用户名: 密码: 验证码:
用于绝对距离测量的He-Ne激光多波长干涉仪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统外差干涉测量法相比,多波长绝对距离干涉测量法具有测量过程无需导轨及测相无需累加计数的优势,可使干涉测量更适用于实际生产生活的需要,进一步提高了现有激光干涉测距系统的应用范围,有着较高的应用和学术价值。近年来,研究工作主要集中在如何选择合适光源组成合成波长链、高精度的相位测量、对各种误差因素的修正及如何使干涉系统实用化等方面。本论文着重围绕多波长干涉测量法中的几个关键技术展开理论和实验研究,旨在探索其设计、构建和实用化方法。主要内容包括:
     1.从小数重合法和多波长干涉理论出发,推导了光源在干涉系统中所需满足的级间过渡条件和使测量精度得以提高的逐级精化理论。结合对各种光源振荡特性的分析,提出了利用633nm波段He-Ne激光构成双线三频的合成波长干涉测量方案,分析了该方案的实现机理以及光源部分所要满足的条件。
     2.根据干涉系统中对光源的要求,特别是根据通常情况下629nm波长难以单谱线振荡输出的特性,分析了在相邻且增益相差悬殊的两谱线中选择单波长振荡的难点及以往激光器内谱线选择方法的不足。从F-P腔模理论出发,研究了标准具随着长度和反射率参数而改变的透射特性,提出了用内置F-P标准具法在激光器内选择谱线的方案。给出了对于增益悬殊的相邻谱线,F-P标准具实现选线所需要满足的长度和反射率公式,并用高斯光束传输理论仿真分析了内置F-P标准具后激光器的透射特性。
     3.采用内置F-P标准具法,研制出可实现629nm单波长振荡输出的激光器。通过调整F-P标准具在激光器内的倾斜角可以实现633nm和629nm两波长交替输出。实验测量了该激光器在不同谱线振荡时随电流改变的输出功率变化;用外置F-P扫描干涉仪检测了两波长分别振荡时的模式分布;并进一步用调节激光器腔体PZT的方法测量功率调谐曲线进一步证明前述模式分布结论的正确性;使用小抖动方法对629nm波长He-Ne激光器进行稳频实验,并给出了稳频实验结果。
     4.根据干涉方案中对光源的需求,详细分析了633nm双纵模He-Ne激光器内存在的模式特征。从理论上分析推导了在考虑模牵引效应后,双纵模激光器内两纵模的拍频不确定度与其中一个单纵模频率不确定度之间的关系。用双纵模等光强法对该激光器实施了稳频,并和高稳定度的碘稳激光器作了双纵模拍频和单纵模的稳定度测试。
     5.用629nm和633nm波长激光组成117μm合成波长进行绝对距离动态及静态测量实验,并从合成波长、大气折射率波动及测相电路三个方面对实验结果作了误差分析。
The absolute distance measurement by multiple-wavelengths has much more advantages over the traditional heterodyne interferometry at least in two aspects: needlessness of guidelines and directly phase detecting while measuring. It could not only largely meet the demand of metrological needs but also be used almost everywhere in real life. Thus, it enjoys a good academic value and application. In recent years, research works mainly focus on the selection of synthetic wavelengths, high precision measurement of phase, the correction of external disturbances, and commercialization of the interferometry. Therefore, in this thesis, theoretical and experimental studies on the several techniques in interferometry are presented. The main work included as follows:
     1. Based on the classical theory of excess fraction method and multiple wavelength interference, the transition fitting condition and the accuracy refining theory are conducted. By analysis of the oscillating properties of various light sources, we come up with a blue print of interferometer by using the 633nm band He-Ne laser, constructing synthetic wavelengths with 2 lines and 3 frequencies. The demands of the light sources in interferometry are analyzed.
     2. According to the demands of light sources in interferometry, considering of the difficulty of the single 629nm oscillation in common He-Ne laser as well, we analyze the hardship of line selection particularly in two nearby transition lines with gains of sharp contrast. Shortcomings of usual line selection methods are discussed as well. Based on the F-P etalon’s transmittance theory, a new method to select the nearby lines by using an internal F-P etalon in He-Ne laser is presented. By this method, the general line selection condition is conducted, which must be in accordance with the length and refractivity of etalon. At last, by using the Gaussian beam transmission theory, we simulate the transmitting properties of light in laser cavity.
     3. By using the line selection method mentioned before, a single line 629nm He-Ne laser with an internal F-P etalon is designed. The laser can emit 629nm and 633nm line respectively when the angle of etalon is adjusted. Experiments are done such as, detecting the output power of laser while the current is changing, modes scanning by an external F-P interferometry. Furthermore, by scanning the laser cavity, we measure the modes of light in laser, which prove our conclusion of modes distribution as well. A frequency stabilization method by small mechanical dither is applied to stabilize the 629nm He-Ne laser. Experiments results of frequency stabilization by that method are also provided.
     4. The stability and mode properties of beat frequency in the double-mode He-Ne laser are discussed. Considering of the mode pulling effect, we conduct the relationship between the stability of the single mode and the beat frequency theoretically. By using PID control method, we stabilize the double-mode He-Ne laser with equal light intensity. Experiments are done to compare with a standarded iodine-stabilized laser to testify our conclusion.
     5. Experiments of absolute distance measurement by using 629nm and 633nm wavelength, consisting of a synthetic wavelength of 117μm, both in dynamic and static situations are presented. The errors caused by the synthetic wavelength, the refractive turbulence and the electronic turbulence are discussed in detail.
引文
[1]殷纯永.现代干涉测量技术[M].天津:天津大学出版社,1999.
    [2]金国藩、李景镇等.激光测量学[M].北京.科学出版社,1998.
    [3] Charles R. Tilford. Analytical procedure for determining length from fractional fringes[J], Applied Optics, 1977,16(7):1857~1860.
    [4]所睿、范志军等.双频激光干涉仪技术现状与发展[J].激光与红外,2004, 34(8):251~253.
    [5] Agilent公司主页.http://we.home.agilent.com.
    [6] ZYGO公司主页.http://www.zygo.com.
    [7] Renishaw公司主页.http://www.renishaw.com
    [8] Born.M, Wolf, E. Princles of Optics[M]. Pergamon, 1975.
    [9] R.Dandliker, R.thalmann, and D.Prongue. Two-wavelength laser interferometry using superheterodyne detection[J]. Optics Letters,1988,13(5):339~341.
    [10] C. Polhemus. Two-wavelength interferometry[J]. Applied Optics, 1973(12): 2071~2074.
    [11] Bourdet G L, Orszag A G, Stablilsation of a CO2 laser using plasma impedance variation as error signal. IEE Conf Publ (Lond), 1974:141~143.
    [12] Bourdet G L, Orszag A G, Absolute distance measurements by CO2 laser multiwavelength interferometry[J]. Applied Optics, 1979,18(2):225~227.
    [13] Gillard C W, Buholz N E, Richard D W. Absolute distance interferometry[J]. Opt Eng, 1981,20(1):129~134.
    [14] Gillard C W, Buholz N E. Progress in absolute distance interferometry[J]. Opt Eng, 1983,22(3):348~353.
    [15] Matsumoto H. Infrared He-Xe laser interferometry for measuring length[J]. Appl Opt, 1981,20(2):231~234.
    [16] Matsumoto H. Rev Scient Instrum, 1982,53(5):641~643.
    [17]松本弘一.精密机械(日刊), 1983,49(12):1658~1662.
    [18] Matsumoto H, Seino S. Annals CIRP, 1982,31(1):401~404.
    [19] Tansey R J. Absolute distance interferometer using a dye laser heterodyne interferometer and spatial separation of beams.[J]. SPIE, 1983,429:43~54.
    [20] Suematsa M. Taketa M. Appl Opt. 1991,30(28):4046~4055.
    [21] Sasaki O, Yoshida T, Suzuki T et al. Appl Opt, 1991,(30),25:3617~3621.
    [22] Suzuki T, Sasaki O, Maruyama T. Opt Engng, 1996,35(2):492~497.
    [23]Hai-jun Yang,et al. High-precision absolute distance and vibration measurement with frequency scanned interferometry[J], Appl Opt, 2006(44), 19: 3937~3944.
    [24] Matsumoto H. Synthetic millimeter-wave signal generation for length measurement[J]. Appl Opt, 1984,23(7):973~974.
    [25] Matsumoto H. Synthetic interferometric distance-measuring system using a CO2 laser[J]. Appl Opt, 1986,25(4):493~498.
    [26]朱勤.用于绝对距离干涉计量的红外多波长稳频激光的研究[D].北京:清华大学.1986.
    [27]邹大挺.用于绝对距离干涉计量的3.39微米波段双线氦氖激光器研究[D].北京:清华大学.1988.
    [28]王晶.用于绝对距离干涉计量的CO2激光多波长干涉仪的研究[D].北京:清华大学.1988.
    [29]葛晓青.用于绝对距离干涉计量的3.39微米波段双波长氦氖激光器的研究[D]北京:清华大学.1986.
    [30]邓罗根.用于绝对距离干涉计量的红外双线氦氖激光稳频及其干涉仪的研究[D].北京:清华大学.1989.
    [31]任伟明.用于绝对距离干涉测量的3.39微米波段多波长激光干涉仪的研究[D].北京:清华大学.1991.
    [32]徐勇.半导体激光器在大尺寸绝对测量中的应用研究[D].北京:清华大学.1989.
    [33]武勇军.外腔半导体激光器线形调频绝对距离干涉测量系统的研究[D].北京:清华大学. 1994.
    [34]晁志霞,殷纯永等.可调合成波长链绝对距离干涉测量[J].计量学报,2002,23(3):161~163.
    [35] Chunyong Yin, Zhixia Chao, et al. Absolute length measurement using changeable synthetic wavelength chain[J]. Opt Engng, 2002,41(4):746~750.
    [36]朱目成,周肇飞等.He-Ne拍波激光干涉仪的研究[J].激光技术,2004,28(5):531~533.
    [37]朱目成,周肇飞等.大尺寸无导轨激光精密测量仪的研究[J].激光杂志,2004,25(3):80~81.
    [38]邓罗根.多波长激光绝对距离干涉计量术的原理与发展[J].激光技术,1997,.21(2):65~72.
    [39]邱宗明.激光无导轨精密测量及定位系统的研究[D].西安.西安理工大学博士论文,2005.
    [40]程晓辉,赵洋等.光学纳米测量方法及发展趋势[J].光学技术,1999,25(3):.73~77.
    [41]赵洋,周挺等.双波长绝对距离外差干涉仪的研究[J].光学学报,1999,19(4):1274~1278.
    [42] Min-Seok kim, Seung-Woo Kim.Two-longitudinal-mode He-Ne laser for heterodyne interferometers to measure displacement[J]. Applied Optics, 2002(41), 28:5938~5942.
    [43] G. Margheri, C. Giunti. Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets[J]. Applied Optics, 1997(36), 25:6211.
    [44] Zhao Yang. Optical fiber superheterodyne interferometer with a two wavelength HeNe laser for absolute distance inferometry[J], Optical Manufacturing and Testing II,1997:520~524.
    [45]梁晶、龙兴武、张斌.一种新型多波长绝对距离干涉测量系统的研究[J].光学技术,2008(05):681~684.
    [46]赵洋、任伟明.用于绝对距离测量的0.6328微米氦氖激光外差干涉仪[J].计量学报, 1994(15),5:22~26.
    [47]赵洋、李达成、梁晋文.外差激光干涉仪的实现方法及其特点[J].计量技术,1996,7:1~5.
    [48]王林、赵洪志等.大尺寸绝对距离测量的现状及发展[J].光学技术,1997,2:47~49.
    [49] Jennifer E Decker, John R Miles, et al. Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry-application to absolute long gauge block measurement[J]. 2003(42),28:5670~5678.
    [50] Hyug-Gyo Rhee, Seung-Woo Kim. Absolute distance measurement by two-point-diffraction interferometry[J]. Applied Optics,2002(41),28:5921~5928.
    [51] Benyong Chen, Xiaohui Cheng. Dual-wavelength interferometric technique with subnanometric resolution[J]. Applied Optics, 2002(41),28:5933~5936.
    [52] C. C. Williams, H.K. Wickramasinghe, Absolute optical ranging with 200-nm resolution[J], Optics letters,1989(14),11:542~545.
    [53] G Margheri, C Giunti. Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets[J],Applied Optics,1997(36),25:6211~6216.
    [54] Hisao Kikuta, Koichi lwata, Distance measurement by the wavelength shift of laser diode light[J], 1986(25),17:2976~2980.
    [55] Chien-ming Wu, John Lawall. Heterodyne interferometer with subatomic periodic nonlinearity[J], Applied Optics, 1999(38),19:4089~4094.
    [56] John Lawall, Emest Kessler. Michelson interferometry with 10 pm accuracy[J], Rev of Scientific Instruments[J], 2000(71),7:2669~2676.
    [57] Peter J de Groot, Extending the unambiguous range of two-colorinterferometers[J], 1994(33),25:5948~5953.
    [58]武勇军.线形调频半导体激光绝对测长技术[J].航空计测技术.1993,28(4): 2~5.
    [59] Peter de Groot, Three-color laser-diode interferometer[J], Applied Optics,1991(30),25:3612~3616.
    [60] Thiel, T Peifar. Measurement. 1995(16):1~5.
    [61] Colin S Willett. Introduction to Gas Lasers[M]. Oxford, New York, Toronto, Pergamon press, 1974.
    [62]朱勤.多波长干涉计量学的逐级精化理论[J].深圳大学学报. 1993(10), 3:19~26.
    [63]周炳琨、高以智等.激光原理[M].北京,国防工业出版社,1995.
    [64]程晓辉、赵洋、李达成.光学纳米测量方法及发展趋势[J].光学技术, 1999(23),3: 73~78.
    [65]焦明星、祁瑞利等.双频激光技术研究新进展及发展趋势[J].光学技术,2006(30),1:125~128.
    [66]周肇飞、吴斌等.双纵模激光作无导轨大尺寸精密测量[J].光电工程, 1996(23),4:50~55.
    [67]刘君、穆海华等.激光干涉测量中的误差分析与补偿[J].机床与液压, 2006,9:181~183.
    [68]陈本永、周砚江等.双频激光合成波长干涉仪的精确定位方法研究[J].仪器仪表学报. 2003(24),4:53~55.
    [69]倪育才.空气折射率埃德林公式的修改[J].计量技术, 1998,3:22~27.
    [70] Edlen B. Metrologia,1966,2:71~80.
    [71]蔡伯荣、魏光辉等.激光器件[M].长沙.湖南科学技术出版社,1981:30.
    [72]马养武、陈钰清等.激光器件[M].杭州.浙江大学出版社, 1998:11.
    [73] V. Daneu, Use of low order Fabry-Perot resonator for infrared line selection[J], App. Opt,1969,8:1745-1746.
    [74] C L Tang. Methods of Experimental Physics[J], Quantum electronics,15, Part A, New York, 1979:101~113.
    [75] J P Goldsborough. Laser handbook[M], 1972,1:599.
    [76] D L Perry, CW laser oscillation at 543A in neon[J]. IEEE, Quant Electron, 1971,QE-7(2):102.
    [77] Michell A, Zemansky M W. Resonance Radiation and Excited Atoms[M], Cambridge Unive. Press, 1961.
    [78] Murray Sargent, Marlan O. Lasers Physics[M], London, Addison-Weley Publishing Company,1974:162~170.
    [79] P.W. Smith. Output power for 6328A He-Ne gas lasers[J]. IEEE J.Quant.Electron, 1996,QE-2:62~68.
    [80]游大江、李桦等.多谱线He-Ne激光器的研制及其特性分析[J],北京大学学报,1983,2:75~88.
    [81]高伯龙、丁金星等.全内腔绿(黄、橙)光He-Ne激光器[J].光学学报,1995(15) , 12:1617~1621.
    [82]龙兴武、杨开勇等.全内腔绿光He-Ne激光器[J],光学学报, 2005(25), 12:1639~1643.
    [83]游大江、赵绥堂. HND-120型可见光He-Ne多谱线激光器的研制[J],中国激光, 1983(11),1:34~38.
    [84]赵克功.同时辐射六种可见光波长的连续振荡He-Ne激光器[J],计量学报,1987(8),3:169~174.
    [85]李成阳,赵克功等.多波长高稳定的氦氖激光器,光电子.激光,1991(12),21.
    [86] P. Franke, A. Feitisch. Simultaneous CW laser emission including a Raman line of a He-Ne laser at six wavelengths in the visible range[J]. App Opt, 1989(28):3702-3707.
    [87]氦氖多谱线激光器实验讲义,大恒新纪元科技股份有限公司光电研究所.
    [88] W. Demtroder, Laser Spectroscopy [M], Springer, 2002.
    [89]严家彪. F-P标准具的加工和检验[J],光学仪器,1996(8),2:12~19.
    [90]陈世毅. F-P标准具的调节[J],杭州师范学院学报, 1999,6:105~107.
    [91]吴春煌.用平行平晶制作法布里-玻罗标准具[J].物理实验, 1981(1),2:48~51.
    [92]王青梅、张以谟. Farbry-Perot标准具同时用于光谱滤波和分光研究[J].光电子激光, 2006(17),2:179~182.
    [93]刘木林、吴正茂等.高斯光束斜入射非平行法布里一泊罗干涉仪后的透射光强分布[J],光学学报,2005(25),1:109~114.
    [94]吴正茂、夏光琼等.高斯光束斜入射法布里-玻罗干涉仪的透射光强分布[J],光学技术, 2003(29),1:38~50.
    [95]刘木林、吴正茂等. F-P干涉仪腔镜的不平行度对高斯光束透射特性的影响[J],光学技术, 2004(30),3:318~323.
    [96]夏光琼、吴正茂.非共振条件下高斯光束斜入射F-P干涉仪的透射特性[J],光学技术, 2004(30),1:24~26.
    [97]梁晶、龙兴武、张斌.、金世龙.一种内置法布里-珀罗标准具选择He-Ne激光器内谱线的方法[J],光学学报, 2009(29),11: 3108~3113.
    [98]赵绥堂、田测产等.选频氦氖激光器参数和粒子数变化的研究[J].光电子激光,1995(6),6:376~379.
    [99]赵绥堂、游大江. He-Ne多纵模激光器改为单纵模激光器工作时其物理机制的研讨[J].北京大学学报.
    [100]赵绥堂、田测产等.长腔氦氖激光器获得单频激光的瞬态过程[J].光电子激光, 1997(8),4:29~32.
    [101]潘少华.激光器纵模数与模竞争[J].光学学报,1987(7),1:22~25.
    [102]方洪烈.光学谐振腔本征模的正交性[J],光学学报, 1984(4),6:481~484.
    [103]吕可诚、巴恩旭等.内腔双纵模He-Ne激光器偏振方向的竞争效应[J],光学学报,1984(4),1:44~49.
    [104]吕海宝、冯勤群等.激光偏振方向和强度变化对分光光强的影响[J],光学技术, 1999(25),5:13~15.
    [105] T M Niebauer, James E Faller. Frequency stability measurements on polarization-stabilized He-Ne lasers[J]. Applied Optics, 1988(27),7:1285~1289.
    [106]蔡鹏、周肇飞等.双纵模热稳频激光源的模糊PID控制研究[J],四川大学学报,2006(38),1:154~158.
    [107]周肇飞、袁家勤. He-Ne激光器的双纵模热稳频系统[J],仪器仪表学报, 1988(9),4:375~379.
    [108]朱目成、张涛等.双纵模激光器的热稳频控制系统的研究[J],仪器仪表学报, 2003(24),8:581~589.
    [109] Jin Yong Yeom, Tai Hyun Yoon. Three-longitudinal-mode He-Ne laser frequency stabilized at 633nm by thermal phase locking of the secondary beat frequency[J]. Applied Optics,2005(44),2:266~270.
    [110]张辉、沈乃徵.双纵模氦氖激光器的光谱与频率复现性分析[J].光谱学与光谱分析,2005(25),7:1009~1012.
    [111]印建平.双纵模He-Ne激光器稳频稳幅的时间相干时谱法(理论部分)[J],光学学报. 1988(18),5:397~403.
    [112]王丽霞、蒋燕义、毕志毅、马龙生.基于纵模拍频控制的激光稳频技术[J],中国激光, 2007(34),9:1198~1202 .
    [113]梁晶、龙兴武.双纵模He-Ne激光器的拍频稳定度分析[J].光学学报, 2009(29), 5: 1301~1304.
    [114]沈乃澄、张志权. 633nm碘稳定激光器作为长度基准的比对测量,航空计测技术, 2002(22),1:30~34.
    [115] T H Yoon, J Ye. Absolute frequency measurement of the iodine-stabilized He-Ne laser at 633nm[J]. Applied Physics B, 2001:221~226.
    [116]梁晶、龙兴武、胡绍民.多波长绝对距离测量中干涉信号的处理方法研究[J],光学与光电技术,2008(6),6:79~81.
    [117]陈佳圭.微弱信号检测.北京,中央广播电视大学出版社, 1987.
    [118]曾庆勇.微弱信号检测.杭州,浙江大学出版社, 1994.
    [119]杨家兴,周舜云.弱信号检测的几种新方法.数据采集与处理,1995,10(增刊):41~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700