用户名: 密码: 验证码:
负载型纳米Pd基催化剂的可控合成及对芳香醇绿色选择氧化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醇的催化氧化是有机合成化学中研究较多的一种官能团转变过程,也是精细化学合成相应羰基化合物的主要过程。目前这些化合物每年在世界范围内以百万吨的产量进行生产,范围包括从大宗化学品到医药等,其中芳香醇的氧化也是精细化学合成的一个重要组成部分,但如何通过一些简单、易行的方法将醇快速、有效的选择氧化为醛或酮一直是研究的热点之一。在对芳香醇等醇类的选择性氧化中,氧化剂的来源也是一个需要着重考虑的问题。随着绿色化学的大力发展和全球环保意识的增强,传统的氧化方法已不能满足工业生产的需求。因此一些价格低廉、环境友好的“绿色氧化剂”——空气、氧气或过氧化氢便成为了氧化反应最理想的氧源。同时,负载型贵金属催化剂以其优异的催化活性和耐高温、抗氧化、耐腐蚀等优良特性,成为了醇选择氧化反应最重要的催化剂材料,其中贵金属Pd由于具有资源丰富、价格低廉、稳定性好等优点,应用也越来越广泛。
     因此如何设计一种适用醇的催化氧化反应的新的或改进的负载型贵金属催化剂是目前该方面的国际研究前沿。基于负载型贵金属催化剂的研究现状,负载型贵金属催化剂的研究趋势大致可以从三个方面来设计和考虑改进:(1)贵金属的可控合成。大量研究表明,纳米粒子的催化活性和选择性在很大程度上与纳米粒子的尺寸、形貌等性质相关,随着金属粒子相关理化性质的变化,催化性质也会随之变化。因此可以通过对制备方法的改进直接对贵金属的尺寸、形貌和晶面结构等进行可控合成,制备出粒径小、分散度好、低负载量、高活性、高稳定性的负载型贵金属催化剂;(2)选择合适的载体。载体不仅是负载型贵金属催化剂中活性组分的承载者,研究证明合适的载体还可以提高贵金属在载体上的分散度。同时载体也有一定的活性,可以与活性组分发生强强相互作用。在有些体系中,载体与活性组分能形成化合物。所有这些对催化剂的吸附性能以及催化性能将产生影响;(3)添加有效的助催化剂。助剂的加入能够影响催化剂中活性组分的离子价态及分布、晶体与表面结构、酸碱性等,从而影响催化剂的活性、选择性以及寿命等。
     基于上述研究背景,本论文主要内容有以下几方面:
     一、具有高能量晶面的Pd基催化剂的合成及对芳香醇氧化性能的影响。已知合成的常见Pd纳米颗粒的晶面主要是{111}晶面,在本章中我们利用层层自组装机理制备的花状羟基磷灰石(F-HAP)做载体,合成了鲜见报道的{110}晶面占主导的Pd纳米催化剂,同时研究了不同形貌HAP载体和不同合成方法对Pd基纳米催化剂的合成和DL-sec-苯乙醇无溶剂催化氧化性能的影响。研究表明用花状羟基磷灰石(F-HAP)做载体,采用简单的一步溶剂热法制备的具有高能量晶面的Pd{110}纳米催化剂(Pd/F-HAP)具有良好的催化活性和稳定性,在403K,反应1.5h后,对DL-sec-苯乙醇无溶剂氧化反应的转换频率值(TOF)可达12753h-1。接着进一步研究了Pd/F-HAP催化剂的催化机理,通过中间体的监测,提出了与文献报道的Pd{111}晶面不同的催化机理,即氧活化机理。理论计算结果支持了这一机理,计算结果表明O2在Pd{110}晶面上更易解离,而且Pd作为活性中心,其高能量晶面的存在更有利于醇的选择性氧化。
     二、不同形貌CeO2载体对Pd基催化剂的合成及芳香醇氧化性能的影响。以己二酸为结构导向剂,用简单的一步溶剂热法合成了具有分级结构的介孔CeO2中空球,其平均粒径约为135nm,并由平均尺寸为3nm的小颗粒组成,孔隙大小为3.3-4.2nm,壁厚约为25nm,并推测其形成机理为自组装和奥斯特瓦尔德熟化相结合机理。在此实验的基础上,我们选用了三种不同形貌的CeO2做载体,分别为:介孔中空球,介孔球和块状材料,合成了相应的三种Pd/CeO2催化剂,分别为Pd/CeO2-5h,Pd/CeO2-1h,Pd/CeO2-商品。性能测试结果表明Pd/CeO2-5h在403K下反应2.5h后,对DL-sec-苯乙醇的转化率即可达到92%以上。结果表明高比表面积的介孔CeO2中空球能够为反应物提供更多的活性位来发生吸附和活化反应,且有助于金属分散,并有效地提高催化剂和反应物之间的接触,从而提高其催化活性。
     三、不同形貌碳载体对Pd基催化剂的可控合成及芳香醇氧化性能的影响。一方面,我们比较了不同制备方法对Pd/XC-72催化剂催化性质的影响。结果显示,与传统的浸渍法和甲醛还原法相比,用以乙二醇为溶剂、谷氨酸为连接剂的溶剂热法可以有效地控制Pd的反应速率和Pd纳米颗粒的晶体生长速率,进而制备出Pd粒径较小,颗粒分散较均匀的Pd/XC-72催化剂;另一方面,我们以Vulcan XC-72、CNT和石墨(graphite)三种碳材料为载体,采用简单的一步溶剂热法制备了不同碳载体负载的Pd基催化剂,从中考察了载体不同对苯甲醇无溶剂液相氧化制苯甲醛催化性能的影响。研究表明制备的Pd/XC-72/Glu催化剂在无溶剂条件下,403K反应5h后,苯甲醇的转化率为85.5%。远远高于Pd/CNT/Glu(60.2%)和Pd/graphite/Glu(13.9%)催化剂对苯甲醇的转化率。
     四、非贵金属助剂对Pd基催化剂的合成及芳香醇氧化性能的影响。在本章中,我们以DL-sec-苯乙醇氧化制苯乙酮做为目标反应,根据d带空穴数的多少,选用非贵金属Cr、Mn、Hg做为Pd/XC-72催化体系的助催化剂,对比了PdCr/XC-72/Glu、PdMn/XC-72/Glu和PdHg3.5/XC-72/Glu这三种催化剂在氧气气氛下对DL-sec-苯乙醇的无溶剂催化氧化反应;实验结果表明PdCr/XC-72/Glu催化剂在无溶剂条件下,403K反应3h后,DL-sec-苯乙醇的转化率为91%,远远高于PdMn/XC-72/Glu(53%)和PdHg3.5/XC-72/Glu(32%)催化剂对DL-sec-苯乙醇的转化率。进一步从能带理论和密度泛函理论解释了PdCr/XC-72催化剂催化活性较好的原因:即d带空穴数较多的Cr的引入提高了活性金属d空态密度和费米能级处的态密度,增加了整个合金纳米颗粒在XC-72载体表面的分散度,从而提高了PdCr/XC-72/Glu催化剂的催化活性。
The oxidation of alcohols to their corresponding aldehydes and ketones is one of the most importantfunctional group transformation processes in organic synthetic chemistry. It is of significant importance inorganic chemistry, both for fundamental research and industrial manufacturing. The world-wide annualproduction of carbonyl compounds is over107tonnes and many of these compounds are produced from theoxidation of alcohols,especialy aromatic alcohols. But how to find some simple and feasible methods foroxidation of alcohols to aldehydes or ketones quickly and effectively has been one of research hotspots.Usually, the oxidation of alcohols is traditionally carried out with stoichiometric amounts of oxidants.These methods often require one or more equivalents of these relatively expensive oxidizing agents. Someof these processes also generate equal amounts of metal waste. Therefore, using air or pure dioxygen (O2)that is cheaper and amity to the environment as oxidants, is of paramount importance for both economicand environmental reasons. Besides, the supported noble metal catalysts become the most importantcatalyst for the selective oxidation of alcohols because of its excellent catalytic activity, high temperatureresistance, oxidation resistance, corrosion resistance and other excellent features, especialy the supportedPd-based catalyst is becoming more and more widely applied due to its advantages of rich resources,relative low cost and good stability.
     So how to design new and improved supported noble metal catalysts which are suitable for specificreactions is one of the hot research topics that a lot of scientific research workers are looking for.Considering the composition of supported noble metal catalysts, it can be designed and improved fromthree aspects:(ⅰ) controllable synthesis of noble metal nanoparticles. A lot of research shows the catalyticactivity and selectivity of the NPs largely depend on the size, shapes and other properties of the particles.With the change in related physical and chemical properties, the catalytic property also changes. So directlyby improving the preparation method, you can get supported noble metal catalysts with small particle size,good dispersion, low load and high stability;(ⅱ) choose appropriate supports. It has been proved that theappropriate suport can improve the dispersion of noble metals on it. Support also has a certain activitywhich can make strong interaction with noble metals. In some systems, support and active component can form compounds. All these will have an impact on the adsorption performance and catalytic properties ofthe catalysts;(ⅲ) add promoters. After adding certain promoters, supported noble metal catalysts arelikely to change on the chemical composition, ion valence, acid-base property, crystal structure, surfacestructure, pore structure, decentralized state, the mechanical strength and so on, thus affecting the catalyst’sactivity, selectivity and lifetime.
     Based on the above reasons and the main research of this paper, this paper mainly discuss from thefollowing points:
     Firstly, synthesis of Pd catalysts with high energy facets and its effect on the properties of alcoholoxidation. Pd nanoparticles enclosed by low energy facets {111} are commonly prepared. In this chapter,Pd with high energy facets {110} supported on F-HAP was successfully prepared by a facile solvothermalmethod. The catalytic results for the solvent-free oxidation of DL-sec-phenethylalcohol by O2indicatedthat the nanocatalysts with high energy facets were powerful tools for enhancing their catalytic activity andstability. Its TOF was12753h-1at403K,1.5h. Then the Pd/F-HAP catalytic mechanism was further studied.Through monitoring the intermediate, we put forward the oxygen activation mechanism which wasdifferent from the literatures’. It was also consistent with the theoretical calculation result. The calculationresults showed that O2on the Pd {110} faces were more likely to disintegrate, and the high energy facets ofPd were more advantageous to the existence of selective oxidation of alcohols. Meanwhile, the choice ofF-HAP as a catalyst support was beneficial to the improvement of the catalytic activity and repeatability ofPd nanoparticles.
     Secondly, effect of the morphology of CeO2support on the activity of Pd/CeO2catalysts for alcoholoxidation. Herein, porous CeO2hollow nanospheres composed of small nanoparticles was controllablyprepared through a simple one-step solvothermal reaction with adipic acid. It was characterized that theporous CeO2hollow nanospheres composed of small nanoparticles with an average diameter of3nm havea uniform size of135nm and a wall thickness of25nm, and a self-assembly process coupled with anOstwald ripening mechanism for the hollow structures formation was proposed based on a series oftime-dependent HRTEM observations. Based on this experiment, We chosed porous CeO2hollownanospheres, porous CeO2nanospheres and bulk CeO2as supports to prepare Pd/CeO2-5h, Pd/CeO2-1h andPd/CeO2-goods respectively. The catalytic performance of these catalysts showed that the Pd/CeO2-5h catalyst had the highest conversion of DL-sec-phenethylalcohol (up to92%) at403K,2.5h. The resultsshowed that the special structure of the porous CeO2hollow nanospheres and its high specific surface areacould provide more active sites for the reactants to adsorb and activate. Moreover, it was helpful to themetal dispersion, and effectively improved the contact between catalyst and reactant, thus improved itscatalytic activity.
     Thirdly, effect of the morphology of carbon support on the activity of Pd/C catalysts for alcoholoxidation. On the one hand, we compared the different preparation methods on the influence of thePd/XC-72catalyst properties. Compared with traditional impregnation method and formaldehyde reductionmethod, the simple one-step solvothermal method in which ethylene glycol was used as a reductant andglutamate was employed as an additive could effectively control the reaction rate and the crystal growthrate of Pd nanoparticles, and then the Pd/XC-72catalyst with small and uniformly dispersed Pd particlewere prepared. On the other hand, Pd/XC-72/Glu, Pd/CNT/Glu and Pd/graphite/Glu catalysts with differentsupports were prepared by simple one-step solvothermal method in which ethylene glycol was used as areductant and glutamate was employed as an additive.The catalytic results of these catalysts forsolvent-free oxidation of benzyl alcohol with molecular oxygen showed that the catalytic activities of Pdwere influenced by the different supports, and The Pd/XC-72/Glu catalyst showed the highest conversionof benzyl alcohol (up to85.5%) at403K,5h, which was much higher than that of Pd/CNT/Glu (60.2%) andPd/graphite/Glu (13.9%).
     Fourthly, effect of non-noble metal promoters on the synthesis and catalytic performance of supportedPd-based catalysts. In this chapter, the solvent-free oxidation of DL-sec-phenethylalcohol was selected as atarget reaction, and Cr, Mn, Hg were chosen to be non-noble metal promoters. It was indicated that thecatalytic performance of Pd/XC-72/Glu catalyst was improved significantly by the addition of a secondmetal promoter. The test results of solvent-free oxidation of DL-sec-phenethylalcohol overPdCr/XC-72/Glu catalyst showed that its alcohol conversion is91%at403K,3h, which is much higherthan that of PdMn/XC-72/Glu (53%) and PdHg3.5/XC-72/Glu (32%). Based on the band theory, the statedensity and d belt hole of PdCr, PdMn and PdHg were calculated by the first principles calculation basedon density functional theory. The calculation results indicated the electronic state of Pd atom was optimizedin the presence of Cr. Thus, the activity and selectivity of PdCr/XC-72/Glu catalyst were improved.
引文
[1] Larock R C. Comprehensive organic transformations[M]. New York: VCH,1999,1233-1250.
    [2] Sheldon R A, Kochi J K. Metal-catalyzed oxidation of organic compounds[M]. New York: Academic,1981,350-382.
    [3] Choudary B M, Kantam M L, Santhi P L. New and ecofriendly options for the production of speciality andfine chemicals [J]. Catal. Today,2000,57(1-2):17-32.
    [4] Hudlicky M. Oxidations in Organic Chemistry[M]. Washington, DC: ACS,1990,114.
    [5]张昕,吴伟伟,黄启权等.苯甲醇液相氧化制苯甲醛催化剂的研究进展[J].石油化工,2010,39(2):215-223.
    [6] Kulkarni S G, Mehendale H M. Encyclopedia of Toxicology (Second Edition)[M]. Philadelphia,PA:Elsevier,2005,262-264.
    [7]胡宏纹.有机化学[M].北京:高等教育出版社,1990,333-376.
    [8] Kroschwitz J I, Howe-Grant M. Kirk-Othmer encyclopedia of chemical technology[M]. New York: JohnWiley&Sons,1991,15-37.
    [9] Zhan B-Z, Thompson A. Recent developments in the aerobic oxidation of alcohols [J]. Tetrahedron,2004,60(13):2917-2935.
    [10]闫立峰.绿色化学[M].北京:中国科学技术大学出版社,2007,13-19.
    [11]许永成,肖敦峰,刘广智.甲醇氧化制甲醛工艺技术探讨[J].化肥设计,2012,50(3):23-27.
    [12] Noureldin N A, Lee D G. Selective oxidation of unsaturated alcohols by potassium permanganate adsorbedon solid supports [J]. Tetrahedron Lett.,1981,22(49):4889-4890.
    [13] Lee D G, Spitzer U A. The aqueous dichromate oxidation of primary alcohols [J]. J. Org. Chem.,1970,35(10):3589-3590.
    [14] Lee T V. Comprehensive organic synthesis[M]. Oxford: Pergamon,1991,291-303.
    [15] Dess D B, Martin J C. Readily accessible12-I-5' oxidant for the conversion of primary and secondaryalcohols to aldehydes and ketones [J]. J. Org. Chem.,1983,48(22):4155-4156.
    [16] Ley S V, Norman J, Griffith W P, et al. Tetrapropylammonium perruthenate, Pr-4N+RuO4, TPAP: a catalyticoxidant for organic synthesis [J]. Synthesis,1994,7(7):639-666.
    [17]纪红兵,余远斌.绿色氧化与还原[M].北京:中国石化出版社,2005,7-10.
    [18] Sheldon R A, Arends I W C E, Dijksman A. New developments in catalytic alcohol oxidations for finechemicals synthesis [J]. Catal. Today,2000,57(1-2):157-166.
    [19] Chen T, Jiang J-J, Xu Q, et al. Axially chiral NHC Pd(II) Complexes in the oxidative kinetic resolution ofsecondary alcohols using molecular oxygen as a terminal oxidant [J]. Org. Lett.,2007,9(5):865-868.
    [20] Mahadevan V, Gebbink R J M K, Stack T D P. Biomimetic modeling of copper oxidase reactivity [J]. Curr.Opin. Chem. Biol.,2000,4(2):228-234.
    [21] Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts [J]. Chem. Rev.,2004,104(6):3037-3058.
    [22] Kazuya Y, Noritaka M. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols withmolecular oxygen [J]. Angew.Chem.Int.Ed,2002,41(23):4538-4548.
    [23]庄大英,勇金,喻宁亚等.有机官能化介孔硅基材料负载纳米金催化剂的制备及其催化性能[J].催化学报,2009,30(9):896-900.
    [24] Delmon B, Jacobs P A, Poncelet G. Preparation of catalysts I: scientific bases for the preparation ofheterogeneous catalysts [M]. New York: Elsevier Scientific Publishing Company,1976,315-325.
    [25] Rothenberg G. Catalysis[M]. Germany: Wiley VCH,2008,127-188.
    [26] Chen A, Holt-Hindle P. Platinum-based nanostructured materials synthesis, properties, and applications [J].Chem. Rev.,2010,110(6):3767-3804.
    [27] Harada T, Ikeda S, Hashimoto F, et al. Catalytic activity and regeneration property of a Pd nanoparticleencapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation [J]. Langmuir: the ACSjournal of surfaces and colloids,2010,26(22):17720-17725.
    [28] Mitsudome T, Noujima A, Mizugaki T, et al. Efficient aerobic oxidation of alcohols using ahydrotalcite-supported gold nanoparticle catalyst [J]. Adv. Synth. Catal.,2009,351(11-12):1890-1896.
    [29] Mario P, Rosaria C. New recyclable catalysts for aerobic alcohols oxidation sol-gel ormosils doped withTPAP [J]. Tetrahedron Lett.,2001,42(27):4511-4514.
    [30] Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts [J]. Chem. Rev.,2013,113(3):2139-2181.
    [31]袁芳芳.钯纳米颗粒的可控合成及其催化性能研究[D].武汉:中南民族大学,2011.
    [32] Xia Y, Xia X, Wang Y, et al. Shape-controlled synthesis of metal nanocrystals [J]. MRS Bulletin,2013,38(4):335-344.
    [33] Che M, Bennett C O. The influence of particle size on the catalytic properties of supported metals [J].Advances in Catalysis,1989,36:55-172.
    [34]徐云鹏,田志坚,林励吾.贵金属固体催化剂的纳米结构及催化性能[J].催化学报,2004,25(4):331-338.
    [35] Zanella R, Giorgio S, Henry C R, et al. Alternative methods for the preparation of gold nanoparticlessupported on TiO2[J]. J. Phys. Chem. B,2002,106(31):7634-7642.
    [36]甄开吉,王国甲,毕颖丽等.催化作用基础[M].北京:科学出版社,2005,262-263.
    [37] Bavykin D V, Lapkin A A, Plucinski P K, et al. Deposition of Pt, Pd, Ru and Au on the surfaces of titanatenanotubes [J]. Top. Catal.,2006,39(3-4):151-160.
    [38]纪红兵,钱宇,王婷婷等.负载钌的HMS催化剂催化氧化醇[J].化工学报,2006,57(3):577-581.
    [39] DeMiguel S R, Scelza O A, Castro A A, et al. Radial profiles in Pt/Al2O3, Re/Al2O3, and Pt-Re/Al2O3[J].Appl. Catal.,1984,9(3):309-315.
    [40] Soled S L, Baumgartner J E, Reyes S C, et al. Preparation of catalysis VI—scientific bases for thepreparation of heterogeneous catalysts[M]. Netherlands: Elsevier,1995,989-997.
    [41] Hepburn J S, Stenger H G, Lyman C E. Distributions of HF co-impregnated rhodium, platinum andpalladium in alumina honeycomb supports [J]. Appl. Catal.,1989,55(1):271-285.
    [42] Eleutério A, Santos J F, Passos F B, et al. The effect of preparation method on Pt/Nb2O5catalysts [J]. Braz. J.Chem. Eng.,1998,15(2):120-125.
    [43]刘卫锋,胡军,衣宝廉等. Pt/C催化剂的制备与评价[J].电源技术,2005,29(7):431-433.
    [44]李钱陶,何峰,张兆艳.贵金属纳米粒子_无机复合材料的制备及性能[J].硅酸盐通报,2004,23(1):54-61.
    [45] Benesi H A, Curtis,R.M., Studer H P. Preparation of highly dispersed catalytic metals: Platinum supportedon silica gel [J]. J. Catal.,1968,10(4):328-335.
    [46] Zou W, Gonzalez R D. The preparation of silica supported Pd catalysts:the effect of pretreatmentvariables on particle size [J]. Catal. Lett.,1992,12(1-3):73-86.
    [47]高进,周焕文,徐杰等.一种制取醇、醚类化合物的组合沸石催化剂及制备方法[P].中国专利: CN100464847C,2009-03-04.
    [48] Ryoo R, Ko C H, Kim J M, et al. Preparation of nanosize Pt clusters using ion exchange of Pt(NH2+3)4insidemesoporous channel of MCM-41[J]. Catal. Lett.,1996,37(1-2):29-33.
    [49]周丽梅,付海燕,李强等.高分散Ru/MMT催化剂的制备及其催化喹啉加氢性能[J].催化学报,2010,31(6):695-700.
    [50]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [51] Xu B, Wang X. Solvothermal synthesis of monodisperse nanocrystals [J]. Dalton Trans.,2012,41(16):4719-4725.
    [52] Yang L, Hu C, Wang J, et al. Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acidoxidation [J]. Chem. Commun.,2011,47(30):8581-8583.
    [53] Zhang H, Xie Y, Sun Z, et al. In-situ loading ultrafine AuPd particles on ceria: highly active catalyst forsolvent-free selective oxidation of benzyl alcohol [J]. Langmuir: the ACS journal of surfaces and colloids,2011,27(3):1152-1157.
    [54] Chen L, Lu G. Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanolelectro-oxidation [J]. Electrochim. Acta,2008,53(12):4316-4323.
    [55]韩焕波. M-TiO2/堇青石催化剂催化KBH4水解析氢性能研究[D].哈尔滨:哈尔滨工程大学,2007.
    [56]朱洪法.催化剂载体的选择[J].化学通报,1986,(4):25-29.
    [57] Deutschmann O, Kn zinger H, Kochloefl K, et al. Heterogeneous catalysis and solid catalysts[M].Weinheim: Wiley-VCH,2009,10-78.
    [58]秦越.负载型PdCl2-CuCl2催化剂室温催化氧化CO的研究[D].北京:北京化工大学,2010.
    [59] Moulijn J A, Vandiepen A E, Kapteijn F. Catalyst deactivation: is it predictable? What to do?[J]. Appl.Catal., A,2001,212(1-2):3-16.
    [60] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group8noble metals supported ontitanium dioxide [J]. J. Am. Chem. Soc.,1978,100(1):170-175.
    [61] Augustine R L, OLeary S T. Heterogeneous catalysis in organic chemistry.Part10. Effect of the catalystsupport on the regiochemistry of the heck arylation reaction [J]. J. Mol. Catal. A: Chem.,1995,95(3):277-285.
    [62] Stiles A B. Catalyst supports and supported catalysts [M]. United States: SciTech Connect,1987,12-59.
    [63] Clark J H. Solid acids for green chemistry [J]. Acc. Chem. Res.,2002,35(9):791-797.
    [64] Hadjiivanov K I, Klissurski D G. Surface chemistry of titania (anatase) and titania-supported catalysts [J].Chem. Soc. Rev.,1996,25(1):61-69.
    [65] Rioux R M, Song H, Hoefelmeyer J D, et al. High-surface-area catalyst design: Synthesis, characterization,and reaction studies of platinum nanoparticles in mesoporous SBA-15silica [J]. J. Phys. Chem. B,2005,109(6):2192-2202.
    [66] Marin G B, Froment G F. Reforming of C6hydrocarbons on a Pt/Al2O3catalyst [J]. Chem. Eng. Sci.,1982,37(5):759-773.
    [67]崔铁兵.萘选择性氧化催化剂研究[D].郑州:郑州大学,2006.
    [68]葛强.高效过渡金属氧化物脱氧剂的制备及表征[D].哈尔滨:哈尔滨工程大学,2006.
    [69] Lee Y-C, Wen S-B, Wenglin L, et al. Nano α-Al2O3powder preparation by calcining an emulsion precursor[J]. J. Am. Ceram. Soc.,2007,90(6):1723-1727.
    [70] Ebadzadeh T, Sharifi L. Synthesis of ι-Al2O3from a mixture of aluminum nitrate and carboxymethylcellulose [J]. J. Am. Ceram. Soc.,2008,91(10):3408-3409.
    [71] An B, Ji G, Wang W, et al. Azeotropic distillation-assisted preparation of nanoscale gamma-alumina powderfrom waste oil shale ash [J]. Chem. Eng. J.,2010,157(1):67-72.
    [72]汤睿,张昭,杨晓娇等.溶剂热合成分级叶片簇状纳米氧化铝[J].无机化学学报,2011,27(2):251-258.
    [73] Wu H, Zhang Q, Wang Y. Solvent-free aerobic oxidation of alcohols catalyzed by an efficient and recyclablepalladium heterogeneous catalyst [J]. Adv. Synth. Catal.,2005,347(10):1356-1360.
    [74] Keresszegi C, Ferri D, Mallat T, et al. Unraveling the surface reactions during liquid-phase oxidation ofbenzyl alcohol on Pd/Al2O3: an in situ ATR-IR study [J]. J. Phys. Chem.,2005,109(2):958-967.
    [75] Weigel O, Steinhoff E. Adsorption of organic liquid vapors by chabazite [J]. Z. Kristallogr.—New Cryst.Struct.,1925,61:125-154.
    [76] Wesiz P B, Frilette V J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts [J].J.Phys.Chem.,1960,64(3):382.
    [77] Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates [J]. Chem. Rev.,2007,107(7):2821-2860.
    [78] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores [J]. Science,1998,279(5350):548-552.
    [79] Zhan B-Z, White M A, Sham T-K, et al. Zeolite-confined nano-RuO2: a green, selective, and efficientcatalyst for aerobic alcohol oxidation [J]. J. Am. Chem. Soc.,2003,125(8):2195-2199.
    [80] Chen Y, Guo Z, Chen T, et al. Surface-functionalized TUD-1mesoporous molecular sieve supportedpalladium for solvent-free aerobic oxidation of benzyl alcohol [J]. J. Catal.,2010,275(1):11-24.
    [81] Parlett C M A, Bruce D W, Hondow N S, et al. Support-enhanced selective aerobic alcohol oxidation overPd/mesoporous silicas [J]. ACS Catal.,2011,1(6):636-640.
    [82] Gogotsi Y. Carbon nanomaterials[M]. UK: Taylor&Francis Group,2006,1-327.
    [83]张健.探究碳纳米材料及其在多相催化中的应用[J].科技风,2013,6(11):100.
    [84] Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [85]姜靖雯,彭峰.碳纳米管应用研究现状与进展[J].材料科学与工程学报,2003,21(3):464-468.
    [86]宋维君,高欣.碳纳米管载体的应用研究进展[J].广东化工,2012,39(1):47-58.
    [87] Fu X, Yu H, Peng F, et al. Facile preparation of RuO2/CNT catalyst by a homogenous oxidationprecipitation method and its catalytic performance [J]. Appl. Catal., A,2007,321(2):190-197.
    [88] Yu H, Zhang Y, Fu X, et al. Deactivation and regeneration of RuO2·xH2O/CNT catalyst for aerobicoxidation of benzyl alcohol [J]. Catal. Commun.,2009,10(13):1752-1756.
    [89] Shanahan A E, Sullivan J A, McNamara M, et al. Preparation and characterization of a composite of goldnanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis [J]. NewCarbon Materials,2011,26(5):347-355.
    [90] Xie S, Tsunoyama H, Kurashige W, et al. Enhancement in Aerobic Alcohol Oxidation Catalysis ofAu25Clusters by Single Pd Atom Doping [J]. ACS Catal.,2012,2(7):1519-1523.
    [91]熊言林,曹玉宁.神奇的石墨烯[J].化学教育,2011,(11):3-5.
    [92] Wu G, Wang X, Guan N, et al. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidationof aromatic alcohols: Role of graphene support [J]. Appl. Catal., B,2013,136-137:177-185.
    [93]张定林,赵华文,赵先英等.羟基磷灰石作催化剂和催化剂载体的应用[J].化学进展,2011,23(4):687-694.
    [94] Kaneda K, Ebitani K, Mizugaki T, et al. Design of high-performance heterogeneous metal catalysts forgreen and sustainable chemistry [J]. Bull. Chem. Soc. Jpn.,2006,79(7):981-1016.
    [95] Bett J A S, Christner L G, Hall W K. Hydrogen held by solids. XII. Hydroxyapatite catalysts [J]. J. Am.Chem. Soc.,1967,89(22):5535-5541.
    [96] Opre Z, Ferri D, Krumeich F, et al. Aerobic oxidation of alcohols by organically modified rutheniumhydroxyapatite [J]. J. Catal.,2006,241(2):287-295.
    [97] Opre Z, Grunwaldt J, Maciejewski M, et al. Promoted Ru-hydroxyapatite: designed structure for the fastand highly selective oxidation of alcohols with oxygen [J]. J. Catal.,2005,230(2):406-419.
    [98] Mondelli C, Ferri D, Baiker A. Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation ofbenzyl alcohol: An in situ ATR-IR spectroscopy study [J]. J. Catal.,2008,258(1):170-176.
    [99] Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a monomeric Ru species on the surface ofhydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation [J]. J. Am. Chem. Soc.,2000,122(29):7144-7145.
    [100] Fukahori S, Morikawa M, Ninomiya J. Selective oxidation of benzyl alcohol using RuHAp-containingsheet composites [J]. J. Mater. Sci.,2008,44(2):374-378.
    [101]刘长春.羟基磷灰石多相催化合成对硝基苯甲醛的研究[J].化学试剂,2005,27(6):379-380.
    [102] Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters: A highly activeheterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen [J]. J. Am. Chem.Soc.,2004,126(34):10657-10666.
    [103]唐秀娟.合成气一步法合成二甲醚Cu-Zn-Mn/zeolite-Y催化剂及Mn作用的研究[D].浙江:浙江大学,2008.
    [104]王永林,张成,杨刚.助剂引入对γ–Al2O3性质及其负载催化剂性能的影响[J].石化技术与应用,2013,31(3):199-201.
    [105]赵彬.助剂和Pd含量对全Pd催化剂性能的影响[J].贵金属,2009,30(4):9-12.
    [106]赵振兴,夏春谷,薛群基.金属组分对负载型Pd/Al2O3催化剂性能的影响[J].石油炼制与化工,2008,39(1):17-21.
    [107] Bubel R J, Douglass W, White D P. Molecular mechanics-based measures of steric effects: Customizedcode to compute Ligand repulsive energies [J]. J. Comput. Chem.,2000,21(3):239-246.
    [1] Liao D, Zheng W, Li X, et al. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatiteextracted from eggshell waste [J]. J. Hazard. Mater.,2010,177(1-3):126-130.
    [2] Meski S, Ziani S, Khireddine H. Removal of lead ions by hydroxyapatite prepared from the egg shell [J]. J.Chem. Eng. Data,2010,55(9):3923-3928.
    [3] Rautaray D, Mandal S, Sastry M. Synthesis of hydroxyapatite crystals using amino acid-capped goldnanoparticles as a scaffold [J]. Langmuir,2005,21(11):5185-5191.
    [4] Viswanath B, Ravishankar N. Controlled synthesis of plate-shaped hydroxyapatite and implications for themorphology of the apatite phase in bone [J]. Biomaterials,2008,29(36):4855-4863.
    [5] Kaneda K, Ebitani K, Mizugaki T, et al. Design of High-Performance Heterogeneous Metal Catalysts forGreen and Sustainable Chemistry [J]. Bull. Chem. Soc. Jpn.,2006,79(7):981-1016.
    [6]张定林,赵华文,赵先英, et al.羟基磷灰石作催化剂和催化剂载体的应用[J].化学进展,2011,23(4):687-694.
    [7] Bett J A S, Christner L G, Hall W K. Studies of the hydrogen held by solids. Xii.Hydroxyapatite catalysts[J]. J. Am. Chem. Soc.,1967;89(22):5535–5541.
    [8] Opre Z, Ferri D, Krumeich F, et al. Aerobic oxidation of alcohols by organically modified rutheniumhydroxyapatite [J]. J. Catal.,2006,241(2):287-295.
    [9] Opre Z, Grunwaldt J, Maciejewski M, et al. Promoted Ru-hydroxyapatite: designed structure for the fast andhighly selective oxidation of alcohols with oxygen [J]. J. Catal.,2005,230(2):406-419.
    [10] Mori K, Kanai S, Hara T, et al. Development of ruthenium hydroxyapatite-encapsulated superparamagneticγ-Fe2O3nanocrystallites as an efficient oxidation catalyst by molecular oxygen [J]. Chem. Mater.,2007,19(6):1249-1256.
    [11] Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters: a highly activeheterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen [J]. J. Am. Chem.Soc.,2004,126(34):10657-10666.
    [12] Xie X, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4nanorods [J]. Nature,2009,458(7239):746-749.
    [13] Holland J T, Lau C, Brozik S, et al. Engineering of glucose oxidase for direct electron transfer viasite-specific gold nanoparticle conjugation [J]. J. Am. Chem. Soc.,2011,133(48):19262-19265.
    [14] Besson M, Gallezot P. Selective oxidation of alcohols and aldehydes on metal catalysts [J]. Catalysis Today,2000,57(1-2):127-141.
    [15] Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts [J]. Chem. Rev.,2004,104(6):3037-3058.
    [16] Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidativecoupling of methanol at low temperature [J]. Science,2010,327(5963):319-322.
    [17] Vankayala R, Sagadevan A, Vijayaraghavan P, et al. Metal nanoparticles sensitize the formation of singletoxygen [J]. Angew. Chem. Int. Ed.,2011,50(45):10640-10644.
    [18] Madix R J. Molecular transformations on single crystal metal surfaces [J]. Science,1986,233(4769):1159-1166.
    [19] Leisenberger F P, Koller G, Sock M, et al. Surface and subsurface oxygen on Pd(111)[J]. Surface Science2000,445(2-3):380-393.
    [20] He J-W, Memmert U, Norton P R. Interaction of oxygen with a Pd(110) surface. II. Kinetics and energetics[J]. The Journal of Chemical Physics,1989,90(9):5088.
    [21] He J-W, Norton P R. Thermal desoiwtion of oxygen from a Pd(ll0) surface [J]. Surface Science1988,204(1-2):26-34.
    [22] Honkala K, Laasonen K. Ab initio study of O2precursor states on the Pd(111) surface [J]. J. Chem. Phys.,2001,115(5):2297.
    [23] Imbihl R, Demuth j E. Adsorption of oxygen on a Pd(Ll1) surface studied by high resolution electronenergy loss spectroscopy (EELS)[J]. Surface Science1986,173(2-3):395-410.
    [24] Wang Z, Jia X, Wang R. Dynamic study of O2adsorption and dissociation on Pd low-index surfaces [J]. J.Phys. Chem. A2004,108(25):5424-5430.
    [25] Long R, Mao K, Ye X, et al. Surface facet of palladium nanocrystals: a key parameter to the activation ofmolecular oxygen for organic catalysis and cancer treatment [J]. J. Am. Chem. Soc.,2013,135(8):3200-3207.
    [26]崔喜春.添加镁离子对碳酸钙结晶形貌的影响[J].桂林工学院学报,2005,25(2):208-210.
    [27]吴苑.纳米羟基磷灰石对成骨前体细胞增殖和分化的影响以及胚胎干细胞成骨分化研究[D].浙江:浙江大学,2007.
    [28] Xu A-W, Ma Y, Colfen H. Biomimetic mineralization [J]. J. Mater. Chem.,2007,17(5):415.
    [29] Hollingsworth M D. Calcite biocomposites up close [J]. Science,2009,326(5957):1193-1195.
    [30] Robinson C, Connell S, Kirkham J, et al. Dental enamel-a biological ceramic: regular substructures inenamel hydroxyapatite crystals revealed by atomic force microscopy [J]. J. Mater. Chem.,2004,14(14):2242.
    [31] Xie Z, Swain M, Munroe P, et al. On the critical parameters that regulate the deformation behaviour of toothenamel [J]. Biomaterials,2008,29(17):2697-2703.
    [32]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002,599-601.
    [33] Methfessel M, Paxton A. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B:Condens. Matter Mater. Phys.,1989,40(6):3616-3621.
    [34] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddlepoints and minimum energy paths [J]. J. Chem. Phys.,2000,113(22):9901.
    [35] Tagaya M, Motozuka S, Kobayashi T, et al. Mechanochemical Preparation of8-Hydroxyquinoline/Hydroxyapatite Hybrid Nanocrystals and Their Photofunctional Interfaces [J]. Ind.Eng. Chem. Res.,2012,51(34):11293-11300.
    [36] Xiong Y, Cai H, Wiley B J, et al. Synthesis and mechanistic study of palladium nanobars and nanorods [J]. J.Am. Chem. Soc.,2007,129(12):3665-3675.
    [37] Cheikhi N, Kacimi M, Rouimi M, et al. Direct synthesis of methyl isobutyl ketone in gas-phase reactionover palladium-loaded hydroxyapatite [J]. J. Catal.,2005,232(2):257-267.
    [38] Lee A F, Chang Z, Ellis P, et al. Selective oxidation of crotyl Alcohol over Pd(111)[J]. J. Phys. Chem. C,2007,111(51):18843-18847.
    [39] Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of chargedensity [J]. Computational Materials Science,2006,36(3):354-360.
    [40] Li C, Zhang Q, Wang Y, et al. Preparation, Characterization and Catalytic Activity of PalladiumNanoparticles Encapsulated in SBA-15[J]. Catal. Lett.,2008,120(1-2):126-136.
    [41] Wu H, Zhang Q, Wang Y. Solvent-Free Aerobic Oxidation of Alcohols Catalyzed by an Efficient andRecyclable Palladium Heterogeneous Catalyst [J]. Adv. Synth. Catal.,2005,347(10):1356-1360.
    [42] Pérez Y, Ruiz-González M L, González-Calbet J M, et al. Shape-dependent catalytic activity of palladiumnanoparticles embedded in SiO2and TiO2[J]. Catal. Today,2012,180(1):59-67.
    [43] Bl chl P E. Projector augmented-wave method [J]. Phys. Rev. B: Condens. Matter Mater. Phys.,1994,50(24):17953-17979.
    [44] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B: Condens. MatterMater. Phys.,1976,13(12):5188-5192.
    [45] Wood N V. Specific surfaces of bone, apatite, enamel, and dentine [J]. Science,1947,105(2733):531-532.
    [46]张广宇.吸附还原催化转化器降低稀燃汽油机NOX排放机理模拟与实验研究[D].天津:天津大学,2006.
    [47] Silvi B, Savin A. Classification of chemical bonds based on topological analysis of electron localizationfunctions [J]. Nature,1994,371:683-686.
    [48] Kresse G, Furthmiiller J. Efficiency of ab-initio total energy calculations for metals and semiconductorsusing a plane-wave basis set [J]. Computational Materials Science,1996,6(1):15-50.
    [49] Perdew J P, Jackson K A, Pederson M R, et al. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation [J]. Phys. Rev. B: Condens. Matter Mater.Phys.,1992,46(11):6671-6687.
    [50] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductortransition in germanium [J]. Phys. Rev. B: Condens. Matter Mater. Phys.,1994,49(20):14251-14269.
    [51] Jiang S-D, Yao Q-Z, Zhou G-T, et al. Fabrication of Hydroxyapatite Hierarchical Hollow Microspheres andPotential Application in Water Treatment [J]. J. Phys. Chem. C,2012,116(7):4484-4492.
    [52] Besson C, Finney E E, Finke R G. A mechanism for transition-metal nanoparticle self-assembly [J]. J. Am.Chem. Soc.,2005,127(22):8179-8184.
    [53] Petroski J M, Wang Z L, Green T C, et al. Kinetically controlled growth and shape formation mechanism ofPlatinum nanoparticles [J]. J. Phys. Chem. B,1998,102(18):3316-3320.
    [54] Peng X, Manna L, Yang E, et al. Shape control of CdSe nanocrystals [J]. Nature,2000,404:59-61.
    [55] Jun Y W, Jung Y Y, Cheon J. Architectural control of magnetic semiconductor nanocrystals [J]. J. Am. Chem.Soc.,2002,124:615-619.
    [56] Zhang L, Niu W, Xu G, Synthesis and applications of noble metal nanocrystals with high-energy facets [J].Nanotoday,2012,7(6):586–605.
    [57] Huang X, Tang S, Zhang H, et al. Controlled Formation of Concave Tetrahedral/Trigonal BipyramidalPalladium Nanocrystals [J]. J. Am. Chem. Soc.,2009,131:13916–13917
    [1] Li Y, Shen W. Morphology-dependent nanocatalysis on metal oxides [J]. Sci China Chem,2012,55(12):2485-2496.
    [2] Heiz U, Schneider W-D. Nanoassembled model catalysts [J]. J. Phys. D: Appl. Phys.,2000,33(11):R85–R102.
    [3] Haruta M. Spiers Memorial Lecture: Role of perimeter interfaces in catalysis by gold nanoparticles [J].Faraday Discuss.,2011,152:11-32.
    [4]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002,614-624.
    [5] Abad A, Concepcion P, Corma A, et al. A collaborative effect between gold and a support induces theselective oxidation of alcohols [J]. Angew. Chem. Int. Ed.,2005,44(26):4066-4069.
    [6] Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes usingAu-Pd/TiO2catalysts [J]. Science,2006,311(5759):362-365.
    [7] Jia K, Zhang H, Li W. Effect of the morphology of the ceria support on the activity of Au/CeO2catalysts forCO oxidation [J]. Chin. J. Catal.,2008,29(11):1089-1092.
    [8] Wu Z, Li M, Overbury S. On the structure dependence of CO oxidation over CeO2nanocrystals withwell-defined surface planes [J]. J. Catal,2012,285(1):61-73.
    [9] Hu L, Peng Q, Li Y. Low-temperature CH4catalytic combustion over Pd catalyst supported on Co3O4nanocrystals with well-defined crystal planes [J]. ChemCatChem,2011,3(5):864-874.
    [10] Xue W, Wang Y, Li P, et al. Morphology effects of Co3O4on the catalytic activity of Au-Co3O4catalysts forcomplete oxidation of trace ethylene [J]. Catal. Commun.,2011,12(13):1265-1268.
    [11] Wang L, Liu Y, Chen M, et al. MnO2nanorod supported gold nanoparticles with enhanced activity forsolvent-free aerobic alcohol oxidation [J]. J. Phys. Chem. C,2008,112(17):6981-6987.
    [12] Lignier P, Comotti M, Schüth F, et al. Effect of the titania morphology on the Au/TiO2-catalyzed aerobicepoxidation of stilbene [J]. Catal. Today,2009,141(3-4):355-360.
    [1] Larock R C. Comprehensive organic transformations[M]. New York: VCH,1999,1234-1250.
    [2] Choudary B M, Lakshmi Kantam M, Lakshmi Santhi P. New and ecofriendly options for the production ofspeciality and fine chemicals [J]. Catal. Today2000,57(1-2):17-32.
    [3]张昕,吴伟伟,黄启权,等.苯甲醇液相氧化制苯甲醛催化剂的研究进展[J].石油化工2010,39(2):215-223.
    [4] Sheldon R A, Kochi J. Metal—Catalyzed Oxidation of Organic Compound[M]. New York: Academic Press,1981,350-382.
    [5]年立春.苯甲醛生产工艺及改进措施[J].广东化工,2012,39(3):95-96.
    [6] Chen Y, Guo Z, Chen T, et al. Surface-functionalized TUD-1mesoporous molecular sieve supportedpalladium for solvent-free aerobic oxidation of benzyl alcohol [J]. J. Catal.,2010,275(1):11-24.
    [7] Choudhary V R, Dumbre D K. Magnesium oxide supported nano-gold: A highly active catalyst forsolvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP [J]. Catal. Commun.,2009,10(13):1738-1742.
    [8] Ni J, Yu W-J, He L, et al. A green and efficient oxidation of alcohols by supported gold catalysts usingaqueous H2O2under organic solvent-free conditions [J]. Green Chem.,2009,11(6):756.
    [9] Wang L-C, Liu Y-M, Chen M, et al. MnO2nanorod supported gold nanoparticles with enhancedactivity forsolvent-free aerobic alcohol oxidation [J]. J. Phys. Chem. C,2008,112:6981-6987.
    [10] Wu H, Zhang Q, Wang Y. Solvent-Free Aerobic Oxidation of Alcohols Catalyzed by an Efficient andRecyclable Palladium Heterogeneous Catalyst [J]. Adv. Synth. Catal.,2005,347(10):1356-1360.
    [11] Pérez Y, Ruiz-González M L, González-Calbet J M, et al. Shape-dependent catalytic activity of palladiumnanoparticles embedded in SiO2and TiO2[J]. Catal. Today,2012,180(1):59-67.
    [12] Kohsuke Mori, Takayoshi Hara, Tomoo Mizugaki, et al. Hydroxyapatite-supported palladium nanoclusters:a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen [J]. J.Am. Chem. Soc.,2004,126(34):10657-10666.
    [13] Chen Y, Lim H, Tang Q, et al. Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic andAu–Pd bimetallic catalysts supported on SBA-16mesoporous molecular sieves [J]. Appl. Catal., A,2010,380(1-2):55-65.
    [14] Santos A, Yustos P, Cordero T, et al. Catalytic wet oxidation of phenol on active carbon: stability, phenolconversion and mineralization [J]. Catal. Today,2005,102-103:213-218.
    [15] Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts [J]. Appl.Catal., A1998,173(2):259-271.
    [16] Lin Y, Baggett D W, Kim J W, et al. Instantaneous formation of metal and metal oxide nanoparticles oncarbon nanotubes and graphene via solvent-free microwave heating [J]. ACS Appl. Mater. Interfaces,2011,3(5):1652-1664.
    [17] Michele B, Faousy L, Pierre G, et al. Catalytic oxidation of glucose on bismuth-promoted palladiumcatalysts [J]. J. Catal.,1995,152(1):116-121.
    [18] Beziat J C, Besson M, Gallezot P. Liquid phase oxidation of cyclohexanol to adipic acid with molecularoxygen on metal catalysts [J]. Appl. Catal., A1996,135(1): L7-L11.
    [19] Peter F, Michele B, Pierre G. Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvicacids [J]. Appl. Catal., A,1995,133(2): L179-L184
    [20] Hosokawa S, Hayashi Y, Imamura S, et al. Effect of the Preparation Conditions of Ru/CeO2Catalysts forthe Liquid Phase Oxidation of Benzyl Alcohol [J]. Catal. Lett.,2009,129(3-4):394-399.
    [21] Rather S-u, Zacharia R, Hwang S W, et al. Hydrogen uptake of palladium-embedded MWCNTs producedby impregnation and condensed phase reduction method [J]. Chem. Phys. Lett.,2007,441(4-6):261-267.
    [22] Carrettin S, McMorn P, Johnston P, et al. Oxidation of glycerol using supported Pt, Pd and Au catalysts [J].Phys. Chem. Chem. Phys.,2003,5(6):1329-1336.
    [23] Harada T, Ikeda S, Miyazaki M, et al. A simple method for preparing highly active palladium catalystsloaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions [J]. J. Mol. Catal.A: Chem.,2007,268(1-2):59-64.
    [24] Li G, Enache D I, Edwards J, et al. Solvent-free oxidation of benzyl alcohol with oxygen usingzeolite-supported Au and Au–Pd catalysts [J]. Catal. Lett.,2006,110(1-2):7-13.
    [25] Neri G, Rizzo G, De Luca L, et al. Supported Pd catalysts for the hydrogenation of campholenic aldehyde:Influence of support and preparation method [J]. Appl. Catal., A,2009,356(2):113-120.
    [26] Puntes V F, Krishnan K M, Alivisatos1A P. Colloidal Nanocrystal Shape and Size Control: The Case ofCobalt [J]. Science,2001,291(5511):2115-2117.
    [27] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [28] Xiong Y, Cai H, Wiley B J, et al. Synthesis and mechanistic study of palladium nanobars and nanorods [J]. J.Am. Chem. Soc.,2007,129(12):3665-3675.
    [29] Hu C, Bai Z, Yang L, et al. Preparation of high performance Pd catalysts supported on untreatedmulti-walled carbon nanotubes for formic acid oxidation [J]. Electrochim. Acta,2010,55(20):6036-6041.
    [30] Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions inaqueous solution [J]. Langmuir,2002,18(12):4921-4925.
    [31] Han Y, Kumar D, Goodman D. Particle size effects in vinyl acetate synthesis over Pd/SiO2[J]. J. Catal.,2005,230(2):353-358.
    [32] Li F, Zhang Q, Wang Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed byzeolite-supported palladium nanoparticles [J]. Appl. Catal., A,2008,334(1-2):217-226.
    [33] Opre Z, Ferri D, Krumeich F, et al. Aerobic oxidation of alcohols by organically modified rutheniumhydroxyapatite [J]. J. Catal.,2006,241(2):287-295.
    [34] Payne G B, Smith C W. Reactions of hydrogen peroxide. Ⅲ. tungstic acid catalyzed hydroxylation ofcyclohexene in nonaqueous media [J]. J. Org. Chem.,1957,22:1682-1685.
    [35]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002,599-601.
    [1] Asao N, Ishikawa Y, Hatakeyama N, et al. Nanostructured materials as catalysts: nanoporous-gold-catalyzedoxidation of organosilanes with water [J]. Angew. Chem. Int. Ed.,2010,49(52):10093-10095.
    [2] Balcha T, Strobl J R, Fowler C, et al. Selective aerobic oxidation of crotyl alcohol using aupd core-shellnanoparticles [J]. ACS Catal.,2011,1(5):425-436.
    [3] Deng D, Yu L, Chen X, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reductionreaction [J]. Angew. Chem. Int. Ed.,2013,52(1):371-375.
    [4] Kyriakou G, Beaumont S K, Lambert R M. Aspects of heterogeneous enantioselective catalysis by metals [J].Langmuir,2011,27(16):9687-9695.
    [5] Liu Y, Tsunoyama H, Akita T, et al. Aerobic oxidation of cyclohexane catalyzed by size-controlled Auclusters on hydroxyapatite: size effect in the sub-2nm regime [J]. ACS Catal.,2011,1(1):2-6.
    [6] Song W, Shi R, Liu J, et al. Transfer dehydrogenation of alcohols over ceria-supported Cu, Ir, and Pdcatalysts [J]. Chin. J. Catal.,2007,28(2):106-108.
    [7] Steinhoff B A, Fix S R, Stahl S S. Mechanistic study of alcohol oxidation by the Pd(OAc)2/O2/DMSOcatalyst system and implications for the development of improved aerobic oxidation catalysts [J]. J. Am.Chem. Soc.,2002,124(5):766-767.
    [8] Tew M W, Emerich H, van Bokhoven J A. Formation and characterization of PdZn alloy: A very selectivecatalyst for alkyne semihydrogenation [J]. J. Phys. Chem. C,2011,115(17):8457-8465.
    [9] Chen Y, Lim H, Tang Q, et al. Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic andAu-Pd bimetallic catalysts supported on SBA-16mesoporous molecular sieves [J]. Appl. Catal., A,2010,380(1-2):55-65.
    [10] Li F, Zhang Q, Wang Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed byzeolite-supported palladium nanoparticles [J]. Appl. Catal. A,2008,334(1-2):217-226.
    [11] Zhang H, Liu Y, Zhang X. Selective oxidation of benzyl alcohol catalyzed by palladium nanoparticlessupported on carbon-coated iron nanocrystals [J]. Chin. J. Catal.,2011,32(11-12):1693-1701.
    [12]赵振兴,夏春谷,薛群基.金属组分对负载型Pd/Al2O3催化剂性能的影响[J].石油炼制与化工,2008,39(1):17-21.
    [13]何蓓蓓,王淑芳,王延吉,赵新强. Pb掺杂改性对Pt_HZSM_5催化剂结构及其催化合成对氨基苯酚反应性能的影响[J].石油学报(石油加工),2013,29(1):51-55.
    [14] Aika K-i, Hori H, Ozaki A. Activation of nitrogen by alkali metal promoted transition metal I. Ammoniasynthesis over ruthenium promoted by alkali metal [J]. J. Catal.,1972,27(3):424-431.
    [15] Kresse G, Furthmiiller J. Efficiency of ab-initio total energy calculations for metals and semiconductorsusing a plane-wave basis set [J]. Comp. Mater. Sci.,1996,6(1):15-50.
    [16] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using aplane-wave basis set [J]. Phys. Rev. B,1996,54(16):11169-11186.
    [17] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993,47(1):558-561.
    [18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192.
    [19] Wang D, Xin H L, Wang H, et al. Facile synthesis of carbon-supported Pd-Co core-shell nanoparticles asoxygen reduction electrocatalysts and their enhanced activity and stability with monolayer Pt decoration [J].Chem. Mater.,2012,24(12):2273-2281.
    [20]袁芳芳.钯纳米颗粒的可控合成及其催化性能研究[D].武汉:中南民族大学,2011.
    [21]陈诵英,孙予罕,丁云杰等.吸附与催化[M].河南:河南科学技术出版社,2001,35-99.
    [22]李茸,刘祥萱,王煊军.纳米金属催化机理[J].化学推进剂与高分子材料,2007,5(6):9-13.
    [23]高正中,戴洪兴.实用催化[M].北京:化学工业出版社,2011,65-74.
    [24]张玲.纳米Pt-Au合金修饰电极增敏鲁米诺电化学发光行为的研究[D].苏州:苏州大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700