确定积雪信息提取参数的阈值。由此,分别通过坡度和雪盖指数对研究区分区,根据区域特征分别提取积雪信息。结果表明,该方法提取的积雪像元更多,同时有效地减少了误判为积雪的森林植被像元。
     5.研究利用积雪覆盖指数对吉林省积雪覆盖2000年10月1日到2010年4月30日的时空变换特征。吉林省平均积雪持续天数(SCD)呈明显的分带,由西北向东南依次增加。对初始降雪时间和融雪时间的时间序列分析,吉林省大部分地区的初始降雪时间在11月中旬,在东部山区降雪时间较早,在11月初。而初始融雪时间为2月初,山区的融雪时间较晚,在2月末或者更晚。其中2000年至2001年、2004年至2005年、2006年至2007年冬季的融雪时间较晚,在2月下旬。
     6.地形、气候特征和土地覆盖率与积雪覆盖指数的影响研究。随着高程的升高,积雪覆盖持续时间呈升高趋势。气温对积雪覆盖持续时间的影响也较明显,气温低的年份,积雪持续时间较长,相反积雪覆盖持续时间短的年份,年平均气温相对较高。降水量的升高对积雪覆盖持续时间的影响比较显著,降水量多的年份,积雪覆盖持续时间较长,反之亦然。在对气温和降水量与初始融雪时间的影响研究发现,气温对初始融雪时间影响较大,而降水量变化时初始融雪时间没有规律的变化。积雪覆盖指数与降水量正相关,积雪覆盖率与降水量无关。年平均气温与积雪覆盖指数及积雪覆盖率都呈负相关。选取农田、草地、人工用地、裸地和森林研究土地覆盖类型与积雪覆盖指数的关系。结果表明,积雪持续时间在裸地和森林区最长,最低的是人工用地,初始降雪时间也是在裸地和森林区最早,但是初始融雪时间较晚。人工用地的初始降雪时间较晚,初始融雪时间较早。说明影响积雪覆盖分布的,不仅是地形和气候变化,还与人类活动密切相关。
Snow is one of the essential land covers, which plays an important role in the global climate system and is also the main source of available water source. Especially in north Hemisphere 8 percent of the total terrain surface is covered by snow. Snow cover is one of the most significant factors to indicate the seasonal change and to influence the interaction between the global atmosphere and the ground surface. Thus, conbine with the climate model to the influence of the snowmelt flooding can be predicted, for the irrigatation in agriculture.
     In China, snow cover is distributed in Xinjiang province, Tibetan Plateau and the northeast region in the winter. Jilin province is located in northeast China, which south is locates Liaoning province, the west of Inner Mongolia Autonomous Region and Heilongjiang Province in the north. The elevation of the terrain is apparently higher in the southeast than that in the northwest. It is temperate continental monsoon climate and has the four distinct seasons. Especially in winter, it is cold and long, the average temperature is about-11℃.
     Furthermore, Jilin province is one of the main grain production area in our country and is vital important to the grain supply in our country. Thus, it is chosen as study area in our study. Several factors that can affect the snow cover extraction is firstly studied, including cloud cover in the remote sensing image, the terrain and the vegetation. Finally, the spatial and temporal changes of the snow cover in the year from 2000 to 2010 and its relationship with the temperature, precipitation and the terrain are analyzed in the paper. The results are as follows:
     1. Elimination of cloud cover in the remote sensing image. MODIS (Moderate Resolution Imaging Spectroradiometer) reflection data and the MOD35_L2 cloud mask data in Jilin Province on Nov.23, Nov.24 and Nov.25 in 2008 are selected to remove the cloud cover on Nov.24 data. Then the snow cover is extracted from cloud-reduced data by the Normalized Difference Snow Index (NDSI) algorithm. Finally, EOS Aqua (AMSR-E) snow water equivalent data from Advanced Microwave Scanning Radiometer (AMSR) is employed to verify the snow cover undercloud. The results indicate that snow cover fraction of cloud -reduced data is much closer to the AMSR-E snow cover fraction.
     2. The terrain effect is corrected by using the cosine topography correction method. Changbai mountain is taken as a topography test area due to its complex terrain and high altitude. After the adjusted snow cover index is lower than its original values on the sunny slope, the snow cover index is reduced after adjustment but the change of shady slope is not remarkable. The sensitive analysis indicates the different solar zenith angle and the slope has very tremendous influence to the extraction of snow. The aspect is not sensitive to the snow cover fraction but slop shows a good positive correlation. The comparation between snow cover derived from before and after correction shows the good result.
     3. The snow cover is derivation at a forest area.Based on GORT model asimulated hybrid relfection of plant canopy and snow. The result are as follows:The simulation results show an obvious hot spot and the trend is fit the measured curve. when the canopy has snow, the underlying surface is all snow cover and the underliying suface is snow free has the same sensitive and trend to the NDSI,but when the canopy has no snow, the underliying sucface is all snow cover appeared different character. The snow cover fraction isn't increasing when the radius of plant canopy increase until the radius reach 1.5.The LAI and the snow cover fraction is negative related, but the solar zenith angle is opposite.
     4. In order to determine the threshold of the NDSI, under different parameters of the model in deferent situations extraction algorithm of the snow cover are simulated. Then the threshold of the snow cover can be verified through the analysis of the scatter map of the parameters. The algorithm separates the region to forest area and terrain area by NDVI and slop parameter. The new method not only derived more snow pixels, but also reduced the confused pixels of snow and forest.
     5. Spatial-temporal changes of the snow cover in Jilin province are generated. The data used is from the day October 1st,2000 to April 30th,2010. The parameters include the average snow cover duration time (SCD), snow cover onset day (SCOD), snow cover melting day (SCMD),snow cover index(SCI) and snow cover ratio(SCR). The SCD presents the same obvious changes with altitude.The average SCOD in Jilin province is at mid-November, but it will be in the beginning of November in eastern mountain area. But the SCMD is in the early February, and the mountain area will be in the late February or later.The duration between 2006 to 2007 has the largest SCI, but the year 2001 to 2002 has minmum value.The largest SCR is appereant in 2000 to 2001,2001 to 2002 has the smallest SCR in the ten years.
     6. Relationships between the snow cover indexes and the terrain,the climate are analysised. With increasing of the elevation, the snow cover duration becomes longer and longer. The temperature also has an obvious impact on the snow cover duration. The snow cover duration will be long if the temperature is low in the year. While the snow cover duration will be short if the annual mean temperature is relatively high. The same correlation occurs to the relationship between the precipitation and the snow cover duration. The research on the influence of temperature and precipitation on the SCMD indicates that the temperature has apparently influence on the SCMD, while the influence from the precipitation is irregular. SCI and SCR have positive correlation to temperature, but the precipitation is only relative to SCI. The croplands, grass, artificial land, bare land and forest are use for this study. The SCD is long in the bare land and forest, the cropland is the lowest. The SCOD is earlier in bare land and forest, but SCMD in these two types are late. The SCOD of cropland is late, and SCMD is earlier. The result indicted the snow cover distribution is not only related to altitude and climate but also associated with the human activities.
引文
[1]Bonan, G.P., Pollard, D., Thompson, S. L.. Effects of boreal forest vegetation on global climate. Nature,1992.359,716-718.
    [2]Mark F.Meier.Remote sensing of snow and ice [J].Hydrological Sciences-Bulletin-des Sciences Hydrologiques,307-330,3,9/1980.
    [3]曹梅盛,李培基.中国西部微波遥感监测[J].山地研究.1994.12(4):230-234.
    [4]曹梅盛,李新,陈贤章等.冰冻圈遥感[M].科学出版社,2006.
    [5]高峰,李新,R.L. Armstrong等.被动微波遥感在青藏高原积雪业务监测中的初步应用[J].遥感技术与应用.2003.18(6):360-363.
    [6]Max K., Jan-Gunnar W.Elisabeth L.. Measuring snow and glacier ice properties from satellite [J].Reciews of Geophysics.2001.39(1):1-27.
    [7]http://baike.baidu.com/view/131339.htm
    [8]曹梅盛,冯学智,金德洪.积雪的若干光谱反射特征[J].科学通报.1982.20:1259-1261.
    [9]金亚秋,韦剑,肖平.冰雪散射与热辐射的定量研究[J].电子科学学刊,1992,14(5):538-540.
    [10]王世杰.利用NOAA/AVHRR影像资料估算积雪量的方法探讨[J].冰川冻土.1998.20(1):68-73.
    [11]周咏梅,贾生海,刘萍.利用NOAA-AVHRR资料估算积雪参数[J].气象科学.2001.21(1):117-121.
    [12]延昊.NOAA16卫星积雪识别和参数提取[J].冰川冻土.2004.26(3):369-373.
    [13]陈贤章.从卫星遥感资料中提取雪盖信息的探讨[J].环境遥感.1988.3(2):108-115.
    [14]刘闯,陈圣波,Mo Dai等EOS-MODIS数据在青藏高原冰雪季节性变化信息自动提取中的应用研究[J].遥感信息.2001.4:30-31.
    [15]Hall D.K., Riggs G. A.,Salomonson V. V.et al.MODIS snow cover products[J].Remote Sensing of vironment,2002,83:181-194.
    [16]Hall D.K, Foster J.L., Chang A.T.C.et al.Analysis of snow cover in Alaska using Aircraft Microwave Data [J].Geoscience and remote sensing symposium.1996.IGARSS'96:2246-2248.
    [17]Andrew T., Dorothy H., Jim f.et al.Detection of snow cover using Millimeter-Wave Imaging Radiometer data [J].Remote sensing environment.1999.68:53-60.
    [18]Luzi G, Pieraccini M., Nlferini L.et al.Ground-based microwave interferometric measurements over a snow covered slope:an experimental data collection in Tyrol(Austria)[J].Geoscience and remote sensing symposium.2007.IGARSS'07:1452-1455.
    [19]Piesbergen J., Haefner H.. Multi-source snow cover monitoring in the Swiss Alps [J].Geoscience and remote sensing symposium.1997. IGARSS'97:640-642.
    [20]Monique B., Jean P.F..The potential of times series of C-band SAR data to monitor dry and shallow snow cover [J].Transactions on geoscience and remote sensing.1998.36(1):226-243.
    [21]文军,Mo Dai,Paul D.J.等.利用MODIS和ASAR资料估算青藏高原念青唐古拉山脉地区冰雪范围及厚度[J].冰川冻土.2006.28(1):54-61.
    [22]Brogioni M., Macelloni G.,Paloscia S.et al.Monitoring snow cover characteristics with multifrequency active and passive microwave sensors[J]. Geoscience and remote sensing symposium.2006. IGARSS'2006:2167-2170.
    [23]Hall D.K., Riggs G.A., Salomonson V.V.et al.MODIS snow cover products [J].Remote Sensing of Evironment,2002,83:181-194.
    [24]Salomonson V.V., Igor Appel.Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results [J]. Transactions on geoscience and remote sensing.2006.44(7):1747-1756.
    [25]Riggs G, Hall D. K.. Snow mapping with the MODIS Aqua instrument[C]. 61stEastern snow conference.Potland, Maine, USA 2004.
    [26]Malcher P.,Floricioiu D.,Rott H.Snow mapping in Alpine areas using Medium Resolution Spectrometric ensors[J].Geoscience and Remote Sensing Symposium,2003,4:2835-2837.
    [27]郝晓华,王建,李弘毅MODIS雪盖制图NDSI阈值的检验-以祁连山中部山区为例[J].冰川冻土,2008,30(1):132-138.
    [28]Farmer C.J.Q.,Nelson T.A.,Wulder M.A.et al.Identification of snow cover regimes through spatial and temporal clustering of satellite microwave brightness temperatures [J]. Remote sensing of environment.2010.114(1):1:12.
    [29]Foster J.L., Hall D.K.,Kelly R.E.J.et al.Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data(1979-2006)[J].Remote sensing of environment.2009.113:291-305.
    [30]Grody N.C., Basist A.N.Global identification of snowcover using SSM/I measurements [J].Transactions on geoscience and remote sensing,1996, 34(1):237-249.
    [31]Fiore J.V., Grody N.C.Classification of snow cover and precipitation using SSM/I measurements:case studies[J].Geoscience and Remote Sensing Symposium.1990:1141-1144.
    [32]Armstrong R.L., Brodzik M.J., Savoie M H. Enhanced snow cover mapping using combined optical and passive microwave data[J].Geoscience and Remote Sensing Symposium.2004.2:861-864.
    [33]Konig M, Winther J.G., Isaksson E. Measuring snow and glacier ice properties from satellite [J]. Reviews of Geophysics.2001.39:1-27.
    [34]Guneriussen T., Johnsen H. Fully polarimetric airborne SAR and ERS SAR observations of snow:implications for selection of ENVISAT ASAR modes [J].InternationalIournal of Remote Sensing.2002.24 (19):3839-3854.
    [35]Painter T.H.,Dozier J.,Roberts D.A.et al Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data[J].Remote Sensing of Environment,2003,85:64-77.
    [36]Vikhamar D.,Solberg R. Subpixel mapping of snow cover in forests by optical remote sensing[J].Remote Sensing of Environment,2002,84:69-82.
    [37]延昊,张国平.混合像元分解法提取积雪盖度[J].应用气象学报,2004,15(6):665-617.
    [38]梁天刚,吴彩霞,陈全功等.北疆牧区积雪图像分类与雪深反演模型的研究[J].冰川冻土.2004.26(2):160-165.
    [39]曹云刚,刘闯.从AVHRR到MODIS的雪盖制图研究进展[J].地理与地理信息科学.2005.21(5):15-19.
    [40]黄晓东,张学通,李霞等.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土.2007.29(5):722-729.
    [41]Wang Xianwei,Xie Hongjie,Liang Tiangang.Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang,China [J].Remote sensing of Environment.2008.112:1497-1513.
    [42]Timothy W.A., Kevin P.C., Teresa B.et al.Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observation in the Lower Great Lakes Region [J].Remote sensing of environment.2006.105:341-353.
    [43]Angrzej Z.K.A comparison of MODIS-derived cloud amount with visual surface observations [J].Atmospheric research.2009.92:533-530.
    [44]Foppa N.,Hauser A.,Oesch D.et al.Validation of operational AVHRR subpixel snow retrievals over the European Alps based on ASTER data [J].International Journal of Remote Sensing.2007(28):4841-4865.
    [45]曹爽.高分辨率遥感影像去云方法研究[D].南京:河海大学硕士学位论文.2006.6.
    [46]Molotch N.P., Fassnacht S.R., Bales R.C.et al. Estimating the dis- tribution of snow water equivalent and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona[J].Hydrological Pr-ocesses.2004(18):1595-1611.
    [47]王建.卫星遥感雪盖制图方法对比与分析[J].遥感技术与应用.1999.14(4):29-36.
    [48]R.M.Lucas, A.R..Harrison.Snow observation by satellite:A review[J]. Remote Sensing Reviews.4(2):285-348.
    [49]Smith J.A., Lin T.L.,Ranson K.J.The Lambertian assumption and Landsat data.Photogramm Eng Remote Sens,1980,46:1183-1189.
    [50]史培军,陈晋.RS与GIS支持下的草地雪灾检测试验研究[J].地理学报.1996,51(4):296-305.
    [51]Haefner H.,Seidel K.,Ehrler H..Applications of snow cover mapping in high mountain ragions[J].Physical Chemical Earth.1997.3-4(22):275-278
    [52]Sirguey P.,Mathieu R., Arnaud Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250m spatial resolution in the Southern Alps of New Zealand:Methodology and accuracy assessment [J]. Remote sensing of environment.2009.113:160-181
    [53]Rosenthal W.,Dozier J.Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper[J]. Water resources research.1996.1(32):115-130
    [54]Teilet P.M., Guindon B., Goodenough D.G.On the slope-aspect correction of multispectral scanner data.Canada J Remote Sens,1982,8(2):84-106.
    [55]Gu D., Gillespie A..Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry [J].Remote Sens Environ,1998,64:166-175.
    [56]Duguay C.R., LeDrew E.F..Estimating Surface Reflectance and Albedo from Landsat 5 TM over Rugged Terrain[J].Photogramm.Eng.Remote Sens.,1992,58:551-558.
    [57]闻建光,柳钦火,肖青等.复杂山区光学遥感反射率计算模型[J].中国科学D辑:地球科学.200811(38):1419-1427.
    [58]闫广建,朱重光,郭军等.基于模型的山地遥感图像辐射订正方法[J].中国图象图形学报2000.1(5):11-15.
    [59]Soenen S.A., Peddle D.R., Coburn C.A..SCS+C:a modified sun-canopy-sensor topographic correction in forested terrain.IEEE Transaction on geoscience and Remote Sensing.2005,43(9):2148-2159.
    [60]钟耀武,刘良云,王纪华等.SCS+C地形辐射校正模型的应用分析研究[J].国土资源遥感.2006.4.
    [61]Smith J.A., Lin T.L.,Ranson K.J..The Lambertian assumption and Landsat data.Photogramm Eng Remote Sens,1980,46:1183-1189.
    [62]徐元柳.基于裸露地表辐射传输模型的粗糙度反演与地形校正[D].北京:中国地质大学.2009.06.
    [63]Hall D.K.,Foster J.L.,Salomonson V.V.et al.Development of a Technique to Assess Snow-Cover Mapping Errors from Space[J].IEEE Transactions on Geoscience and Remote Sensing.2001.39(2):432-438.
    [64]Klein A.G., Hall D.K., Riggs GA.et al.Improving snow cover mapping in forest through the use of a canopy reflectance model [J]. Hydrological Processes.1998(12):1723-1744.
    [65]Hinkler J.B., Hansen B.U., Tamstorf M.P.et al.Snow-vegetation relations in a High Arctic ecosystem:Inter-annual variability inferred from new monitoring and modeling concepts [J].Remote Sensing of Environment.2006.105:237-247.
    [66]Metasamaki S.J.,Anttila S.T.,Markus H.J.et al.A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model [J].Remote Sensing of Environment.2005(95):77-95.
    [67]梁继,张新焕,王建.基于NDVI背景场的雪盖制图算法探索[J].遥感学报.2007.11(1):85-93.
    [68]Salminen M., Puliainen J., Metsamaki S.et al.The behaviour of snow and snow-free surface reflectance in boreal forests:implications to the performance of snow covered area monitoring [J]. Remote sensing of environment.2009.113:907-918.
    [69]Salminen M.,Pulliainen J.,Metsamaki S. The behaviour of snow and snow-free surface reflectance in boreal forests:Implication to the performance of snow covered area monitoring [J]. Remote sensing of environment.2009.113:907-918
    [70]Vepsalainen J., Metsamaki S.J.,Koskinen J. et al.Estimation of snow covered area by applying apparent regional transmissivity[J].Proceedings of IEEE 2001 International Geoscience and remote sening symposium(IGARSS),Sydney,Australia.2001(7):3237-3239
    [71]Sari J.M., Saku T.A., Huttunen J.M.et al. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model [J].Remote sensing of environment.2005.95:77-95.
    [72]Hall D.K., Foster J.L, Chang A.T.C.Reflectance of snow as measured in Situ and from Space in Sub-Arctic areas in Canada and Alaska [J]. IEEE Transactions on geoscience and remote sensing.1992.30(3).
    [73]蒋玲梅,杨华,王锦地等.雪地上的森林冠层混合反照率模型[J].遥感学报.2009.7(6):433-439.
    [74]Davis R.E.,Hardy J.P.,Ni W.et al. Variation of snow cover ablation in the boreal forest:a sensitivity study on the effects of conifer canopy [J].Journal of geophysical.1997.D24(102):29389-29395
    [75]牛铮.植被二向反射特性研究新进展[J].遥感技术与应用.1997.3(12):49-57
    [76]覃文汉.遥感植被双向反射光谱的理论研究与应用展望[J].环境遥感.1992.4(7):290-299
    [77]谢东辉,计算机模拟模型的研究与应用[D].北京师范大学,2005
    [78]Maston. M.. Winter snow cover maps of North America and Eurasia from satellite records,1966-1976, NOAA Tech.Memo.NESS 84, Washington D.C.,1977,28pp.
    [79]Groisman,P.Y. et al..Changes of snow cover,temperature and radiative heat balance over the Northern Hemisphere,J.Climate,1994,7,1633-1656
    [80]Robinson D.A..Dewey K.F.Recent secular variations in the extent of Northern Hemisphere snow cover [J]. Geophysical Research Letters,1990,17(10):1557-1560
    [81]杨修群,张琳娜.1988-1998年北半球积雪时空变化特征分析[J].大气科学.2006(25):757-766
    [82]Frei A.,Robinson D.A.. Northern Hemishere snow extent:regional variability 1972-1994[J].International Journal of Climatology,1999,19(14):1535-1560
    [83]Foster J.L.,Hall D.K.,Kelly R.E.,et al.Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data(1979-2006)[J].Remote Sensing of Environment,2009,113(2):291-305
    [84]李培基.近30年来我过雪量变化的初步探讨[J].气象学报,1990,4,443-437
    [85]王金叶,常宗强,金博文,等.祁连山林区积雪分布规律调查[J].西北林学院,2001,16:14-16
    [86]张虎,张宏斌.祁连山寺大隆林区积雪变化趋势与气温和降水[J].甘肃林业科技,2002,27(2):1-4
    [87]陈乾,陈添宇.祁连山区积雪性积雪资源的气候分析[J].地理研究,1991,10(1):24-38
    [88]蔡迪花,郭铌,王兴等.基于MODIS的祁连山区积雪时空变化特征[J].冰川冻 土.2009.6(31):1028-1036
    [89]李培基.中国西部积雪的变化特征[J].地理学报,1993,48(6):503-515
    [90]柯长青,李培基.青藏高原积雪分布于变化特征[J].地理学报,1998,53(3):209-215
    [91]韦志刚,黄荣辉,陈文等.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学,2002,26(4):49-508
    [92]王叶堂,何勇,侯书贵.2000-2005年青藏高原积雪时空变化分析[J].冰川冻土,2007,29(6):854-861
    [93]Xianwei Wang, Hongjie Xie. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua [J]. Journal of Hydrology,2009,371:192-200.
    [94]Brown R.,Derksen C.,Wang L. Assessment of spring snow cover duration variability over northern Canada from satellite datasets[J].Remote sensing of environment.2007.111:367-381
    [95]吉林省人民政府门户网站http://www.jl.gov.cn/jlgk/dldm/xhtz/.
    [96]国际航空航天局网站http://srtm.csi.cgiar.org
    [97]中国气象科学数据共享服务网.http://cdc.cma.gov.cn/satellite
    [98]刘玉洁,杨忠东MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [99]王永刚,刘慧平.遥感分类图像条带噪声的去除[J].遥感技术与应用.2007.3(22):449-454.
    [100]http://nsidc.org/data/docs/daac/amsrel1a_raw_counts.gd.html
    [101]http://nsidc.org/data/docs/daac/ae_swe_ease-grids.gd.html
    [102]http://eospso.gsfc.nasa.gov/ftp_docs/AMSR-E.pdf
    [103]Wang Xianwei,Xie Hongjie,Liang Tiangang. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China [J].Remote sensing of Environment.2008.112:1497-1513.
    [104]Timothy W.A., Kevin P.C., Teresa B.et al.Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observation in the Lower Great Lakes Region [J].Remote sensing of environment.2006.105:341-353.
    [105]Angrzej Z.K..A comparison of MODIS-derived cloud amount with visual surface observations [J].Atmospheric research.2009.92:533-530.
    [106]Kathleen Strabala.MODIS cloud mask user's guide[M/OL]
    [107]Solberg R., Amlien J.,Koren H.et al.Multi-sensor and time-series approaches for monitoring of snow parameters[J]. IEEE Geoscience and Remote Sensing Symposium.2004.3:1661-1666.
    [108]Karlsen S.R.,Malnes E.,Haarpaintner J.et al.Mapping and Modelling the snowmelt and greening pattern in southern Norway by combining microwave and optical remte sensing sensors [J]. IEEE Geoscience and Remote Sensing Symposium.2007.7:1279-1282.
    [109]Chaponniere A.,Maisongrande P.,Duchemin B.et al.A combined high and low spatial resolution approach for mapping snow covered areas in the Atlas mountains [J]. International Journal of Remote Sensing.2005. 26(13):2755-2777.
    [110]Normand B., Danielle de S.,Anne E.W. Evaluation of MODIS snow cover products over Canadian regions [J]. IEEE Geoscience and remote sensing symposium.2002.IGARSS'02:2302-2304.
    [111]Liang Tiangang,Zhang Xuetong,Xie Hongjie,et al.Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements[J].Remote sensing of environment.2008.112:3750-3761.
    [112]冯琦胜,张学通,梁天刚.基于MOD10A1和AMSR-E的北疆牧区积雪动态检测研究[J].草业学报.2009.18(1):125-133.
    [113]MODIS BRDF/Albedo Product:Algorithm Theoretical Basis Document Version 5.0 -MOD43[M/OL]
    [114]Dagrun Vikhamar,Rune Solberg.Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data[J]..Remote sensing of environment 88(2003):309-323
    [115]高峰.植被冠层多角度遥感研究进展[J].地理科学.1997.4(17):p346-355
    [116]不连续植被二向性反射的集合光学与辐射传输一体化总要和模型初探[J].环境遥感.1993.3(8):p161-172
    [117]李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京,科学出版社.
    [118]Wenge Ni, Xiaowen L., C.E..An analytical hybird GORT model for bidirectional reflectance over dicontinouse plant canopies [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. 1999, 37(2):987-999.
    [119]徐希儒.遥感物理[M].北京大学出版社.2005.
    [120]李小文.森林间隙率模型及其在林下环境遥感中的应用[J].遥感技术动 态.1989.3:p33-37
    [121]赵英时.遥感应用分析原理与方法[M].北京,科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700