用户名: 密码: 验证码:
BiFeO_3及BiFeO_3-碳质材料复合物的制备及其吸附—降解有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高级氧化技术主要利用H_2O_2和O_2为代表的绿色氧化剂,通过产生氧化性活化物种实现对有机污染物的降解。在H_2O_2和O_2的应用过程中,如何有效活化其分子中的O-O键非常关键。目前,对于O-O键的活化方案有两种:一种是引入外来能量的方式;另一种是开发有效的催化剂。在引入外来能量方面的研究中,引入太阳光中所占比例较大的可见光成本极低、条件温和,因此具有较强的竞争力。关于开发催化剂催化活化O-O键方面的研究主要集中均相Fenton反应和多相类Fenton反应两类。其中多相类Fenton反应中的催化剂能回收利用,但催化活性还需提高。因此,如何提高多相Fenton反应的降解效率是当前的研究热点之一。另外,由于多相催化中污染物在催化剂上的吸附对于其后续降解十分关键,因此,开发具有较强吸附能力和催化能力的双功能材料对于实现高浓度污染物的降解具有非常重要的意义。本论文的研究主要集中在以下几方面:一是利用配体改性和引入可见光照射的方式来提高含铁多相催化剂活化H_2O_2的能力,进而提高多相类Fenton反应降解污染物的效率。;二是利用石墨烯材料负载的方式提高含铁多相催化剂的吸附和催化能力,将其应用于催化降解新型有机污染物;三是将含铁催化剂负载在吸附材料活性碳上,制备吸附-降解双功能材料,进一步拓宽该催化剂的应用范围。本文主要研究内容包括:
     (1)建立了可见光催化的类Fenton高效催化氧化反应体系。该体系基于纳米BiFeO_3具有一定的类Fenton和可见光催化能力,将其化学催化能力和可见光催化活性有机结合,在H_2O_2和可见光照射条件下BiFeO_3MNPs可高效地催化氧化降解有机污染物。在优化条件下,BiFeO_3-H_2O_2-可见光体系中甲基紫(30μmol/L)、罗丹宁B(10μmol/L)和苯酚(3mmol/L)降解的一级动力学常数(k)分别为2.21×10~(-2),5.56×10~(-2)和2.01×10~(-2)min~(-1)。与暗反应相比,该反应体系对甲基紫、罗丹宁B和苯酚的降解速率常数分别是暗反应的3.47、1.95和2.07倍。一般而言,BiFeO_3-H_2O_2-Vis反应体系中污染物的降解速率常数k随着催化剂用量和H_2O_2的增加而增加,但随着污染物初始浓度的增加而下降。采用EDTA和NTA配体对BiFeO_3进行表面修饰,可进一步提高高浓度污染物的降解速率。加入0.4mmol/L的EDTA后,甲基紫(60μmol/L)降解的速率常数从1.01×10~(-2)min~(-1)提高到1.30min~(-1),增加了128倍。最后,提出了该催化体系的羟基自由基产生的反应机理。
     (2)采用溶胶-凝胶法合成了纳米BiFeO_3-石墨烯的新型可见光-类Fenton催化剂。由于石墨烯具有良好的负载性能,多相催化剂BiFeO_3在石墨烯上的负载显著地减少了纳米BiFeO_3的团聚,提高复合催化剂的比表面积,BiFeO_3-石墨烯复合物的比表面积为35.07m~2g~(-1),比BiFeO_3的(7.50m~2g~(-1))大得多。该复合物具有优异的可见光-类Fenton催化性能。将煅烧温度、石墨烯含量及溶液pH值等因素优化后,利用该复合物实现了四溴双酚A的光-Fenton催化降解,其表观降解速率常数为1.19min~(-1),分别是BiFeO_3及BiFeO_3-石墨烯简单混合物的5.43和3.68倍。该复合物可见光-类Fenton催化性能的提高主要是由于其相对于BiFeO_3具有较大的比表面积,更强的吸附能力及复合物中石墨烯较强的电子传导能力,这些都有利于促进氧化活性物种的产生及增加其与污染物的接触机会,从而高效降解和矿化难降解有机污染物。
     (3)采用水热法合成了同时具有吸附和降解催化功能的BiFeO_3基双功能材料。为了进一步拓宽BiFeO_3的应用范围,本部分工作将BiFeO_3和氧化活性碳复合制成吸附-降解双功能材料。利用活性碳独特的多孔结构,提高该复合物的比表面积。研究结果表明,该复合物的比表面积为119.61m~2g~(-1),比水热法合成的BiFeO_3的比表面积(26.50m~2g~(-1))要高得多。另外,将纳米级的BiFeO_3负载微米级的氧化活性碳上,可减少BiFeO_3纳米颗粒的团聚几率,这一方面提高了其比表面积和吸附能力;另一方面还提高了BiFeO_3纳米颗粒和污染物的接触机会,从而提高其催化降解污染物能力。在优化条件下,该复合物对高浓度亚甲基蓝的降解速率是BiFeO_3的6.25倍,且矿化效果也比BiFeO_3高得多。研究结果表明,该复合物具有良好的吸附和催化性能,能够高效去除高浓度有机污染物。
The environmentally friendly oxidants (such as H_2O_2and O_2) are activated togenerate oxydic species, which are utilized to degrade organic pollutants in advancedoxidation technology. During the activation of H_2O_2and O_2, it is a key problem whetherthe O-O band existed in these molecules could be activated effectively. At present, theactivated approaches of O-O band are included two aspects: the first one is to introduceadditional energy; the second one is to develop effective catalysts. In the reasearch aboutthe introduction of additional energy, the utilization of visible light which has a largeproportion in sunlight possesses the superiority of lower cost and mild condition.Therefore, it processes strong competitiveness. The study of developing catalysts with theability of activating O-O band is focus on homogeneous Fenton calalysts andheterogeneous Fenton calalysts. Among them, the heterogeneous Fenton-like catalystscould be recycled and reutilized. However, the catalytic activity of these catalysts needs tobe improved furtherly. Hence, it is very important to improve the degraded efficiency ofpollutants in heterogeneous Fenton-like process. In addition, many researchers have foundthat the adsorption of pollutants on catalysts is very important to their subsuquentdegradation in heterogeneous Fenton process. Therefore, the development of newmaterials with both stronger adsorped and catalytic ablility is very significance to removepollutants at higer concentration in the environment. Therefore, the study of this paper isfocus on these aspects: the first one was to improve the degradation efficiency of organicpollutants in heterogeneous Fenton process. The methods which includ the in-situ surfacemodification to catalysts by ligands and introducing visible light are utilized, which toimprove the catalytic ability of heterogeneous catalyst; the second one was focus onenhancing the adsorption and catalytic ability of Fe-contained heterogeneous catalystthrough load it on graphene material. And the compound catalyst is used to degrade neworganic pollutant; the third one was to load Fe-contained catalyst on activated carbon anddevolp the adsorption-degradation double function materials, which expanded theapplication scope of the catalyst. The main research contants about this paper are showed as follows:
     (1) The new effective catalytic oxidation system which is coupled with Fenton-likeand visible light catalytic reaction was established. This was based on the Fenton-like andvisible light catalytic ability of nano-BiFeO_3. The degradation of organic pollutants inBiFeO_3-H_2O_2-visible light (Vis) system was investigated. Under optimum conditions, thepseudo-first-order rate constant (k) was determined to be2.21×10~(-2),5.56×10~(-2)and2.01×10~(-2)min~(-1)for the degradation of MV (30μmol/L), RhB (10μmol/L) and phenol (3mmol/L), respectively, in the system. The introduction of visible light irradiation increasedthe k values of MV, RhB and phenol degradation3.47,1.95and2.07times in comparisonwith those in dark. Generally, the k values in the BiFeO_3-H_2O_2-Vis system wereaccelerated by increasing BiFeO_3load and H_2O_2concentration, but decreased withincreasing initial pollutant concentration. To further enhance the degradation of pollutantsat high concentrations, BiFeO_3was modified with the addition of surface modifiers. Theaddition of ethylenediamineteraacetic acid (EDTA,0.4mmol/L) increased the k value ofMV degradation (60μmol/L) from1.01×10~(-2)min~(-1)in the BiFeO_3-H_2O_2-Vis system to1.30min~(-1)in the EDTA-BiFeO_3-H_2O_2-Vis system, a factor of128. This suggests that in situsurface modification can enable BiFeO_3nano-particles to be a promising visible lightphoto-Fenton-like catalyst for the degradation of organic pollutants. At last, themechanism for OH radical generation in EDTA-BiFeO_3-H_2O_2-Vis system was proposed.
     (2) Graphene-BiFeO_3nanoscaled composites were prepared with a sol-gel methodand evaluated as highly efficient photo-Fenton like catalyst under visible light irradiation.In the preparation of the compound, the nanoscaled particles of BiFeO_3were loaded on thesheets of graphene. Due to the good load performance of graphene, the aggregation ofBiFeO_3nano-particles was avoided greatly. Thus, the specific surface area of thecompound was increased. The experiment result showed that the graphene-BiFeO_3composite had a specific surface area of35.07m~2g~(-1), being considerably larger than thatof BiFeO_3nanoparticles (7.50m~2g~(-1)). The composite exhibited excellent visiblelight-Fenton like catalysis activity, being influenced by calcination temperature, graphenecontent and solution pH value. Under optimal conditions with visible light irradiation, thegraphene-BiFeO_3composite yielded fast degradation of tetrabromobisphenol A with a apparent rate constant of1.19min~(-1), which was5.43and3.68folds of that achieved byusing BiFeO_3and the mixture of BiFeO_3and graphene, respectively. The significantlyenhanced visible light-Fenton like catalytic properties of the graphene-BiFeO_3compositein comparison with that of BiFeO_3was attributed to a large surface area, much increasedadsorption capacity and the strong electron transfer ability of graphene in the composite.
     (3) The double-function materials with adsorption and catalysis based on BiFeO_3wasprepared with hydrothermal process. To expand the application scope of BiFeO_3, BiFeO_3and oxidated activate carbon (OAC) were combined as both adsorbent and catalyst. Thespecific surface area of the compound was increased due to the porous structure of OAC.And the experiment result indicated that the specific surface area of the compound was119.61m~2g~(-1), which was much higher than that of BiFeO_3prepared with hydrothermalprocess (26.50m~2g~(-1)). Moreover, the loading of BiFeO_3nano-particles on OAC hinderedthe aggregation of BiFeO_3nano-particles greatly, which increased the specific surface area;On the other hand, the contact chances between BiFeO_3and pollutants were increased,which increased the catalytic ability of the compound. Under optimum conditions, thedegraded rate constant of methylene blue with high concentration (0.4mmol L) was6.25folds compare with that of BiFeO_3. And the TOC removal was much higher than that ofBiFeO_3. The study result showed that the compound possess good adsorption and catalyticperformance, which could be utilized to remove pollutants at high concerntration.
引文
[1] Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of2,6-dimethylaniline in theFenton process. Environ. Sci. Technol.2009,43:8269-8634.
    [2] Feng J Y, Hu X J, Yue P L. Discoloration and mineralization of orange II using differentheterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol.2004,38:5773-5778.
    [3] Linsebigler A, Lu G, Yates J. Photocatalysis on TiO2surface: principles, mechanisms, andselected results. Chem. Rev.1995,95:735-758.
    [4] Wang N, Chen Z F, Zhu L, et al. Synergistic effects of cupric and fluoride ions on photocatalyticdegradation of phenol. J. Photochem. Photobiol. A: Chem.2007,191:193-200.
    [5] Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds,phenolic compounds and organic dyes-A review. Sci. Total Environ.2009,407:2474-2492.
    [6] Qiang Z M, Liu C, Dong B Z, et al. Degradation mechanism of alachlor during direct ozonationand O3/H2O2advanced oxidation process. Chemosphere2010,78:517-526.
    [7] Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc.London A1934,147:332-351.
    [8] Walling C. Intermediates in the reactions of Fenton type reagents. Acc. Chem. Res.1998,31:155-157.
    [9] Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following asingle addition of iron and peroxide. Chemosphere2000,41:409-417.
    [10] Hug S J, Leupin O. Iron-catalyzed oxidation of arsenic (III) by oxygen and hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol.2003,37:2734-2742.
    [11] Katsoyiannis I A, Ruettimann T, Hug S J. pH dependence of Fenton reagent generation and As(III)oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol.2008,42:7424-7430.
    [12] Li Y C, Bachas L G, Bhattacharyya D. Kinetics studies of trichorophenol destruction bychelate-based Fenton reaction. Environ. Eng. Sci.2005,22:756-771.
    [13] Monteagudo J M, Duran A, Lopez-Almodovar C. Homogenous ferrioxalate assisted solarphoto-Fenton degradation of orange II aqeous solutions. Appl. Catal. B: Environ.2008,83:46-55.
    [14] Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurringchelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Res.2009,43:684-694.
    [15] Kwon B G, Kim E J, Lee J H. Pentachlorophenol decomposition by electron beam processenhanced in the presence of Fe(III)-EDTA. Chemosphere2009,74:1335-1339.
    [16] Nam S, Renganthan V, Tratnyek P G. Substituent effects on azo dye oxidation by theFeIII-EDTA-H2O2system. Chemosphere2001,45:59-65.
    [17] Roy G, Donato P D, Gorner T, et al. Study of tropaeolin degradation by iron-proposition of areaction mechanism. Water Res.2003,37:4954-4964.
    [18] Ventura A, Jacquet G, Bermond A, et al. Electrochemical generation of the Fenton’s reagent:application to atrazine degradation. Water Res.2002,36:3517-3522.
    [19] Han Y, Phonthammachai N, Ramesh K, et al. Removing organic compounds from aqueousmedium via wet peroxidation by gold catalysts. Environ. Sci. Technol.2008,42:908-912.
    [20] Cheng M M, Ma W H, Li J, et al. Visible light-assisted degradation of dye pollutants overFe(III)-loaded resin in the presence of H2O2at neutral pH values. Environ. Sci.Technol.2004,38,1569-1575.
    [21] Zepp R G, Faust B C, Holgne J. Hydroxyl radical formation in aqueous reactions (pH3-8) ofiron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol.1992,26:313-319.
    [22] Chen F, Xie Y D, He J J, et al. Photo-Fenton degradation of dye in methanolic solution under bothUV and visible irradiation. J. Photochem. Photobiol. A: Chem.2001,138:139-146.
    [23] Malato S, Blanco J, Alarcon D C, et al. Photocatalytic decontamination and disinfection of waterwith solar collectors. Catal. Today2007,122:137-149.
    [24] Tokumura M, Znad H T, Kawase Y. Decolorization of dark brown colored coffee effluent by solarphoto-Fenton reaction: effect of solar light dose on decorlorization kinetics. Water Res.2008,42:4665-4673.
    [25] Yang Y, Wang P, Shi S J, et al. Microwave enhanced Fenton-like process the treatment of highconcentration pharmaceutical wastewater. J. Hazard. Mater.2009,168:238-245.
    [26] Ma Y S, Sung C F, Lin J G. Degradation of carbofuran in aqueous solution by ultrasound andFenton processes: effect of system parameters and kinetic study. J. Hazard. Mater.2010,178:320-325.
    [27] Yuan S H, Tian M, Cui Y P, et al. Treatment of nitrophenols by cathode reduction andelectro-Fenton methods. J. Hazard. Mater.2006,137:573-580.
    [28] Zhang J B, Zhuang J, Gao L Z, et al. Decomposing phenol by the hidden talent of ferromagneticnanoparticles. Chemosphere2008,73:1524-1528.
    [29] Miller C M, Valentine R L. Hydrogen peroxide decomposition and quinoline degradation in thepresence of aquifer material. Water Res.1995:29,2353-2359.
    [30] Spinicci R, Faticanti M, Marini P, et al. Catalytic activity of LaMnO3and LaCoO3perovskitestowards VOCs combustion. J. Mol. Catal. A: Chem.2003,197:147-155.
    [31] Neamtu M, Zaharia C, Catrinescu C, et al. Fe-exchanged Y zeolite as catalyst for wet peroxideoxidation of reactive azo dye Procion Marine H-EXL. Appl. Catal. B: Environ.2004,48:287-294.
    [32] Catrinescu C, Teodosiu C, Macoveanu M, et al. Catalytic wet peroxide oxidation of phenol overFe-exchanged pillared beidellite. Water Res.2003,37:1154-1160.
    [33] Han Y, Phonthammachai N, Ramesh K, et al. Removing organic compounds from aqueousmedium via wet peroxidation by gold catalysts. Environ. Sci. Technol.2008,42:908-912.
    [34]刘淑芝,刘先军,徐胜利,等,提高TiO2可见光分解水制氢活性的研究进展.应用化工,2008,37(12):1491-1495.
    [35]曹沛森,许璞,王玉宝,等,纳米TiO2光催化剂的改性及应用研究进展.纳米材料与结构,2008,45(3):145-152.
    [36] Jang H S, Kim H G, Borse P H, et al. Simultaneous hydrogen production and decomposition ofH2S dissolved in alkaline water over CdS-TiO2composite photocatalysts under visible lightirradiation. Int. J. Hydrogen Energ.2007,32(18):4786-4791.
    [37] Jang J S, Kim H G, Joshi U A, et al. Fabrication of CdS nanowires decorated with TiO2nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int. J.Hydrogen Energ.2008,33(21):5975-5980.
    [38] Chen L C, Tsai F R, Fang S H, et al. Properties of sol–gel SnO2/TiO2electrodesand theirphotoelectrocatalytic activities under UV and visible light illumination. Electrochimica Acta,2009,54(4):1304-1311.
    [39] Khan R, Kim T J. Preparation and application of visible-light-responsiveNi-doped andSnO2-coupled TiO2nanocomposite photocatalysts. J. Hazard. Mater.2009,163(2-3):1179-1184.
    [40] Smith Y R, Raj K J A, Subramanian V, et al. Sulfated Fe2O3-TiO2synthesized from ilmenite ore:A visible light active photocatalys. Colloids and Surfaces A: Physicochem. Eng. Aspects2010,367(1-3):140-147.
    [41] Liu H, Shon H K, Sun X, et al. Preparation and characterization of visible light responsiveFe2O3-TiO2composites. Appl. Surf. Sci.2011,257(13):5813-5819.
    [42] Ilive V, Tomova D, Rakovsky S, et al. Enhancement of photocatalytic oxidation of oxalic acid bygold modified WO3/TiO2photocatalysts under UV and visible light irradiation. J. Mol. Catal. A:Chem.2010,327(1-2):51-57.
    [43] Irie H, Miura S, Kamiya K, Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ionsonto TiO2and WO3photocatalysts. Chem. Phys. Lett.2008,457(1-3):202-205.
    [44] Brahimi R, Bessekhouad Y, Bouguelia A, et al. Improvement of eosin visible light degradationusing PbS-sensititized TiO2. J. Photochem. Photobiol. A: Chem.2008,194(2-3):173-180.
    [45] Zhang Z, Hossain M, Takahashi T. Self-assembled hematite (a-Fe2O3) nanotube arrays forphotoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal.B: Environ.2010,95(3-4):423-429.
    [46] Zhang Z, Hossain M, Takahashi T. Fabrication of shape-controlled α-Fe2O3nanostructures bysonoelectrochemical anodization for visible light photocatalytic application. Mater. Lett.2010,64(3):435-438.
    [47] Ma L L, Li J L, Sun H Z, et al. Self-assembled Cu2O Flowelike architecture: Ployol synthesis,photocatalytic activity and stability under simulated solar light. Mater. Res. Bull.2010,45(8):961-968.
    [48] Gu Y, Su X, Du Y, et al. Preparation of flower-like Cu2O nanoparticles by pulse electrodepositionand their electrocatalytic application. Appl. Surf. Sci.2010,256(20):5862-5866.
    [49] Wang Q, Chen G, Zhou C, et al. Sacrificial template method for the synthesis of CdSnanosponges and their photocatalytic properties. J. Alloy. Compd.2010,503(2):485-489.
    [50] Jia L, Li J, Fang W, et al. Visible-light-induced photocatalyst based on C-doped LaCoO3synthesized by novel microorganism chelate method. Catal. Comm.2009,10(8):1230-1234.
    [51] Sulaeman U, Yin S, Sato T. Visible light photocatalytic acivity induced by the carboxyl groupchemically bonded on the surface of SrTiO3. Appl. Catal. B: Environ.2011,102(1-2):286-290.
    [52] Li F T, Liu Y, Liu R H, et al. Preparation of Ca-doped LaFeO3nanopowers in a reversemicroemulsion and their visible light photocatalytic activity. Mater. Lett.2010,64(2):223-225.
    [53] Zou Z, Ye J, Arakawa H. Photophysical and photocatalytic properties of InMO4(M=Nb5+,Ta5+)under visible light irradiation. Mater. Res. Bull.2001,36(7-8):1185-1193.
    [54] Lin H Y, Chen Y F, Chen Y W. Water splitting reaction on NiO/InVO4under visible lightirradiation. Int. J. Hydrogen Energ.2007,32(1):86-92.
    [55] Chiou Y C, Kumar S, Wu J C S. Photocatalytic splitting of water on NiO/InTaO4catalystsprepared by an innovative sol-gel method. Appl. Catal.2009,357(1):73-78.
    [56] Hara M, Takata T, Kondo J N, et al. Photocatalytic reduction of water by TaON under visiblelight irradiation. Catal. Today2004,90(3-4):313-317.
    [57] Fu H B, Zhang S C, Zhang L W, et al. Visible-light-driven NaTaO3-xNxcatalyst prepared by ahydrothermal process. Mater. Res. Bull.2008,43(4):864-872.
    [58] Hara M, Hitoki G, Takata T, et al. TaON and Ta3N5as new visible light driven photocatalysts.Catal. Today2003,78(1-4):555-560.
    [59]邹文,郝维昌,信心,等.不同晶型Bi2O3可见光光催化降解罗丹明B的研究.无机化学学报,2009,25(11):1971-1976.
    [60] Zhang L S, Wang W Z, Yang J, et al. Sonochemical synthesis of nanocrystallite Bi2O3as avisible-light-driven photocatalyst. Appl. Catal. A:Gen.2006,308:105-110.
    [61] Huang Q Q, Zhang S N, Cai C X, et al. β-and α-Bi2O3nanoparticles synthesized viamicrowave-assisted method and their photocatalytic activity towards the degradation ofrhodamine B. Mater. Lett.2011,65(6):988-990.
    [62] Xie J M, Lu X M, Chen M, et al. The synthesis, characterization and photocatalytic activity ofV(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3. Dyes Pigments2008,77(1):43-47.
    [63]李二军,陈浪,章强,等.铋系半导体光催化材料.化学进展2010,22(12):2282-2289.
    [64] Bian Z F, Huo Y N, Zhang Y, et al. Aerosol-spay assisted assembly of Bi2Ti2O7crystals inuniform porous microspheres with enhanced photocatalytic activity. Appl. Catal. B: Environ.2009,91(1-2):247-253.
    [65] Hou J G, Jiao S Q, Zhu H M, et al. Bismuth titanate pyrochlore microspheres: Directed synthesisand their visible light photocatalytic activity. J. Solid State Chem.2011,184(1):154-158.
    [66] Bian Z F, Ren J, Zhu J, et al. Self-assembly of BixTi1-xO2visible photocatalyst with core–shellstructure and enhanced activity. Appl. Catal. B: Environ.2009,89(3-4):577-582.
    [67] Zhang H J, Chen G, Li X. Synthesis and visible light photocatalysis water splitting property ofchromium-doped Bi4Ti3O12. Solid State Ionics2009,180(36-39):1599-1603.
    [68] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-built hierarchical nest-likestructures with visible-light-induced photocatalytic activity. J. Phys. Chem. C2007,111(34):12866-12871.
    [69] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6nano-and microstructures: shape control andassociated visible-light-driven photocatalytic activities. Small2007,3(9):1618-1625.
    [70] Shang M, Wang W Z, Xu H L. New Bi2WO6nanocages with high visible-light-drivenphotocatalytic activities prepared in refluxing EG. Cryst. Growth Des.2009,9(2):991-996.
    [71] Shang M, Wang W Z, Zhang L, et al. Bi2WO6with significantly enhanced photocatalyticactivities by nitrogen doping. Mater. Chem. Phys.2009,120(1):155-159.
    [72] Ren J, Wang W Z, Sun S M, et al. Enhanced photocatalytic activity of Bi2WO6loaded with Agnanoparticles under visible light irradiation. Appl. Catal. B: Environ.2009,92(1-2):50-55.
    [73] Xu J H, Wang W Z, Shang M, et al. Efficient visible light induced degradation of organiccontaminants by Bi2WO6film on SiO2modified reticular substrate. Appl. Catal. B: Environ.2010,93(3-4):227-232.
    [74] Dong F, Wu Q, Ma J, et al. Mild oxide-hydrothermal synthesis of different aspect ratios ofmonoclinic BiVO4nanorods tuned by temperature. Phys. Status Solidi A2009,206(1):59-63.
    [75] Yin W, Wang W, Shang M, et al. BiVO4Hollow Nanospheres: Anchoring Synthesis, GrowthMechanism, and Their Application in Photocatalysis. Eur. J. Inorg. Chem.2009,2009(29-30):4379-4384.
    [76] Sun S, Wang W, Zhou L, et al. Efficient methylene blue removal over hydrothermally synthesizedstarlike BiVO4. Ind. Eng. Chem. Res.2009,48(4):1735-1739.
    [77] Xu H, Li H, Wu C, et al. Preparation, characterization and photocatalytic activity of transitionmetal-loaded BiVO4. Mater. Sci. Eng. B2008,147(1):52-56.
    [78] Xu H, Wu C, Li H, et al. Synthesis, characterization and photocatalytic activities of rareearth-loaded BiVO4catalysts. Appl. Surf. Sci.2009,256(3):597-602.
    [79] Zhang A, Zhang J. Characterization and photocatalytic properties of Au/BiVO4composites, J.Alloys Comd.2010,491(1-2):631-635.
    [80]李红花,李坤威,王浩. α-Bi2Mo3O12和γ-Bi2MoO6的水热合成及可见光催化性能.无机化学学报2009,25(3):512-516.
    [81] Xie L J, Ma J F, Xu G J. Preparation of a novel Bi2MoO6flake-like nanophotocatalyst by moltensalt method and evaluation for photocatalytic decomposition of rhodamine B. Mater. Chem. Phys.2008,110(2-3):197-200.
    [82] Bi J H, Wu L, Li J, et al. Simple solvothermal routes to synthesizenanocrystalline Bi2MoO6photocatalysts with different morphologies. Acta Mater.2007,55(14):4699-4705.
    [83] Huang W L, Zhu Q. DFT calculations on the electronic structures of BiOX (X=F, Cl, Br, I)photocatalysts with and without semicore Bi5d states. J. Comput. Chem.2009,30(2):183-190.
    [84] Spinicci R, Faticanti M, Marini P, et al. Catalytic activity of LaMnO3and LaCoO3perovskitestowards VOCs combustion. J. Mol. Catal. A: Chem.2003,197:147-155.
    [85] Merino N A, Barbero B P, Ruiz P, et al. Synthesis, characterisation, catalytic activity andstructural stability of LaCo1yFeyO3±λperovskite catalysts for combustion of ethanol and propane.J. Catal.2006,240:245-257.
    [86] Kremenic G, Nieto J M L, Weller S W, et al. Selective oxidationof propene on amolybdenum-prasedodymium-bismuth catalyst. Ind. Eng. Chem. Res.1987,26:1419-1424.
    [87] Wu Y, Yu T, Dou B S, et al. A comparative study on perovskite-type mixed oxide catalystsA′xA1-xBO3-λ(A′=Ca, Sr, A=La, B=Mn, Fe, Co) for NH3oxidation. J. Catal.1989,120:88-107.
    [88] Tejuca L G, Fierro J L G, Tascon J M D. Structure and reactivity of perovskite-type oxides. Adv.Catal.1989,36:237-328.
    [89] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3multiferroic thin film heterostructures.Science2003,299:1719-1722.
    [90] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains inmultiferroic BiFeO3films at room temperature. Nature Mater.2006,5:823-829.
    [91] Chu Y H, Martin L W, Holcomb M B, et al. Electric-field control of local ferromagnetism using amagnetoelectric multiferroic. Nature Mater.2008,7:478-482.
    [92] Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaledBiFeO3as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol.2010,44:1786-1791.
    [93] Achenbach G D, James W J, Gerson R. Preparation of single-phase polycrystalline BiFeO3. J. Am.Ceram. Soc.1967,8:437-438.
    [94] Valant M, Axelsson A K, Alford N. Peculiarities of a solid-state synthesis of multiferroicpolycrystalline BiFeO3. Chem. Mater.2007,19:5431-5436.
    [95] Shetty S, Palkar V R, Pinto R. Size effect study in magnetoelectric BiFeO3system. Pramana J.Phys.2002,58:1027-1030.
    [96] Kim J K, Kim S S, Kim W J. Sol-gel synthesis and properties of multiferroic BiFeO3. Mater. Lett.2005,59:4006-4009.
    [97] Quan Z C, Hu H, Xu S, et al. Surface chemical bonding states and ferroelectricity of Ce-dopedBiFeO3thin films prepared by sol–gel process. J. Sol-Gel Sci. Technol.2008,48:261-266.
    [98] Wang X, Zhang Y G, Wu Z B. Magnetic and optical properties of multiferroic bismuth ferritenanoparticles by tartaric acid-assisted sol-gel strategy. Mater. Lett.2010,64:486-488.
    [99] Chen C, Cheng J, Yu S, et al. Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J.Cryst. Growth2006,291:135-139.
    [100]Han J T, Huang Y H, Wu X J, et al. Tunable Synthesis of Bismuth Ferrites with VariousMorphologies. Adv. Mater.2006,18:2145-2148.
    [101]Sakamoto W, Iwata A, Yogo T. Ferroelectric properties of chemically synthesized perovskiteBiFeO3–PbTiO3thin films. J. Appl. Phys.2008,104:1041061-1041068.
    [102]Gao F, Yuan Y, Wang K F, et al. Preparation and photoabsorption characterization of BiFeO3nanowires. Appl. Phys. Lett.2006,89:1025061-1025063.
    [103]Zhang X Y, Lai C W, Zhao X, et al. Synthesis and ferroelectric properties of multiferroic BiFeO3nanotube arrays. Appl. Phys. Lett.2005,87:1431021-1431023.
    [104]Kim J K, Kim S S, Kim W J. Sol-gel synthesis and properties of multiferroic BiFeO3. Mater. Lett.2005,59:4006-4009.
    [105]Chen J, Xing X R, Watson A, et al. Rapid synthesis of multiferroic BiFeO3single-crystallinenanostructures. Chem. Mater.2007,19:3598-3600.
    [106]Huo Y N, Jin Y, Zhang Y. Citric acid assisted solvothermal synthesis of BiFeO3microsphereswith high visible-light photocatalytic activity. J. Mol. Catal. A: Chem.2010,331:15-20.
    [107]Li S, Lin Y H, Zhang B P, et al. Controlled fabrication of BiFeO3uniform microcrystals and theirmagnetic and photocatalytic behaviors. J. Phys. Chem. C2010,114,2903-2908.
    [108]Liu Z K, Qi Y J, Lu C J. High efficient ultraviolet photocatalytic activity of BiFeO3nanoparticles synthesized by a chemical coprecipitation process. J Mater Sci: Mater Electron2010,21:380-384.
    [109]Joshi U A, Jang J S, Borse P H, et al. Microwave synthesis of single-crystalline perovskiteBiFeO3nanocubes for photoelectrode and photocatalytic applications. Appl. Physics Lett.2008,92,242106.
    [110]Lu X M, Xie J M, Song Y Z, et al. Surfactant-assisted hydrothermal preparation ofsubmicrometer-sized two-dimensional BiFeO3plates and their photocatalytic activity. J. Mater.Sci.2007,42:6824-6827.
    [111]Fei L F, Yuan J K, Hu Y M, et al. Visible light responsive perovskite BiFeO3pills and rods withdominant {111}c Facets. Cryst. Growth Des.2011,11:1049-1053.
    [112]Yang H, Xian T, Wei Z Q, et al. Size-controlled synthesis of BiFeO3nanoparticles by asoft-chemistry route. J Sol-Gel Sci Technol2011,58:238-243.
    [113]Cho C M, Noh J H, Cho I S, et al. Low-temperature hydrothermal synthesis of pure BiFeO3nanopowders using triethanolamine and their applications as visible-light photocatalysts. J. Am.Ceram. Soc.2008,91(11):3753-3755.
    [114]Farhadi S, Rashidi N. Preparation and characterization of pure single-phase BiFeO3nanoparticlesthrough thermal decomposition of the heteronuclear Bi[Fe(CN)6]5H2O complex. Polyhedron2010,29:2959-2965.
    [115]Luo J H, Maggard P A. Hydrothermal synthesis and photocatalytic activities of SrTiO3-coatedFe2O3and BiFeO3. Adv. Mater.2006,18:514-517.
    [116]Guo R Q, Fang L, Dong W, et al. Enhanced photocatalytic activity and ferromagnetism in Gddoped BiFeO3nanoparticles. J. Phys. Chem. C2010,114:21390-21396.
    [117]Li S, Lin Y H, Zhang B P, et al. BiFeO3/TiO2core-shell structured nanocomposites asvisible-active photocatalysts and their optical response mechanism. J. Appl. Phys.2009,105:054310.
    [118]Liu H Y, Guo Y P, Guo B, et al. Synthesis and visible-light photocatalysis capability ofBiFeO3-(Na0.5Bi0.5)TiO3nanopowders by a sol-gel method. Solid State Sci.2013,19:69-72.
    [119]Liu H Y, Guo Y P, Guo B, et al. BiFeO3–(Na0.5Bi0.5)TiO3butterfly wing scales: Synthesis,visible-light photocatalytic and magnetic properties. J. Eur. Ceram. Soc.2012,32:4335-4340.
    [120]Madhu C, Bellakki M B, Manivannan V. Synthesis and characterization of cation-doped BiFeO3materials for photocatalytic applications. Indian J. Eng. Mater. S.2012,17:131-139.
    [1] Guo L, Chen F, Fan X, et al. S-doped-Fe2O3as a highly active heterogeneous Fenton-like catalysttowards the degradation of acid orange7and phenol. Appl. Catal. B Environ.2010,96:162-168.
    [2] Dwyer J, Kavanagh L, Lant P. The degradation of dissolved organic nitrogen associated withmelanoidin using a UV/H2O2AOP. Chemosphere2008,71:1745-1753.
    [3] Seitelska G V, Gallios G P, Zouboulis A I. Sonochemical decomposition of natural polyphenoliccompound (condensed tannin). Chemosphere2004,56:981-987.
    [4] Bremner D H, Molina R, Martinez F, et al. Degradation of phenolic aqueous solutions by highfrequency sono-Fenton systems (US-Fe2O3/SBA15-H2O2). Appl. Catal. B Environ.2009,90:380-388.
    [5] Li Y C, Bachas L G, Bhattacharyya D. Kinetics studies of trichorophenol destruction bychelate-based Fenton reaction. Environ. Eng. Sci.2005,22:756-771.
    [6] Monteagudo J M, Duran A, Lopez-Almodovar C. Homogenous ferrioxalate assisted solarphoto-Fenton degradation of orange II aqeous solutions. Appl. Catal. B Environ.2008,83:46-55.
    [7] Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurringchelating agents on Fe (II) mediated advanced oxidation of chlorophenols. Water Res.2009,43:684-694.
    [8] Kwon B G, Kim E J, Lee J H. Pentachlorophenol decomposition by electron beam processenhanced in the presence of Fe (III)-EDTA. Chemosphere2009,74:1335-1339.
    [9] Nam S, Renganthan V, Tratnyek P G. Substituent effects on azo dye oxidation by theFeIII-EDTA-H2O2system. Chemosphere2001,45:59-65.
    [10] Roy G, Donato P D, Gorner T, et al. Study of tropaeolin degradation by iron-proposition of areaction mechanism. Water Res.2003,37:4954-4964.
    [11] Han Y F, Phonthammachai N, Ramesh K, et al. Removing organic compounds from aqueousmedium via wet peroxidation by gold catalysts. Environ. Sci. Technol.2008,42:908-912.
    [12] Cheng M M, Ma W H, Li J, et al. Visible light-assisted degradation of dye pollutants overFe(III)-loaded resin in the presence of H2O2at neutral pH values. Environ. Sci. Technol.2004,38:1569-1575.
    [13] Zepp R G, Faust B C, Holgne J. Hydroxyl radical formation in aqueous reactions (pH3-8) ofiron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol.1992,26:313-319.
    [14] Chen F, Xie Y D, He J J, et al. Photo-Fenton degradation of dye in methanolic solution under bothUV and visible irradiation. J. Photochem. Photobiol. A Chem.2001,138:139-146.
    [15] Malato S, Blanco J, Alarcon D C, et al. Photocatalytic decontamination and disinfection of waterwith solar collectors. Catal. Today2007,122:137-149.
    [16] Tokumura M, Znad H T, Kawase Y. Decolorization of dark brown colored coffee effluent by solarphoto-Fenton reaction: effect of solar light dose on decorlorization kinetics. Water Res.2008,42:4665-4673.
    [17] Yang Y, Wang P, Shi S J, et al. Microwave enhanced Fenton-like process the treatment of highconcentration pharmaceutical wastewater. J. Hazard. Mater.2009,168:238-245.
    [18] Ma Y S, Sung C F, Lin J G. Degradation of carbofuran in aqueous solution by ultrasound andFenton processes: effect of system parameters and kinetic study. J. Hazard. Mater.2010,178:320-325.
    [19] Ventura A, Jacquet G, Bermond A, et al. Electrochemical generation of the Fenton’s reagent:application to atrazine degradation. Water Res.2002,36:3517-3522.
    [20] Yuan S, Tian M, Cui Y, et al. Treatment of nitrophenols by cathode reduction and electro-Fentonmethods. J. Hazard. Mater.2006,137:573-580.
    [21] Zhang J B, Zhuang J, Gao L Z, et al. Decomposing phenol by the hidden talent of ferromagneticnanoparticles. Chemosphere2008,73:1524-1528.
    [22] Feng J Y, Hu X J, Yue P L. Degradation of salicylic acid by photo-assisted Fenton reaction usingFe ions on strongly acidic ion exchange resin as catalyst. Chem. Eng. J.2004,100:159-165.
    [23] Neamtu M, Zaharia C, Catrinescu C, et al. Fe-exchanged Y zeolite as catalyst for wet peroxideoxidation of reactive azo dye Procion Marine H-EXL. Appl. Catal. B Environ.2004,48:287-294.
    [24] Catrinescu C, Teodosiu C, Macoveanu M, et al. Catalytic wet peroxide oxidation of phenol overFe-exchanged pillared beidellite. Water Res.2003,37:1154-1160.
    [25] Deng J H, Jiang J Y, Zhang Y Y, et al. FeVO4as a highly active heterogeneous Fenton-like catalysttowards the degradation of orange II. Appl. Catal. B Environ.2008,84:468-473.
    [26] Guimaraes I R, Giroto A, Oliveira L C A, et al. Synthesis and thermal treatment of Cu-dopedgoethite: oxidation of quinoline through heterogeneous Fenton process. Appl. Catal. B Environ.2009,91:581-586.
    [27] Heckert E G, Seal S, Self W T. Fenton-like reaction catalyzed by the rare earth inner transitionmetal cerium. Environ. Sci. Technol.2008,42:5014-5019.
    [28] Ye L Q, Yang C J, Tian L H, et al. Tunable photocatalytic selectivity of fluoropolymer PVDFmodified TiO2. Appl. Surf. Sci.2011,257:8072-8077.
    [29] Li X Y, Zhu Z R, Zhao Q D, et al. FT-IR study of the photocatalytic degradation of gaseoustoluene over UV-irradiated TiO2microballs: enhanced performance by hydrothermal treatment inalkaline solution. Appl. Surf. Sci.2011,257:4709-4714.
    [30] Jing L Q, Qin X, Luan Y B, et al. Synthesis of efficient TiO2-based photocatalysts by phosphatesurface modification and the activity-enhanced mechanisms. Appl. Surf. Sci.2012,258:3340-3349.
    [31] Wang Q Q, Wang X, Li X J, et al. Surface modification of PMMA/O-MMT composite microfibersby TiO2coating. Appl. Surf. Sci.2011,258:98-102.
    [32] Jiang F, Zheng S R, An L C, et al. Effect of calcination temperature on the adsorption andphotocatalytic activity of hydrothermally synthesized TiO2nanotubes. Appl. Surf. Sci.2012,258:7188-7194.
    [33] Devi L G, Reddy K M. Enhanced photocatalytic activity of silver metallized TiO2particles in thedegradation of an azo dye methyl orange: Characterization and activity at different pH values.Appl. Surf. Sci.2010,256:3116-3121.
    [34] Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaledBiFeO3as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol.2010,44:1786-1791.
    [35] Huo Y N, Jin Y, Zhang Y. Citric acid assisted solvothermal synthesis of BiFeO3microsphereswith high visible-light photocatalytic activity. J. Mol. Catal. A Chem.2010,331:15-20.
    [36] Liu Z K, Qi Y J, Lu C J. High efficient ultraviolet photocatalytic activity of BiFeO3nanoparticlessynthesized by a chemical coprecipitation process. J. Mater. Sci-Mater El.2010,21:380-384.
    [37] Li S, Lin Y H, Zhang B P, et al. Photocatalytic and magnetic behaviors observed in nanostructuredBiFeO3particles. J. Appl. Phys.2009,105:056105.
    [38] Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3nanoparticles. Adv. Mater.2007,19:2889-2892.
    [39] Guo R, Fang L, Dong W, et al. Enhanced photocatalytic activity and ferromagnetism in Gd dopedBiFeO3Nanoparticles. J. Phys. Chem. C.2010,114:21390-21396.
    [40] Wang N, Zhu L H, Huang Y, et al. Drastically enhanced visible-light photocatalytic degradation ofcolorless aromatic pollutants over TiO2via a charge-transfer-complex path: A correlation betweenchemical structure and degradation rate of the pollutants. J. Catal.2009,266:199-206.
    [41] Guan H M, Zhu L H, Zhou H H, et al. Rapid probing of photocatalytic activity on titania-basedself-cleaning materials using7-hydroxycoumarin fluorescent probe. Anal. Chim. Acta2008,608:73-78.
    [42] Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of lowconcentrations of hydrogen peroxide by the peroxidase catalyzed oxidation ofN,N-diethyl-p-phenylenediamine (DPD). Water Res.1988,22:1109-1115.
    [43] Guan X H, Chen G H, Shang C. ATR-FTIR and XPS study on the structure of complexes formedupon the adsorption of simple organic acids on aluminum hydroxide. J. Environ. Sci.2007,19:438-443.
    [44] Gao X D, Metge D W, Ray C. Surface complexation of carboxylate adheres cryptosporidiumparvum oocysts to the hematite-water interface. Environ. Sci. Technol.2009,43:7423-7429.
    [45] Tryba B, Piszcz M, Grzmil B, et al. Photodecomposition of dyes on Fe-C-TiO2photocatalystsunder UV radiation supported by photo-Fenton process. J. Hazard. Mater.2009,162:111-119.
    [46] Luo W, Li Y S, Yuan J C, et al. Ultrasensitive fluorometric determination of hydrogen peroxideand glucose by using multiferroic BiFeO3nanoparticles as a catalyst. Talanta2010,81:901-907.
    [47] Canle-L M, Santaballa J A, Vulliet E, On the mechanism of TiO2-photocatalyzed degradation ofaniline derivatives. J. Photochem. Photobiol. A Chem.2005,175:192-200.
    [48] Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosizedBi2WO6. J. Phys. Chem. B2005,109:22432-22439.
    [49] Xue X, Hanna K, Despas C, et al. Effect of chelating agent on the oxidation rate of PCP in themagnetite/H2O2system at neutral pH. J. Mol. Catal. A Chem.2009,311:29-35.
    [50] Wang N, Zhu L H, Deng K, et al. Visible light photocatalytic reduction of Cr (VI) on TiO2in situmodified with small molecular weight organic acids. Appl. Catal. B Environ.2010,95:400-407.
    [51] Zhang C, Zhu Y F. Synthesis of square Bi2WO6nanoplates as high-activity visible-Light-drivenphotocatalysts. Chem. Mater.2005,17:3537-3545.
    [52] Casey W H, Ludwig C. The mechanism of dissolution of oxide minerals. Nature1996,381:506-509.
    [53] Loring J S, Simanova A A, Persson P. Highly mobile iron pool from a dissolution-readsorptionprocess. Langmuir2008,24:7054-7057.
    [54] Ghiselli G, Gardim W F, Litter M I, et al. Destruction of EDTA using Fenton andphoto-Fenton-like reactions under UV-A irradiation. J. Photochem. Photobiol. A Chem.2004,167:59-67.
    [55] Kwon B G, Kim E J, Lee J H. Pentachlorophenol decomposition by electron beam processenhanced in the presence of Fe(III)-EDTA. Chemosphere2009,74:1335-1339.
    [1] Jiméneza V, Panagiotopouloub P, Sáncheza P, et al. Synthesis and characterization of rutheniumsupported on carbon nanofibers with different graphitic plane arrangements. Chem. Eng. J.2011,168:947-954.
    [2] Thakur D B, Tiggelaar R M, Gardeniers J G E, et al. Carbon nanofiber based catalyst supports tobe used in microreactors: Synthesis and characterization. Chem. Eng. J.2010,160:899-908.
    [3] Jiang G D, Lin Z F, Zhu L H, et al. Preparation and photoelectrocatalytic properties oftitania/carbon nanotube composite films. Carbon2010,48:3369-3375.
    [4] Mastalir A, Kiraly Z, Patzko A, et al. Synthesis and catalytic application of Pd nanoparticles ingraphite oxide. Carbon2008,46:1631-1637.
    [5] Nguyen-Phan T D, Pham V H, Shin E W, et al. The role of graphene oxide content on theadsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J.2011,170:226-232.
    [6] Min Y L, Zhang K, Zhao W, et al. Enhanced chemical interaction between TiO2and grapheneoxide for photocatalytic decolorization of methylene blue. Chem. Eng. J.2012,193-194:203-210.
    [7] Jiang G D, Lin Z, Chen C, et al. TiO2nanoparticles assembled on graphene oxide nanosheets withhigh photocatalytic activity for removal of pollutants. Carbon2011,49:2693-2701.
    [8] Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites. J. Phys. Chem. C2011,115:7355-7363.
    [9] Hu H T, Wang X B, Liu F M, et al. Rapid microwave-assisted synthesis of graphenenanosheets-zinc sulfide nanocomposites: optical and photocatalytic properties. Synth. Met.2011,161:404-410.
    [10] Liu X, Pan L, Zhao Q, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxidecomposites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J.2012,183:238-243.
    [11] Wu C, Zhang Y, Li S, et al. Synthesis and photocatalytic properties of the graphene-La2Ti2O7nanocomposites. Chem. Eng. J.2011,178:468-474.
    [12] Bossmann S H, Oliveros E, Gob S, et al. Degradation of polyvinyl alcohol (PVA) byhomogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fentonreaction. Water Sci. Technol.2001,44:257-262.
    [13] Feng J Y, Hu X J, Yue P L. Discoloration and mineralization of Orange II by using a bentoniteclay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst. Water Res.2005,39:89-96.
    [14] Bossmann S H, Oliveros E, Gob S, et al. New evidence against hydroxyl radicals as reactiveintermediates in the thermal and photochemically enhanced Fenton reactions. J. Phys.Chem.1998,102:5542-5550.
    [15] Tejuca L G, Fierro J L G, Tascon J M D. Structure and reactivity of perovskite-type oxides.Adv. Catal.1989,36:237-328.
    [16] Spinicci R, Faticanti M, Marini P, et al. Catalytic activity of LaMnO3and LaCoO3perovskitestowards VOCs combustion. J. Mol. Catal. A Chem.2003,197:147-155.
    [17] Kremen G, Nieto J M L, Weller S W, et al. Selective oxidation of propene on amolybdenum-prasedodymium-bismuth catalyst. Ind. Eng. Chem. Res.1987,26:1419-1424.
    [18] Wu Y, Yu T, Sheng B, et al. A comparative study on perovskite-type mixed oxide catalystsAx A1-xBO3λ (A=Ca, Sr, A=La, B=Mn, Fe, Co) for NH3oxidation. J. Catal.1989,120:88-107.
    [19] Sannino D, Vaiano V, Isupova L A, et al. Structured catalysts for photo-Fenton oxidation of aceticacid. Catal. Today2011,161:255-259.
    [20] Sannino D, Vaiano V, Isupova L A, et al. Heterogeneous photo-Fenton oxidation of organicpollutants on structured catalysts. J. Adv. Oxid. Technol.2012,15:294-300.
    [21] Farhadi S, Zaidi M. Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assistedcombustion method: A novel and reusable heterogeneous catalyst for acetylation of amines,alcohols and phenols under solvent-free conditions. J. Mol. Catal. A Chem.2009,299:18-25.
    [22] Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3nanoparticles. Adv. Mater.2007,19:2889-2892.
    [23] Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaledBiFeO3as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol.2010,44:1786-1791.
    [24] Wang N, Zhu L H, Lei M, et al. Ligand-Induced drastic enhancement of catalytic activity ofnano-BiFeO3for oxidative degradation of bisphenol A. ACS. Catal.2011,1:1193-1202.
    [25] Song Z, Wang N, Zhu L H, et al. Efficient oxidative degradation of triclosan by using an enhancedFenton-like process. Chem. Eng. J.2012,198-199:379–387.
    [26] Meerts I A T M, van Zanden J J, Luijks E A C, et al. Potent competitive interactions of somebrominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci.2000,56:95-104.
    [27] Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity ofbisphenol A and19related compounds. Toxicol. Sci.2005,84:249-259.
    [28] Eriksson J, Rah S, Green N, et al. Photochemical transformations of tetrabromobisphenol A andrelated phenols in water. Chemosphere2004,54:117-126.
    [29] Han S K, Bilski P, Karriker B, et al. Oxidation of flame retardant tetrabromobisphenol A by singletoxygen. Environ. Sci. Technol.2008,42:162-172.
    [30] Horikoshi S, Miura T, Kajitani M, et al. Photodegradation of tetrahalobisphenol-A (X=Cl, Br)flame retardants and delineation of factors affecting the process. Appl. Catal. B Environ2008,84:797-802.
    [31] Lin K D, Liu W P, Gan J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide:kinetics, products, and pathways. Environ. Sci. Technol.2009,43:4480-4486.
    [32] Luo S, Yang S G, Sun C, et al. Feasibility of a two-stage reduction/subsequent oxidation fortreating tetrabromobisphenol A in aqueous solutions. Water Res.2011,45:1519-1528.
    [33] Hummers W, Offeman R. Preparation of graphitic oxide. J. Am. Chem. Soc.1958,80:1339.
    [34] Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of lowconcentrations of hydrogen peroxide by the peroxidase catalyzed oxidation ofN,N-diethyl-p-phenylenediamine (DPD). Water Res.1988,22:1109-1115.
    [35] Guan H M, Zhu L H, Zhou H H, et al. Rapid probing of photocatalytic activity on titania-basedself-cleaning materials using7-hydroxycoumarin fluorescent probe. Anal. Chim. Acta2008,608:73-78.
    [36] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon.Phy. Rev. B2000,61:14095-14107.
    [37] Tuinstra F, Koenig J L. Raman spectrum of graphite. J. Chem. Phys.1970,53:1136-1130.
    [38] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys.Rev. Lett.2006,97:187401-187404.
    [39] Cuong T V, Pham V H, Tran Q T, et al. Photoluminescence and Raman studies of graphene thinfilms prepared by reduction of graphene oxide. Mater. Lett.2010,64:399-401.
    [40] Calizo I, Balandin A A, Bao W, et al. Temperature dependence of the Raman spectra of grapheneand graphene multilayers. Nano. Lett.2007,7:2645-2649.
    [41] Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-andfew-layer graphene. Nano. Lett.2007,7:238-242.
    [42] Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surfacemicrostructure and photocatalytic activity of TiO2thin films prepared by liquid phase deposition. J.Phys. Chem. B2003,107:13871-13879.
    [43] Yu X L, An X Q. Enhanced magnetic and optical properties of pure and (Mn, Sr) doped BiFeO3nanocrystals. Solid State Commun.2009,149:711-714.
    [44] Zhu X H, Hang Q M, Xing Z B, et al. Microwave hydrothermal synthesis, structuralcharacterization, and visible-light photocatalytic activities of single-crystalline bismuth ferricnanocrystals. J. Am. Ceram. Soc.2011,94:2688-2693.
    [45] Huo Y N, Jin Y, Zhang Y. Citric acid assisted solvothermal synthesis of BiFeO3microsphereswith high visible-light photocatalytic activity. J. Mol. Catal. A Chem.2010,331:15-20.
    [46] Rocha E M R, Vilar V J P, Fonseca A, et al. Landfill leachate treatment by solar-driven AOPs. Sol.Energy2011,85:46-56.
    [47] Horikoshi S, Miura T, Kajitani M, et al. Photodegradation of tetrahalobisphenol-A (X=Cl, Br)flame retardants and delineation of factors affecting the process. Appl. Catal. B Environ.2008,84:797-802.
    [48] Luo W, Li Y S, Yuan J, et al. Ultrasensitive fluorometric determination of hydrogen peroxide andglucose by using multiferroic BiFeO3nanoparticles as a catalyst. Talanta2010,81:901-907.
    [49] Lin K D, Liu W P, Gan J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide:kinetics, products, and pathways. Environ. Sci. Technol.2009,43:4480-4486.
    [50] Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance ofgraphene-Bi2WO6composite. Phys. Chem. Chem. Phys.2011,13:2887-2893.
    [51] Guo Y N, Chen L, Ma F Y, et al. Efficient degradation of tetrabromobisphenol A byheterostructured Ag/Bi5Nb3O15material under the simulated sunlight irradiation. J. Hazard. Mater.2011,189:614-618.
    [52] Bruchajzer E, Szymanska J A, Piotrowski J K. Acute and subacute nephrotoxicity of2-bromophenol in rats. Toxicol. Lett.2002,134:245-252.
    [53] Liu Z F, Liu Q, Ma Y Y F, et al. Organic photovoltaic devices based on a novel acceptor material:graphene. Adv. Mater.2008,20:3924-3930.
    [1] Xiong Z G, Xu Y M, Zhu L Z, et al. Enhanced photodegradation of2,4,6-trichlorophenol overpalladium phthalocyaninesulfonate modified organobentonite. Langmuir2005,21:10602-10607.
    [2] Liu H J, Sha W, Cooper A T, et al. Preparation and characterization of a novel silica aerogel asadsorbent for toxic organic compounds. Colloids Surf. A.2009,347:38-44.
    [3] Rao M M, Ramesh A, Rao G P C, et al. Removal of copper and cadmium from the aqueoussolutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. B.2006,129:123-129.
    [4] Shawabkeh R A, Rockstraw D A, Bhada R K. Copper and strontium adsorption by a novel carbonmaterial manufactured from pecan shells. Carbon2002,40:781-786.
    [5] Dastgheib S A, Rockstraw D A. Pecan shell activated carbon: synthesis, characterization, andapplication for the removal of copper from aqueous solution. Carbon2001,39:1849-1855.
    [6] Cimino G, Passerini A, Toscano G. Removal of toxic cations and Cr(VI) from aqueous solutionby hazelnut shell. Water Res.2000,34:2955-2962.
    [7] Demirbas E. Adsorption of cobalt (II) from aqueous solution onto activated carbon prepared fromhazelnut shells. Adsorption Sci. Technol.2003,21:951-963.
    [8] Kobya M. Adsorption kinetic and equilibrium studies of Cr(VI) by hazelnut shell activatedcarbons, Adsorption Sci. Technol.2004,22:51-64.
    [9] Sayan E. Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnutshell: an optimization study on removal of Cu2+from aqueous solution. Chem. Eng. J.2006,115:213-218.
    [10] Periasamy K, Namasivayam C. Removal of Cu(II) by adsorption onto peanut hull carbon fromwater and copper plating industry wastewater. Chemosphere1996,32:769-789.
    [11] Namasivayam C, Kadirvelu K. Agricultural solid wastes for the removal of heavy metals:Adsorption of Cu(II) by coirpith carbon. Chemosphere1997,34:377-399.
    [12] Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption bycoir pith carbon. Bioresour. Technol.2007,98:14-21.
    [13] Martinez M L, Torres M M, Guzman C A, et al. Preparation and characteristics of activatedcarbon from olive stones and walnut shells. Ind. Crops Prod.2006,23:23-28.
    [14] Ferro Garcia M A, Rivera Ultrilla J, Rodriguez Gordillo J, et al. Adsorption of zinc, cadmium, andcopper on activated carbons obtained from agricultural by-products. Carbon1988,26:363-373.
    [15] Demirbas E, Kobya M, Konukman A E S. Error analysis of equilibrium studies for the almondshell activated carbon adsorption of Cr(VI) from aqueous solutions. J. Hazard. Mater.2008,154:787-794.
    [16] Amina A A, Badie S G, Nady A F. Removal of methylene blue by carbons derived from peachstones by H3PO4activation: batch and column studies. Dyes Pigments2008,76:282-289.
    [17] Spahis N, Addoun A, Mahmoudi H, et al. Purification of water by activated carbon prepared fromolive stones. Desalination2008,222:519-527.
    [18] Kalavathy M H, Karthikeyan T, Rajgopal S, et al. Kinetic and isotherm studies of Cu(II)adsorption onto H3PO4-activated rubber wood sawdust. J. Col-loid Interface Sci.2005,292:354-362.
    [19] Demirbas E, Dizge N, Sulak M T, et al. Adsorption kinetics and equilibrium of copper fromaqueous solutions using hazelnut shell activated carbon. Chem. Eng. J.2009,148:480-487.
    [20] Sreejalekshmi K G, Anoop Krishnan K, Anirudhan T S. Adsorption of Pb(II) and Pb(II)-citric acidon sawdust activated carbon:Kinetic and equilibrium isotherm studies. J. Hazard. Mater.2009,161:1506-1513.
    [21] Barkat M, Nibou D, Chegrouche S, et al. Kinetics and thermodynamics studies of chromium(VI)ions adsorption onto activated carbon from aqueous solutions. Chem. Eng. Process.2009,48:38-47.
    [22] El-Naas M H, Al-Zuhair S, Alhaija M A. Removal of phenol from petroleum refinery wastewaterthrough adsorption on date-pit activated carbon. Chem. Eng. J.2010,162:997-1005.
    [23] Gupta V K, Gupta B, Rastogi A, et al. A comparative investigation on adsorption performances ofmesoporous activated carbon prepared from waste rubber tire and activated carbon for ahazardous azo dye-Acid Blue113. J. Hazard. Mater.2011,186:891-901.
    [24] Hameed B H, Salman J M, Ahmad A L. Adsorption isotherm and kinetic modeling of2,4-Dpesticide on activated carbon derived from date stones. J. Hazard. Mater.2009,163:121-126.
    [25] Thakur D B, Tiggelaar R M, Gardeniers J G E, et al. Carbon nanofiber based catalyst supports tobe used in microreactors: Synthesis and characterization. Chem. Eng. J.2010,160:899-908.
    [26] Jiméneza V, Panagiotopouloub P, Sáncheza P, et al. Synthesis and characterization of rutheniumsupported on carbon nanofibers with different graphitic plane arrangements. Chem. Eng. J.2011,168:947-954.
    [27] Jiang G D, Lin Z F, Zhu L H, et al. Preparation and photoelectrocatalytic properties oftitania/carbon nanotube composite films. Carbon2010,48:3369-3375.
    [28] Duarte F, Maldonado-Hódar F J, Madeira L M. Influence of the characteristics of carbon materialson their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange IIfrom aqueous solutions. Appl. Catal. B Environ.2011,103:109-115.
    [29] Xue G, Liu H H, Chen Q Y, et al. Synergy between surface adsorption and photocatalysis duringdegradation of humic acid on TiO2/activated carbon composites. J. Hazard. Mater.2011,186:765-772.
    [30] Guo T, Bai Z P, Wu C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO)of toluene by TiO2loaded on activated carbon fibers: PCO rate and intermediates accumulation.Appl. Catal. B Environ.2008,79:171-178.
    [31] Wang Y G, Xu G, Ren Z H, et al. Mineralizer-assisted hydrothermal synthesis and characterizationof BiFeO3nanoparticles. J. Am. Ceram. Soc.2007,90:2615-2617.
    [32] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon.Phy. Rev. B.2000,61:14095-14107.
    [33] Zhu X H, Hang Q M, Xing Z B, et al. Microwave hydrothermal synthesis, structuralcharacterization, and visible-light photocatalytic activities of single-crystalline bismuth ferricnanocrystals. J. Am. Ceram. Soc.2011,94:2688-2693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700