用户名: 密码: 验证码:
深井厚煤层多条上山围岩控制技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大规模的开发和利用,煤炭浅部资源越来越少,我国矿井开采正经历着一个由浅到深,地质条件由简单到复杂的过程,深部矿井逐渐增多,煤层开采时的绝对瓦斯涌出量有逐渐增大的趋势,要求采区(或带区)准备巷道条数(或断面积)加大;同时,随着煤巷锚杆支护技术和矿山绿色开采技术的发展以及国家对环境保护整治力度的加强,越来越多的采区上山、运输大巷和回风大巷布置在煤层中。因此研究深井厚煤层多条上山围岩控制技术具有重要的工程实用价值。本文以山西潞安环保能源开发股份有限公司五阳煤矿“深井厚煤层上山多巷协调变形机理与控制技术研究”项目为依托,综合运用计算机数值模拟、理论分析、实验室试验及现场实测等多种研究方法,较为系统地研究了厚煤层多条上山巷道围岩控制理论与技术。主要内容和结果如下:
     1、进行岩石三轴压缩围压分级长时加载实验,结果表明:围压较小时,围压对试件变形的影响较小,随着围压的增大,其对试件变形的影响也逐渐增大。当轴向应力增大时,围压也要随着增大,才能对试件变形产生较大的影响,才能更好地控制岩石变形。这些规律为高应力厚煤层上山采用高强高预应力锚杆锚索支护提供理论依据。
     2、通过上山巷道断面优化的理论计算和FLAC2D数值模拟分析,得到上山巷道断面合理尺寸。
     3、研究多条上山巷道掘进施工时对巷道围岩变形的相互影响,发现其体现出“多巷协调变形”概念,并通过FLAC2D数值模拟和采动巷道围岩内部结构探测,综合研究厚煤层上山多巷协调变形机理。同时通过对上山煤柱宽度的数值模拟,得到了不同煤柱宽度条件下的上山巷道群应力与变形规律,进而得到了合理的上山巷道群煤柱宽度。
     4、提出了高应力厚煤层上山高强高预应力锚杆锚索支护配合注浆的综合支护方案,并在五阳煤矿进行了支护实践,取得了显著的效果。
Along with large scale development and utilization, the shallow coal resources less and less. Mine exploitation in our county is undergoing a from shallow to deep, geological conditions from simple to complex, deep mines coal increase gradually, the absolute amount addimg has the tendency of increase gradually. Requirements of mining area (band area) preparation roadway numbers (basal area enlarges) is increasing. As coal roadway bolting technology and mining green mining technology development and national environmental protection efforts to strengthen regulation, more and more district raises, transport tunnels and main return ways have been digged in coal seam. Therefore, the research of thick coal seam multiple district raise of surrounding rock control technology has important practical value.
     Based on the project“Multi Uphill Roadway Coordination and Control Technology in Deformation Mechanismof Thick Coal in Deep Mines”of Shanxi Luan Environmental Energy Development Co., Ltd Wu Yang coal mine, comprehensive use of computer numerical simulation and theory analysis, the laboratory test and field test and so on many kinds of research methods, systematically studied surrounding rock theory and control technology of multiple district raise in thick coal seam. The main content and the results are as follows:
     1. Under Confining pressure grading long load with triaxial compression experiments, results show that: confining pressure are smaller, less influence of specimen deformation, but with confining pressure increases, the influence of specimen deformation increased gradually. When the axial pressure is very large, only larger confining pressure could control specimen deformation. These laws up for the high stress thick coal seam by prestressed anchor cable supporting steels provides theoretical basis.
     2. Based on calculation of roadway section optimization analyzed, draw up the optimal size of district uphill roadway section.
     3. According to district raise surrounding rockmass deformation when tunneling of influence each other, put forward "multiple coordination and roadway deformation" concept. Through numerical simulation FLAC2D and peep detection technology of dynamic pressure tunnel strata,comprehensive research multiple coordination and roadway deformation in thick coal seam.At the same time, based on the numerical simulation of uphill roadway coal pillar width, getting stress with deformation regularity and reasonable coal pillar width of uphill roadway group.
     4. Puts forward the comprehensive reinforcing scheme which has already mixed high strength and high prestress bolt and anchor cable supporting and grouting technique in the rise entry which in high stress thick coal seam,the practice of supporting has achieved remarkable results in Wu Yang coal mine.
引文
[1]刘生龙.煤巷层状软岩顶板破坏规律及支护研究[D].西安:西安科技大学,2005.
    [2]王进学,刘育明.高应力破碎软岩巷道破坏机理分析[J].矿业研究与开发, 2008,28(5):14-16.
    [3]崔希海,李进兰,牛学良,王素华.岩石扰动流变规律和本构关系的试验研究[J].岩石力学与工程学报,2007,26(9):1875-1881.
    [4]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [5]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2006.
    [6] Kidybinski A,Dubinski J.Strata Control in Deep Mines.Rotterdam:A.ABalkema 1990.
    [7]何满潮.深部开采岩石力学现状及其展望[C].第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.
    [8]李智.深部高应力复杂岩层稳定性控制及综合支护技术研究[D].西安:西安科技大学,2007.
    [9]陈炎光,陆士良.中国煤矿巷道图岩控制[M].徐州:中国矿业大学出版社,1994.
    [10]李德忠,夏新川,韩家根等.深部矿井开采技术[M].徐州:中国矿业大学出版社2005.
    [11]袁汉春.国内外高产高效矿井现状及展望[J].煤,1998,7(6):14-17,41.
    [12]徐永圻.采矿学[M].徐州:中国矿业大学出版社,2003.
    [13]耿兆瑞.连创世界记录的高产高效矿井[J].煤,1997,6(4):5-11.
    [14]张海清.建设高产高效矿井的几点途径[J].煤,2008,17(7):30-31,62.
    [15]陈奇.我国高产高效矿井的建设与发展[J].矿山机电,2000,(1):10-13.
    [16]赵计生.邢东矿深井煤巷锚杆锚索协调支护技术[J].河北煤炭,2008(4):5-6,72.
    [17]赵庆彪,侯朝炯,马念杰.煤巷锚杆-锚索支护互补原理及其设计方法[J].中国矿业大学学报,2005(4):490-493.
    [18]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报.2007, 32(2):113-118.
    [19]康红普.深部煤巷锚杆支护技术的研究与实践[J].煤矿开采,2008,13(1):1-5.
    [20]赵一鸣,张农,阚甲广等.深井松散煤巷超高强预应力组合锚杆支护技术[J].西安科技大学学报.2008,28(2):222-225.
    [21]康红普.煤矿深部巷道锚杆支护理论与技术研究新进展[J].煤矿支护,2007(2):1-8.
    [22]南培珠,房姗姗,王金安.松软破碎煤巷锚网支护关键参数识别与优化[J].煤炭学报,2009,34(8):1037-1042.
    [23]周建.龙固矿深井大断面煤巷锚网索联合支护技术研究[J].山东煤炭科技,2009(4):109-110.
    [24]呼延龙.锚网索联合支护在大断面煤巷中的推广应用[J].煤炭技术,2009,28(9):90-91.
    [25]张宏发,赵祥,朱明.锚网梁索联合支护技术在邢东煤矿深井煤巷的应用研究[J].煤炭技术,2008,27(11):47-50.
    [26]李树军.“三锚”联合支护在煤层沿空留巷中的应用[J].煤炭技术.2009, 28(1):69-69.
    [27]陈兴和.深井断层破碎带煤巷锚网梁索支护的研究[J].煤炭科技,2007(1):13-15.
    [28]王辉.深井高应力巷道支护技术的实践[J].江西煤炭科技,2005(l):30-31.
    [29]黄庆显.高地应力巷道锚喷注二次支护的研究和应用[J].中州煤炭,2006(2):11-12.
    [30]孙艳虹.锚索网喷碹联合支护在煤巷中的应用[J].煤炭科技,2009,28(7):133-134.
    [31]李树清.深部煤巷围岩控制内-外承载结构祸合稳定原理的研究[D].长沙:中南大学,2008
    [32]张向农.刘桥一矿煤巷锚杆支护技术优化研究[D].淮南:安徽理工大学,2005.
    [33]侯朝炯,郭励生,勾攀峰等.巷道锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [34] Griggs D.Creep of Rocks[J].Geol.1939,47.
    [35] Hieronymus C,Time-dependent strain localization in viscous media with state-dependent viscosity[J].Physics of the Earth and Planetary Interiors,2006,157.
    [36] Tsai L,Hsieh Y,Weng M,et al.Time-dependent deformation behaviors of weak andstones [J].International Journal of Roek Mechanics and Mining Sciences, 2008,45.
    [37]马胜利,马瑾.我国实验岩石力学与构造物理学研究的若干新进展[J].地震学报.2003.25(5):528-534.
    [38] Fabre G,Pellet F.Creep and time-dependent damage in argillaceous roeks[J]. International Journal of Rock Mechanics and Mining Sciences,2006.43.
    [39] Lau J,Chandler N.Innovative laboratory testing[J].International Journal of Rock Mechanics and Mining Sciences,2004,41.
    [40] Boutelier D Schrank C,Cruden A.Power-law viscous materials for analogue experiments:New data on the theology of highly-filled silicone Polymers[J].Journal of Structural Geology,2008,30.
    [41] Main I G.A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences[J].Geophys.J.Int,2000,142.
    [42]周永胜,何昌荣.用高温高压岩石蠕变实验解释岩石圈流变时存在的若干问题的讨论[J].国际地震动态,1999(12):1-4.
    [43] Rossi M,Vidal O,Wunder B,et al.Influence of time,temperature,confining pressure and fluid content on the experimental compaction of spherical grains[J].Tectonophysics,2007,441.
    [44] Katayama I, ichiro Karato S.Low-temperature,high-stress deformation of olivine under water-saturated conditions[J].Physics of the Earth and Planetary In-teriors,2008.168.
    [45]陈祖安.循环加载高压流变实验中塑性应变分析[J].地球物理学进展,2002,17(3):414-417,423.
    [46]何昌荣,周永胜,桑祖南.攀枝花辉长岩半脆性一塑性流变的实验研究[J].中国科学D辑,2002,32(9):717-726.
    [47] Boidy E,Bouvard A,Pellet F.Back analysis of time-dependent behaviour of a test gallery in claystone[J].Tunnelling and Underground Space Technology, 2002,17.
    [48] Okubo S,Fukui K,Hashiba K. Development of a transparent triaxial cell and observation of rock deformation in compression and creep tests[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45.
    [49] Neumann M,Hunsche U,Schulze O. Experimental investigations on anisotropy indilataney,failure and creep of Opalinus Clay[J].Physics and Chemistry of the Earth,2007,32.
    [50] ShaoJ,ChauK,FengX. Modeling of anisotropic damage and creep deformation in rittle rocks[J].International Journal of Rock Mechanics and Mining Sciences, 2006, 43.
    [51] Fu Z,Guo H Gao Y. Creep Damage Characteristics of Soft Rock under Distur-bance Loads[J].Journal of China University of Geosciences 2008,19(3): 292-297.
    [52] Rybacki E Dresen G. Deformation mechanism maps for feldspar rocks[J]. Tectonophysics,2004,382.
    [53] Herwegh M,de Bresser J,ter Heege J. Combining natural microstructures with Composite flow laws:an improved approach fol the extrapolation of lab data to natule[J].JournalofstrueturalGeology,2005,27.
    [54] S CHOLZ C H.Experimental study of the fracturing process in brittle rock[J]. Journal of Geophysical Research,1968,73(2):1447-1454.
    [55]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [56]谷耀君.黄河小浪底细砂岩单轴压缩蠕变性质的研究[J].岩石力学与工程学报,1986,5(4):343-358.
    [57]王子潮,王绳祖.中下地壳温度压力条件下岩石半脆性蠕变的试验研究[J].地震地质,1990, 12(4): 335-342.
    [58]陈绍杰,郭惟嘉,杨永杰.煤岩蠕变模型与破坏特征试验研究[J].岩土力学,2009,30(9):2595-2598,2622.
    [59]范秋雁,阳克青,王渭明.泥质软岩蠕变机制研究[J].岩石力学与工程学报,2010,29(8):1555-1561.
    [60]宋大钊,王恩元,刘晓斐等.深部矿井煤体蠕变机制[J].煤矿安全,2009,(5):43-45.
    [61] Hirseh P R. Proc Roy. Soe A,1954: 226-230.
    [62]何学秋,王恩元,聂百胜等.煤岩流变电磁动力学[M].徐州:中国矿业大学出版社,2003.
    [63]康红普.深部煤巷锚杆支护技术的研究与实践[J].煤矿开采,2008,13(1):1-5.
    [64]苏士龙,梁军起,靖洪文.多次采动煤巷围岩稳定控制原理及应用[J].矿业研究与开发,2008,28(3):11-13
    [65]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [66]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报,2007, 32(7):673-678.
    [67]范明建.锚杆预应力与巷道支护效果的关系研究[D].北京:煤炭科学研究总院,2007.
    [68]康红普,林健,吴拥政.高应力巷道强力锚杆支护技术及应用[C].中国岩石力学与工程学会.第十届全国岩石力学与工程学术大会论文集.北京:中国电力出版社,2008.
    [69]李伟,程久龙.深井煤巷高强高预紧力锚杆支护技术的研究与应用[J].煤炭工程,2010(1):30-31,33.
    [70]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238.
    [71]赵一鸣,张农,阚甲广.深井松散煤巷超高强预应力组合锚杆支护技术[J].西安科技大学学报,2008,28(2):222-225.
    [72]彭苏萍,孟召平.矿井工程地质理论与实践[M].北京:地质出版社,2000.
    [73]付志亮.岩石蠕变扰动效应与损伤特征理论与试验研究[D].山东科技大学,2007.
    [74]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1985.
    [75]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
    [76]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:煤炭工业出版社,1985.
    [77]陈宗基.根据流变学与地球动力学观点研究新奥法[J].岩石力学与工程学报,1988,(2):97-106.
    [78]李成波.岩石蠕变实验及非定常参数粘弹模型[D].北京:中国科学技术大学,2009.
    [79] Farmer,Ian W.岩石的工程性质[M],王浩译.徐州:中国矿业大学出版社,1998.
    [80]李世平.岩石力学简明教程[M].北京:煤炭工业出版社.1996.
    [81]龚纪文,席先武,王岳军.应力与变形的数值模型方法_数值模拟软件FLAC介绍[J].华东地质学院学报,2002,25(3):220-227.
    [82] Itasca Consulting,Inc.FLAC(Fast Lagrangian Analysis of Continua)User Manuals,Version 5.0 Minneapolis,Minnesota,2005.5.
    [83]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [84]谢建华,夏斌,徐振华.数值模拟软件FLAC及其在地学应用简介[J].地质与勘探,2005,41(2):77-80
    [85]赵仁政,李祥华,付金峰.相邻巷道或硐室的应力分布及巷间岩柱宽度选择[C].中国煤炭学会.全国矿山建设学术会议论文选集(下册).沈阳:东北大学出版社,2003
    [86]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005(16): 2854-2858
    [87]杨双锁,钱鸣高,康立勋.巷道围岩控制的波动性平衡理论[J].太原理工大学学报,2001,32(4):339-343.
    [88]杨双锁,康立勋,钱鸣高.煤矿回采巷道支护-围岩相互作用全过程分析[J].岩石力学与工程学报,2002,21(B06):1978-1981.
    [89]吕华文.破碎煤岩体钻锚注加固技术研究[D].北京:煤炭科学研究总院,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700